Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties

. 2022 Apr 30 ; 27 (9) : . [epub] 20220430

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566236

Grantová podpora
VEGA Grant No. 1/00037/22 Scientific Grant Agency of the Ministry of Education

A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.

Zobrazit více v PubMed

Lauria A., La Monica G., Bono A., Martorana A. Quinoline Anticancer Agents Active on DNA and DNA-Interacting Proteins: From Classical to Emerging Therapeutic Targets. Eur. J. Med. Chem. 2021;220:113555. doi: 10.1016/j.ejmech.2021.113555. PubMed DOI

Dorababu A. Coumarin-Heterocycle Framework: A Privileged Approach in Promising Anticancer Drug Design. Eur. J. Med. Chem. Rep. 2021;2:100006. doi: 10.1016/j.ejmcr.2021.100006. DOI

Kazeminejad Z., Marzi M., Shiroudi A., Kouhpayeh S.A., Farjam M., Zarenezhad E. Review Article Novel 1, 2, 4-Triazoles as Antifungal Agents. BioMed Res. Int. 2022;2022:4584846. doi: 10.1155/2022/4584846. PubMed DOI PMC

Shetu S.A., Bandyopadhyay D. Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Int. J. Mol. Sci. 2022;23:3706. doi: 10.3390/ijms23073706. PubMed DOI PMC

Patil V.M., Masand N., Verma S., Masand V. Chromones: Privileged Scaffold in Anticancer Drug Discovery. Chem. Biol. Drug Des. 2021;98:943–953. doi: 10.1111/cbdd.13951. PubMed DOI

Szymańska M., Insińska-Rak M., Dutkiewicz G., Roviello G.N., Fik-Jaskółka M.A., Patroniak V. Thiophene-Benzothiazole Dyad Ligand and Its Ag (I) Complex--Synthesis, Characterization, Interactions with DNA and BSA. J. Mol. Liq. 2020;319:114182. doi: 10.1016/j.molliq.2020.114182. DOI

Vitaku E., Smith D.T., Njardarson J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014;57:10257–10274. doi: 10.1021/jm501100b. PubMed DOI

Heravi M.M., Zadsirjan V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020;10:44247–44311. doi: 10.1039/D0RA09198G. PubMed DOI PMC

Di Franco S., Parrino B., Gaggianesi M., Pantina V.D., Bianca P., Nicotra A., Mangiapane L.R., Lo Iacono M., Ganduscio G., Veschi V., et al. CHK1 Inhibitor Sensitizes Resistant Colorectal Cancer Stem Cells to Nortopsentin. iScience. 2021;24:102664. doi: 10.1016/j.isci.2021.102664. PubMed DOI PMC

Hamdy R., Jones A.T., El-Sadek M., Hamoda A.M., Shakartalla S.B., Al Shareef Z.M., Soliman S.S.M., Westwell A.D. New Bioactive Fused Triazolothiadiazoles as Bcl-2-Targeted Anticancer Agents. Int. J. Mol. Sci. 2021;22:12272. doi: 10.3390/ijms222212272. PubMed DOI PMC

Shao M., Chen X., Yang F., Song X., Zhou Y., Lin Q., Fu Y., Ortega R., Lin X., Tu Z., et al. Design, Synthesis, and Biological Evaluation of Aminoindazole Derivatives as Highly Selective Covalent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR4. J. Med. Chem. 2022;65:5113–5133. doi: 10.1021/acs.jmedchem.2c00096. PubMed DOI

Carbone A., Cascioferro S., Parrino B., Carbone D., Pecoraro C., Schillaci D., Cusimano M.G., Cirrincione G., Diana P. Thiazole Analogues of the Marine Alkaloid Nortopsentin as Inhibitors of Bacterial Biofilm Formation. Molecules. 2021;26:81. doi: 10.3390/molecules26010081. PubMed DOI PMC

Aday B., Ulus R., Tanç M., Kaya M., Supuran C.T. Synthesis of Novel 5-Amino-1, 3, 4-Thiadiazole-2-Sulfonamide Containing Acridine Sulfonamide/Carboxamide Compounds and Investigation of Their Inhibition Effects on Human Carbonic Anhydrase I, II, IV and VII. Bioorg. Chem. 2018;77:101–105. doi: 10.1016/j.bioorg.2017.12.035. PubMed DOI

