Genome editing and beyond: what does it mean for the future of plant breeding?

. 2022 May 19 ; 255 (6) : 130. [epub] 20220519

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35587292

Grantová podpora
2020R1I1A1A01072130 National Research Foundation of Korea
2020M3A9I4038352 National Research Foundation of Korea
2020R1A6A1A03044344 National Research Foundation of Korea
Germany's Excellence Strategy - EXC-2048/1 - project ID 390686111 Deutsche Forschungsgemeinschaft
426557363 Deutsche Forschungsgemeinschaft
458717903 Deutsche Forschungsgemeinschaft
ZS/2018/06/93171 European Regional Development Fund
CZ.02.1.01./0.0/0.0/16_019/0000827 Czech Science Foundation
SPP 813103381 Czech Science Foundation

Odkazy

PubMed 35587292
PubMed Central PMC9120101
DOI 10.1007/s00425-022-03906-2
PII: 10.1007/s00425-022-03906-2
Knihovny.cz E-zdroje

Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.

Zobrazit více v PubMed

Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant. 2018;164(4):378–384. doi: 10.1111/ppl.12731. PubMed DOI

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. doi: 10.1038/s41586-019-1711-4. PubMed DOI PMC

Assou J, Zhang D, Roth KDR, Steinke S, Hust M, Reinard T, Winkelmann T, Boch J. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. Plant J. 2021 doi: 10.1111/tpj.15584. PubMed DOI

Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The rise and rise of Nicotiana benthamiana: a plant for all reasons. Annu Rev Phytopathol. 2018;56:405–426. doi: 10.1146/annurev-phyto-080417-050141. PubMed DOI

Berners-Lee M, Kennelly C, Watson R, Hewitt CN. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Sci Anthropocene. 2018 doi: 10.1525/elementa.310. DOI

Beying N, Schmidt C, Pacher M, Houben A, Puchta H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat Plants. 2020;6(6):638–645. doi: 10.1038/s41477-020-0663-x. PubMed DOI

Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci. 1998;95(18):10570–10575. doi: 10.1073/pnas.95.18.10570. PubMed DOI PMC

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science (new York, NY) 2009;326(5959):1509–1512. doi: 10.1126/science.1178811. PubMed DOI

Bown AW, Shelp BJ. The Metabolism and Functions of [gamma]-Aminobutyric Acid. Plant Physiol. 1997;115(1):1–5. doi: 10.1104/pp.115.1.1. PubMed DOI PMC

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12):e82. doi: 10.1093/nar/gkr218. PubMed DOI PMC

Chauhan H, Boni R, Bucher R, Kuhn B, Buchmann G, Sucher J, Selter LL, Hensel G, Kumlehn J, Bigler L, Glauser G, Wicker T, Krattinger SG, Keller B. The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley. Plant J. 2015;84(1):202–215. doi: 10.1111/tpj.13001. PubMed DOI

Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70:667–697. doi: 10.1146/annurev-arplant-050718-100049. PubMed DOI

Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 2016;14(1):169–176. doi: 10.1111/pbi.12370. PubMed DOI PMC

Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–w245. doi: 10.1093/nar/gky354. PubMed DOI PMC

Cui Y, Xu J, Cheng M, Liao X, Peng S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci Comput Life Sci. 2018;10(2):455–465. doi: 10.1007/s12539-018-0298-z. PubMed DOI

de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J. 2009;7(8):821–835. doi: 10.1111/j.1467-7652.2009.00446.x. PubMed DOI

Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A. Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J. 2017;91(4):565–573. doi: 10.1111/tpj.13601. PubMed DOI PMC

Enfissi EM, Drapal M, Perez-Fons L, Nogueira M, Berry HM, Almeida J, Fraser PD. New plant breeding techniques and their regulatory implications: An opportunity to advance metabolomics approaches. J Plant Physiol. 2021;258:153378. doi: 10.1016/j.jplph.2021.153378. PubMed DOI

Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE. 2008;3(11):e3647. doi: 10.1371/journal.pone.0003647. PubMed DOI PMC

Entine J, Felipe MSS, Groenewald J-H, Kershen DL, Lema M, McHughen A, Nepomuceno AL, Ohsawa R, Ordonio RL, Parrott WA, Quemada H, Ramage C, Slamet-Loedin I, Smyth SJ, Wray-Cahen D. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021;30(4):551–584. doi: 10.1007/s11248-021-00257-8. PubMed DOI PMC

FAO F (2017) The future of food and agriculture–Trends and challenges. Annual Report 296

Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H. In planta gene targeting. Proc Natl Acad Sci. 2012;109(19):7535–7540. doi: 10.1073/pnas.1202191109. PubMed DOI PMC