Barros F.W.A., Silva T.G., da Rocha Pitta M.G., Bezerra D.P., Costa-Lotufo L.V., de Moraes M.O., Pessoa C., de Moura M.A.F.B., de Abreu F.C., de Lima M.d.C.A., et al. Synthesis and Cytotoxic Activity of New Acridine-Thiazolidine Derivatives. Bioorg. Med. Chem. 2012;20:3533–3539. doi: 10.1016/j.bmc.2012.04.007. PubMed DOI

Girek M., Kłosiński K., Grobelski B., Pizzimenti S., Cucci M.A., Daga M., Barrera G., Pasieka Z., Czarnecka K., Szymański P. Novel Tetrahydroacridine Derivatives with Iodobenzoic Moieties Induce G0/G1 Cell Cycle Arrest and Apoptosis in A549 Non-Small Lung Cancer and HT-29 Colorectal Cancer Cells. Mol. Cell. Biochem. 2019;460:123–150. doi: 10.1007/s11010-019-03576-x. PubMed DOI PMC

Prasher P., Sharma M. Medicinal Chemistry of Acridine and Its Analogues. Medchemcomm. 2018;9:1589–1618. doi: 10.1039/C8MD00384J. PubMed DOI PMC

Kožurková M., Sabolová D., Kristian P. A Review on Acridinylthioureas and Its Derivatives: Biological and Cytotoxic Activity. J. Appl. Toxicol. 2017;37:1132–1139. doi: 10.1002/jat.3464. PubMed DOI

De Almeida S.M.V., Lafayette E.A., Da Silva L.P.B.G., Amorim C.A.d.C., De Oliveira T.B., Ruiz A.L.T.G., De Carvalho J.E., De Moura R.O., Beltrão E.I.C., De Lima M.D.C.A., et al. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives. Int. J. Mol. Sci. 2015;16:13023–13042. doi: 10.3390/ijms160613023. PubMed DOI PMC

Dimmock J.R., Vashishtha S.C., Stables J.P. Anticonvulsant Properties of Various Acetylhydrazones, Oxamoylhydrazones and Semicarbazones Derived from Aromatic and Unsaturated Carbonyl Compounds. Eur. J. Med. Chem. 2000;35:241–248. doi: 10.1016/S0223-5234(00)00123-9. PubMed DOI

Zha G.-F., Leng J., Darshini N., Shubhavathi T., Vivek H.K., Asiri A.M., Marwani H.M., Rakesh K.P., Mallesha N., Qin H.-L. Synthesis, SAR and Molecular Docking Studies of Benzo [d] Thiazole-Hydrazones as Potential Antibacterial and Antifungal Agents. Bioorg. Med. Chem. Lett. 2017;27:3148–3155. doi: 10.1016/j.bmcl.2017.05.032. PubMed DOI

Zhou Q., You C., Zheng C., Gu Y., Gu H., Zhang R., Wu H., Sun B. 3-Nitroacridine Derivatives Arrest Cell Cycle at G0/G1 Phase and Induce Apoptosis in Human Breast Cancer Cells May Act as DNA-Target Anticancer Agents. Life Sci. 2018;206:1–9. doi: 10.1016/j.lfs.2018.05.010. PubMed DOI

Thota S., Rodrigues D.A., Pinheiro P.d.S.M., Lima L.M., Fraga C.A.M., Barreiro E.J. N-Acylhydrazones as Drugs. Bioorg. Med. Chem. Lett. 2018;28:2797–2806. doi: 10.1016/j.bmcl.2018.07.015. PubMed DOI

Zhang N., Ishag A., Li Y., Wang H., Guo H., Mei P., Meng Q., Sun Y. Recent Investigations and Progress in Environmental Remediation by Using Covalent Organic Framework-Based Adsorption Method: A Review. J. Clean. Prod. 2020;277:123360. doi: 10.1016/j.jclepro.2020.123360. DOI

Ma X., Qiao B., Yue J., Yu J.J., Geng Y., Lai Y., Feng E., Han X., Liu M. Efficient Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission in Supramolecular Gels. Soft Matter. 2021;17:7813–7816. doi: 10.1039/D1SM00993A. PubMed DOI

Huang Y.M., Alharbi N.S., Sun B., Shantharam C.S., Rakesh K.P., Qin H.L. Synthetic Routes and Structure-Activity Relationships (SAR) of Anti-HIV Agents: A Key Review. Vol. 181. Elsevier Masson SAS; Amsterdam, The Netherlands: 2019. PubMed

Aarjane M., Aouidate A., Slassi S., Amine A. Synthesis, Antibacterial Evaluation, in Silico ADMET and Molecular Docking Studies of New N-Acylhydrazone Derivatives from Acridone. Arab. J. Chem. 2020;13:6236–6245. doi: 10.1016/j.arabjc.2020.05.034. DOI

Yu X., Shi L., Ke S. Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Bio-Evaluation and Mechanism of Action. Bioorg. Med. Chem. Lett. 2015;25:5772–5776. doi: 10.1016/j.bmcl.2015.10.069. PubMed DOI

Salgın-Gökşen U., Gökhan-Kelekçi N., Göktaş Ö., Köysal Y., Kılıç E., Işık Ş., Aktay G., Özalp M. 1-Acylthiosemicarbazides, 1,2,4-Triazole-5(4H)-Thiones, 1,3,4-Thiadiazoles and Hydrazones Containing 5-Methyl-2-Benzoxazolinones: Synthesis, Analgesic-Anti-Inflammatory and Antimicrobial Activities. Bioorg. Med. Chem. 2007;15:5738–5751. doi: 10.1016/j.bmc.2007.06.006. PubMed DOI

Poornima P., Kumar V.B., Weng C.F., Padma V.V. Doxorubicin Induced Apoptosis Was Potentiated by Neferine in Human Lung Adenocarcima, A549 Cells. Food Chem. Toxicol. 2014;68:87–98. doi: 10.1016/j.fct.2014.03.008. PubMed DOI

Sourdon V., Mazoyer S., Pique V., Galy J.-P. Synthesis of New Bis-and Tetra-Acridines. Molecules. 2001;6:673–682. doi: 10.3390/60800673. DOI

Vilková M., Ungvarská Mal’učká L., Imrich J. Prediction by 13C NMR of Regioselectivity in 1, 3-Dipolar Cycloadditions of Acridin-9-Yl Dipolarophiles. Magn. Reson. Chem. 2016;54:8–16. doi: 10.1002/mrc.4307. PubMed DOI

Pereira T.M., Vitório F., Amaral R.C., Zanoni K.P.S., Iha N.Y.M., Kümmerle A.E. Microwave-Assisted Synthesis and Photophysical Studies of Novel Fluorescent N-Acylhydrazone and Semicarbazone-7-OH-Coumarin Dyes. New J. Chem. 2016;40:8846–8854. doi: 10.1039/C6NJ01532H. DOI

Yamada S., Morizono D., Yamamoto K. Mild Oxidation of Aldehydes to the Corresponding Carboxylic Acids and Esters: Alkaline Iodine Oxidation Revisited. Tetrahedron Lett. 1992;33:4329–4332. doi: 10.1016/S0040-4039(00)74252-3. DOI

Lima P.C., Lima L.M., da Silva K.C.M., Léda P.H.O., Miranda A.L.P., Fraga C.A.M., Barreiro E.J. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem. 2000;35:187–203. doi: 10.1016/S0223-5234(00)00120-3. PubMed DOI

Lopes A.B., Miguez E., Kümmerle A.E., Rumjanek V.M., Fraga C.A.M., Barreiro E.J. Characterization of Amide Bond Conformers for a Novel Heterocyclic Template of N-Acylhydrazone Derivatives. Molecules. 2013;18:11683–11704. doi: 10.3390/molecules181011683. PubMed DOI PMC

Syakaev V.V., Podyachev S.N., Buzykin B.I., Latypov S.K., Habicher W.D., Konovalov A.I. NMR Study of Conformation and Isomerization of Aryl-and Heteroarylaldehyde 4-Tert-Butylphenoxyacetylhydrazones. J. Mol. Struct. 2006;788:55–62. doi: 10.1016/j.molstruc.2005.11.018. DOI

Bečka M., Vilková M., Šoral M., Potočňák I., Breza M., Béres T., Imrich J. Synthesis and Isomerization of Acridine Substituted 1,3-Thiazolidin-4-Ones and 4-Oxo-1,3-Thiazolidin-5-Ylidene Acetates. An Experimental and Computational Study. J. Mol. Struct. 2018;1154:152–164. doi: 10.1016/j.molstruc.2017.10.046. DOI

Dingley A.J., Cordier F., Grzesiek S. An Introduction to Hydrogen Bond Scalar Couplings. Concepts Magn. Reson. Educ. J. 2001;13:103–127. doi: 10.1002/1099-0534(2001)13:2<103::AID-CMR1001>3.0.CO;2-M. DOI

Almáši M., Vilková M., Bednarčík J. Synthesis, Characterization and Spectral Properties of Novel Azo-Azomethine-Tetracarboxylic Schiff Base Ligand and Its Co(II), Ni(II), Cu(II) and Pd(II) Complexes. Inorg. Chim. Acta. 2021;515:120064. doi: 10.1016/j.ica.2020.120064. DOI

Gökoğlu E., Kıpçak F., Seferoğlu Z. Studies on the Interactions of 3, 6-Diaminoacridine Derivatives with Human Serum Albumin by Fluorescence Spectroscopy. Luminescence. 2014;29:872–877. doi: 10.1002/bio.2635. PubMed DOI

Zhou Y., Song T., Cao Y., Gong G., Zhang Y., Zhao H., Zhao G. Synthesis and Characterization of Planar Chiral Cyclopalladated Ferrocenylimines: DNA/HSA Interactions and in Vitro Cytotoxic Activity. J. Organomet. Chem. 2018;871:1–9. doi: 10.1016/j.jorganchem.2018.06.027. DOI

Ranjbar S., Shokoohinia Y., Ghobadi S., Bijari N., Gholamzadeh S., Moradi N., Ashrafi-Kooshk M.R., Aghaei A., Khodarahmi R. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein. Sci. World J. 2013;2013:305081. doi: 10.1155/2013/305081. PubMed DOI PMC

Hou H.-N., Qi Z.-D., OuYang Y.-W., Liao F.-L., Zhang Y., Liu Y. Studies on Interaction between Vitamin B12 and Human Serum Albumin. J. Pharm. Biomed. Anal. 2008;47:134–139. doi: 10.1016/j.jpba.2007.12.029. PubMed DOI

Jamshidvand A., Sahihi M., Mirkhani V., Moghadam M., Mohammadpoor-Baltork I., Tangestaninejad S., Rudbari H.A., Kargar H., Keshavarzi R., Gharaghani S. Studies on DNA Binding Properties of New Schiff Base Ligands Using Spectroscopic, Electrochemical and Computational Methods: Influence of Substitutions on DNA-Binding. J. Mol. Liq. 2018;253:61–71. doi: 10.1016/j.molliq.2018.01.029. DOI

Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer; Berlin/Heidelberg, Germany: 2006.

Bijari N., Shokoohinia Y., Ashrafi-Kooshk M.R., Ranjbar S., Parvaneh S., Moieni-Arya M., Khodarahmi R. Spectroscopic Study of Interaction between Osthole and Human Serum Albumin: Identification of Possible Binding Site of the Compound. J. Lumin. 2013;143:328–336. doi: 10.1016/j.jlumin.2013.04.045. DOI

Pronzato P., Vigani A., Tognoni A., Vaira F., Canessa P. Anthacyclines in Non-Small Cell Lung Cancer. Lung Cancer. 2001;34:57–59. doi: 10.1016/S0169-5002(01)00394-4. PubMed DOI

Rudra S., Dasmandal S., Patra C., Mahapatra A. Spectroscopic Exploration and Molecular Docking Analysis on Interaction of Synthesized Schiff Base Ligand with Serum Albumins. J. Mol. Struct. 2018;1167:107–117. doi: 10.1016/j.molstruc.2018.04.089. DOI

Ross P.D., Subramanian S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability. Biochemistry. 1981;20:3096–3102. doi: 10.1021/bi00514a017. PubMed DOI

Suo Z., Sun Q., Yang H., Tang P., Gan R., Xiong X., Li H. Combined Spectroscopy Methods and Molecular Simulations for the Binding Properties of Trametinib to Human Serum Albumin. RSC Adv. 2018;8:4742–4749. doi: 10.1039/C7RA12890H. PubMed DOI PMC

Chaves O.A., Ferreira R.C., Silva L.S.d., de Souza B.C.E., Cesarin-Sobrinho D., Netto-Ferreira J.C., Sant’Anna C.M.R., Ferreira A.B.B. Multiple Spectroscopic and Theoretical Approaches to Study the Interaction between HSA and the Antiparasitic Drugs: Benznidazole, Metronidazole, Nifurtimox and Megazol. J. Braz. Chem. Soc. 2018;29:1551–1562. doi: 10.21577/0103-5053.20180029. DOI

Filyak Y., Filyak O., Stoika R. Transforming Growth Factor Beta-1 Enhances Cytotoxic Effect of Doxorubicin in Human Lung Adenocarcinoma Cells of A549 Line. Cell Biol. Int. 2007;31:851–855. doi: 10.1016/j.cellbi.2007.02.008. PubMed DOI

Ghosh S., Dey J. Interaction of Bovine Serum Albumin with N-Acyl Amino Acid Based Anionic Surfactants: Effect of Head-Group Hydrophobicity. J. Colloid Interface Sci. 2015;458:284–292. doi: 10.1016/j.jcis.2015.07.064. PubMed DOI

Zhang W., Wang F., Xiong X., Ge Y., Liu Y. Spectroscopic and Molecular Docking Studies on the Interaction of Dimetridazole with Human Serum Albumin. J. Chil. Chem. Soc. 2013;58:1717–1721. doi: 10.4067/S0717-97072013000200016. DOI

Xiong X., He J., Yang H., Tang P., Tang B., Sun Q., Li H. Investigation on the Interaction of Antibacterial Drug Moxifloxacin Hydrochloride with Human Serum Albumin Using Multi-Spectroscopic Approaches, Molecular Docking and Dynamical Simulation. RSC Adv. 2017;7:48942–48951. doi: 10.1039/C7RA08731D. DOI

Das A., Kumar G.S. Binding Studies of Aristololactam-$β$-D-Glucoside and Daunomycin to Human Serum Albumin. RSC Adv. 2014;4:33082–33090. doi: 10.1039/C4RA04327H. DOI

Yasmeen S., Riyazuddeen , Qais F.A. Unraveling the Thermodynamics, Binding Mechanism and Conformational Changes of HSA with Chromolyn Sodium: Multispecroscopy, Isothermal Titration Calorimetry and Molecular Docking Studies. Int. J. Biol. Macromol. 2017;105:92–102. doi: 10.1016/j.ijbiomac.2017.06.122. PubMed DOI

Tu B., Chen Z.-F., Liu Z.-J., Li R.-R., Ouyang Y., Hu Y.-J. Study of the Structure-Activity Relationship of Flavonoids Based on Their Interaction with Human Serum Albumin. RSC Adv. 2015;5:73290–73300. doi: 10.1039/C5RA12824B. DOI

Bi S., Sun Y., Qiao C., Zhang H., Liu C. Binding of Several Anti-Tumor Drugs to Bovine Serum Albumin: Fluorescence Study. J. Lumin. 2009;129:541–547. doi: 10.1016/j.jlumin.2008.12.010. DOI

Liu Q., Zhang J., Wang M.-Q., Zhang D.-W., Lu Q.-S., Huang Y., Lin H.-H., Yu X.-Q. Synthesis, DNA Binding and Cleavage Activity of Macrocyclic Polyamines Bearing Mono-or Bis-Acridine Moieties. Eur. J. Med. Chem. 2010;45:5302–5308. doi: 10.1016/j.ejmech.2010.08.051. PubMed DOI

Hajian R., Hossaini P., Mehrayin Z., Woi P.M., Shams N. DNA-Binding Studies of Valrubicin as a Chemotherapy Drug Using Spectroscopy and Electrochemical Techniques. J. Pharm. Anal. 2017;7:176–180. doi: 10.1016/j.jpha.2017.01.003. PubMed DOI PMC

Ali A.Q., Teoh S.G., Salhin A., Eltayeb N.E., Ahamed M.B.K., Majid A.M.S.A. Synthesis of Isatin Thiosemicarbazones Derivatives: In Vitro Anti-Cancer, DNA Binding and Cleavage Activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;125:440–448. doi: 10.1016/j.saa.2014.01.086. PubMed DOI

Ataci N., Ozcelik E., Arsu N. Spectrophotometric Study on Binding of 2-Thioxanthone Acetic Acid with Ct-DNA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;204:281–286. doi: 10.1016/j.saa.2018.06.001. PubMed DOI

Lu J., Sun Q., Li J.-L., Gu W., Tian J.-L., Liu X., Yan S.-P. Synthesis, Characterization, and DNA-Binding of Two New Cd (II) Complexes with 8-[(2-Pyridylmethyl) Amino]-Quinoline. J. Coord. Chem. 2013;66:3280–3290. doi: 10.1080/00958972.2013.832228. DOI

Sirajuddin M., Ali S., Badshah A. Drug–DNA Interactions and Their Study by UV—Visible, Fluorescence Spectroscopies and Cyclic Voltametry. J. Photochem. Photobiol. B Biol. 2013;124:1–19. doi: 10.1016/j.jphotobiol.2013.03.013. PubMed DOI

Altaf A.A., Hashmat U., Yousaf M., Lal B., Ullah S., Holder A.A., Badshah A. Synthesis and Characterization of Azo-Guanidine Based Alcoholic Media Naked Eye DNA Sensor. R. Soc. Open Sci. 2016;3:160351. doi: 10.1098/rsos.160351. PubMed DOI PMC

Ihmels H., Faulhaber K., Vedaldi D., Dall’Acqua F., Viola G. Intercalation of Organic Dye Molecules into Double-Stranded DNA. Part 2: The Annelated Quinolizinium Ion as a Structural Motif in DNA Intercalators. Photochem. Photobiol. 2005;81:1107–1115. doi: 10.1562/2005-01-25-IR-427. PubMed DOI

Kleban J., Mikeš J., Szilárdiová B., Koval’ J., Sačková V., Solár P., Horváth V., Hofmanová J., Kozubík A., Fedoročko P. Modulation of Hypericin Photodynamic Therapy by Pretreatment with 12 Various Inhibitors of Arachidonic Acid Metabolism in Colon Adenocarcinoma HT-29 Cells. Photochem. Photobiol. 2007;83:1174–1185. doi: 10.1111/j.1751-1097.2007.00127.x. PubMed DOI

Otterson G.A., Villalona-Calero M.A., Sharma S., Kris M.G., Imondi A., Gerber M., White D.A., Ratain M.J., Schiller J.H., Sandler A., et al. Phase I Study of Inhaled Doxorubicin for Patients with Metastatic Tumors to the Lungs. Clin. Cancer Res. 2007;13:1246–1252. doi: 10.1158/1078-0432.CCR-06-1096. PubMed DOI

Nunhart P., Konkol’ová E., Janovec L., Jendželovský R., Vargová J., Ševc J., Matejová M., Miltáková B., Fedoročko P., Kozurkova M. Fluorinated 3, 6, 9-Trisubstituted Acridine Derivatives as DNA Interacting Agents and Topoisomerase Inhibitors with A549 Antiproliferative Activity. Bioorg. Chem. 2020;94:103393. doi: 10.1016/j.bioorg.2019.103393. PubMed DOI

Murphy M.B., Mercer S.L., Deweese J.E. Advances in Molecular Toxicology. Volume 11. Elsevier; Amsterdam, The Netherlands: 2017. Inhibitors and Poisons of Mammalian Type II Topoisomerases; pp. 203–240.

Litwiniec A., Grzanka A., Helmin-Basa A., Gackowska L., Grzanka D. Features of Senescence and Cell Death Induced by Doxorubicin in A549 Cells: Organization and Level of Selected Cytoskeletal Proteins. J. Cancer Res. Clin. Oncol. 2010;136:717–736. doi: 10.1007/s00432-009-0711-4. PubMed DOI PMC

De Almeida S.M.V., Ribeiro A.G., de Lima Silva G.C., Alves J.E.F., Beltrão E.I.C., de Oliveira J.F., de Carvalho Junior L.B., de Lima M. do C.A. DNA Binding and Topoisomerase Inhibition: How Can These Mechanisms Be Explored to Design More Specific Anticancer Agents? Biomed. Pharmacother. 2017;96:1538–1556. doi: 10.1016/j.biopha.2017.11.054. PubMed DOI

Singh K., Gangrade A., Jana A., Mandal B.B., Das N. Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1, 2, 3-Triazole Ring. ACS Omega. 2019;4:835–841. doi: 10.1021/acsomega.8b02849. DOI

Badisa R.B., Darling-Reed S.F., Joseph P., Cooperwood J.S., Latinwo L.M., Goodman C.B. Selective Cytotoxic Activities of Two Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells. Anticancer Res. 2009;29:2993–2996. PubMed PMC

Valiathan C., McFaline J.L., Samson L.D. A Rapid Survival Assay to Measure Drug-Induced Cytotoxicity and Cell Cycle Effects. DNA Repair. 2012;11:92–98. doi: 10.1016/j.dnarep.2011.11.002. PubMed DOI PMC

Sačková V., Fedoročko P., Szllardiová B., Mikeš J., Kleban J. Hypericin-Induced Photocytotoxicity Is Connected with G2/M Arrest in HT-29 and S-Phase Arrest in U937 Cells. Photochem. Photobiol. 2006;82:1285–1291. doi: 10.1562/2006-02-22-RA-806. PubMed DOI

Mikešová L., Mikeš J., Koval’ J., Gyurászová K., Čulka L., Vargová J., Valeková B., Fedoročko P. Conjunction of Glutathione Level, NAD (P) H/FAD Redox Status and Hypericin Content as a Potential Factor Affecting Colon Cancer Cell Resistance to Photodynamic Therapy with Hypericin. Photodiagnosis Photodyn. Ther. 2013;10:470–483. doi: 10.1016/j.pdpdt.2013.04.003. PubMed DOI

Ferreira I.P., Piló E.D.L., Recio-Despaigne A.A., Da Silva J.G., Ramos J.P., Marques L.B., Prazeres P.H.D.M., Takahashi J.A., Souza-Fagundes E.M., Rocha W., et al. Bismuth (III) Complexes with 2-Acetylpyridine-and 2-Benzoylpyridine-Derived Hydrazones: Antimicrobial and Cytotoxic Activities and Effects on the Clonogenic Survival of Human Solid Tumor Cells. Bioorg. Med. Chem. 2016;24:2988–2998. doi: 10.1016/j.bmc.2016.05.007. PubMed DOI

Kozurkova M. Acridine Derivatives as Inhibitors/Poisons of Topoisomerase II. J. Appl. Toxicol. 2022;42:544–552. doi: 10.1002/jat.4238. PubMed DOI

Kümler I., Brünner N., Stenvang J., Balslev E., Nielsen D.L. A Systematic Review on Topoisomerase 1 Inhibition in the Treatment of Metastatic Breast Cancer. Breast Cancer Res. Treat. 2013;138:347–358. doi: 10.1007/s10549-013-2476-3. PubMed DOI

Karki R., Park C., Jun K.-Y., Kadayat T.M., Lee E.-S., Kwon Y. Synthesis and Biological Activity of 2, 4-Di-p-Phenolyl-6-2-Furanyl-Pyridine as a Potent Topoisomerase II Poison. Eur. J. Med. Chem. 2015;90:360–378. doi: 10.1016/j.ejmech.2014.11.045. PubMed DOI

Deng S., Yan T., Nikolova T., Fuhrmann D., Nemecek A., Gödtel-Armbrust U., Kaina B., Wojnowski L. The Catalytic Topoisomerase II Inhibitor Dexrazoxane Induces DNA Breaks, ATF 3 and the DNA Damage Response in Cancer Cells. Br. J. Pharmacol. 2015;172:2246–2257. doi: 10.1111/bph.13046. PubMed DOI PMC

Vann K.R., Ergün Y., Zencir S., Oncuoglu S., Osheroff N., Topcu Z. Inhibition of Human DNA Topoisomerase II$α$ by Two Novel Ellipticine Derivatives. Bioorg. Med. Chem. Lett. 2016;26:1809–1812. doi: 10.1016/j.bmcl.2016.02.034. PubMed DOI PMC

Shi W., Marcus S.L., Lowary T.L. Cytotoxicity and Topoisomerase I/II Inhibition of Glycosylated 2-Phenyl-Indoles, 2-Phenyl-Benzo [b] Thiophenes and 2-Phenyl-Benzo [b] Furans. Bioorg. Med. Chem. 2011;19:603–612. doi: 10.1016/j.bmc.2010.10.054. PubMed DOI

Li B., Gao C.-M., Sun Q.-S., Li L.-L., Tan C.-Y., Liu H.-X., Jiang Y.-Y. Novel Synthetic Acridine-Based Derivatives as Topoisomerase I Inhibitors. Chin. Chem. Lett. 2014;25:1021–1024. doi: 10.1016/j.cclet.2014.03.028. DOI

Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Korinkova P., Mikulík J., Budesinsky M., Béres T., Berka K., Lu Q., et al. Design, Synthesis and Biological Activities of New Brassinosteroid Analogues with a Phenyl Group in the Side Chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/C6OB01479H. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...