Fernie AR, Yan J. De novo domestication: an alternative route toward new crops for the future. Mol Plant. 2019;12(5):615–631. doi: 10.1016/j.molp.2019.03.016. PubMed DOI

Gaj T, Gersbach CA, Barbas CF., III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC

Ganie SA, Wani SH, Henry R, Hensel G. Improving rice salt tolerance by precision breeding in a new era. Curr Opin Plant Biol. 2021;60:101996. doi: 10.1016/j.pbi.2020.101996. PubMed DOI

Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621–1635. doi: 10.1016/j.cell.2021.01.005. PubMed DOI

Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C, Wang L, Young JK, Beatty M, Dahlke B, Hazebroek J, Greene TW, Cigan AM, Chilcoat ND, Meeley RB. Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol. 2020;38(5):579–581. doi: 10.1038/s41587-020-0444-0. PubMed DOI

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. doi: 10.1038/nature24644. PubMed DOI PMC

Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CK, Severn-Ellis A, McCombie WR, Parkin IA, Paterson AH, Pires JC, Sharpe AG, Tang H, Teakle GR, Town CD, Batley J, Edwards D. The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun. 2016;7:13390. doi: 10.1038/ncomms13390. PubMed DOI PMC

Grohmann L, Keilwagen J, Duensing N, Dagand E, Hartung F, Wilhelm R, Bendiek J, Sprink T. Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci. 2019;10:236. doi: 10.3389/fpls.2019.00236. PubMed DOI PMC

Hahn F, Korolev A, Sanjurjo Loures L, Nekrasov V. A modular cloning toolkit for genome editing in plants. BMC Plant Biol. 2020;20(1):179. doi: 10.1186/s12870-020-02388-2. PubMed DOI PMC

Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, Wauford NA, Chung J-Y, Nokes J, Athaiya M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3(6):427–437. doi: 10.1038/s41551-019-0371-x. PubMed DOI PMC

Han Y-J, Kim J-I. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnol Rep. 2019;13(5):447–457. doi: 10.1007/s11816-019-00575-8. DOI

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. 2014;12(7):934–940. doi: 10.1111/pbi.12201. PubMed DOI

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–754. doi: 10.1038/s41587-019-0152-9. PubMed DOI

Holme IB, Gregersen PL, Brinch-Pedersen H. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci. 2019;10:1468. doi: 10.3389/fpls.2019.01468. PubMed DOI PMC

Huang T-K, Puchta H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Res. 2021;30(4):529–549. doi: 10.1007/s11248-021-00238-x. PubMed DOI PMC

Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. 2018;16(7):1275–1282. doi: 10.1111/pbi.12868. PubMed DOI PMC

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188. doi: 10.1093/nar/gkt780. PubMed DOI PMC

Jin M, Chen L, Deng XW, Tang X. Development of herbicide resistance genes and their application in rice. Crop J. 2021 doi: 10.1016/j.cj.2021.05.007. DOI

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Jorasch P. Will the EU stay out of step with science and the rest of the world on plant breeding innovation? Plant Cell Rep. 2020;39(1):163–167. doi: 10.1007/s00299-019-02482-2. PubMed DOI

Khush GS. Green revolution: the way forward. Nat Rev Genet. 2001;2(10):815–822. doi: 10.1038/35093585. PubMed DOI

Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–868. doi: 10.1038/nbt.3609. PubMed DOI

Kim Y-G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci. 1996;93(3):1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC

Komatsuda T, Maxim P, Senthil N, Mano Y. High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.) Theor Appl Genet. 2004;109(5):986–995. doi: 10.1007/s00122-004-1710-0. PubMed DOI

Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A. 2007;104(4):1424–1429. doi: 10.1073/pnas.0608580104. PubMed DOI PMC

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424. doi: 10.1038/nature17946. PubMed DOI PMC

Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci U S A. 2015;112(18):5844–5849. doi: 10.1073/pnas.1419685112. PubMed DOI PMC

Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11(1):39–46. doi: 10.1016/S0959-440X(00)00167-6. PubMed DOI

Lee HJ, Kweon J, Kim E, Kim S, Kim J-S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012;22(3):539–548. doi: 10.1101/gr.129635.111. PubMed DOI PMC

Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants. 2018;4(10):766–770. doi: 10.1038/s41477-018-0259-x. PubMed DOI

Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q. An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front Plant Sci. 2018 doi: 10.3389/fpls.2018.00442. PubMed DOI PMC

Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants. 2016;2(10):16139. doi: 10.1038/nplants.2016.139. PubMed DOI

Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–691. doi: 10.1038/nbt.2654. PubMed DOI PMC

Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–372. doi: 10.1093/nar/gkq704. PubMed DOI PMC

Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30(5):390–392. doi: 10.1038/nbt.2199. PubMed DOI

Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. 2014;41(2):63–68. doi: 10.1016/j.jgg.2013.12.001. PubMed DOI

Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao C. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38(5):582–585. doi: 10.1038/s41587-020-0455-x. PubMed DOI

Liu G, Zhang Y, Zhang T. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J. 2020;18:35–44. doi: 10.1016/j.csbj.2019.11.006. PubMed DOI PMC

Liu J, Gerken H, Huang J, Chen F. Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochem. 2013;48(5–6):788–795. doi: 10.1016/j.procbio.2013.04.020. DOI

Liu R, Liang L, Freed EF, Gill RT. Directed evolution of CRISPR/Cas systems for precise gene editing. Trends Biotechnol. 2021;39(3):262–273. doi: 10.1016/j.tibtech.2020.07.005. PubMed DOI

Lowder LG, Zhang D, Baltes NJ, Paul JW, 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169(2):971–985. doi: 10.1104/pp.15.00636. PubMed DOI PMC

Lusser M, Rodríguez-Cerezo E (2012) Comparative regulatory approaches for new plant breeding techniques. In: Workshop proceedings. European Commission. JRC Technical Report EUR

Ma J, Xiang H, Donnelly DJ, Meng F-R, Xu H, Durnford D, Li X-Q. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol Rep. 2017;11(5):249–258. doi: 10.1007/s11816-017-0448-5. DOI

Marzec M, Hensel G. More precise, more universal and more specific - the next generation of RNA-guided endonucleases for genome editing. FEBS J. 2019;286(23):4657–4660. doi: 10.1111/febs.15079. PubMed DOI

Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T. Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci. 2020 doi: 10.3389/fpls.2020.586027. PubMed DOI PMC

Metje-Sprink J, Menz J, Modrzejewski D, Sprink T. DNA-Free genome editing: past, present and future. Front Plant Sci. 2018;9:1957. doi: 10.3389/fpls.2018.01957. PubMed DOI PMC

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–148. doi: 10.1038/nbt.1755. PubMed DOI

Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7(9):1166–1187. doi: 10.1038/s41477-021-00991-1. PubMed DOI

Naim F, Shand K, Hayashi S, O'Brien M, McGree J, Johnson AAT, Dugdale B, Waterhouse PM. Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS ONE. 2020;15(1):e0227994–e0227994. doi: 10.1371/journal.pone.0227994. PubMed DOI PMC

Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021;23(1):11–22. doi: 10.1038/s41556-020-00620-7. PubMed DOI

Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep. 2017;7(1):7057. doi: 10.1038/s41598-017-06400-y. PubMed DOI PMC

Okuzaki A, Toriyama K. Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep. 2004;22(7):509–512. doi: 10.1007/s00299-003-0698-2. PubMed DOI

Organisms EPoGM. Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA J. 2020;18(11):e06299. PubMed PMC

Osakabe K, Osakabe Y, Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2010;107(26):12034–12039. doi: 10.1073/pnas.1000234107. PubMed DOI PMC

Park J, Choe S. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Transgenic Res. 2019;28(Suppl 2):61–64. doi: 10.1007/s11248-019-00136-3. PubMed DOI

Petolino JF, Worden A, Curlee K, Connell J, Moynahan TLS, Larsen C, Russell S. Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol. 2010;73(6):617–628. doi: 10.1007/s11103-010-9641-4. PubMed DOI

Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, Eberl L, Carlier A. Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME J. 2016;10(9):2092–2105. doi: 10.1038/ismej.2016.27. PubMed DOI PMC

Podevin N, Davies HV, Hartung F, Nogue F, Casacuberta JM. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. 2013;31(6):375–383. doi: 10.1016/j.tibtech.2013.03.004. PubMed DOI

Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527–539. doi: 10.1016/j.cell.2015.07.002. PubMed DOI

Puchta H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot. 2005;56(409):1–14. doi: 10.1093/jxb/eri025. PubMed DOI

Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops Food. 2017;8(4):195–208. doi: 10.1080/21645698.2017.1413522. PubMed DOI PMC

Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8(6):e66428. doi: 10.1371/journal.pone.0066428. PubMed DOI PMC

Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, Lin H, Zhou H. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-Guided hyperactive hAID mutant. Mol Plant. 2018;11(4):623–626. doi: 10.1016/j.molp.2018.01.005. PubMed DOI

Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 2017;171(2):470–480.e8. doi: 10.1016/j.cell.2017.08.030. PubMed DOI

Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR. The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci. 2007;12(9):397–403. doi: 10.1016/j.tplants.2007.08.001. PubMed DOI

Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K. Crop improvement through modification of the plant's own genome. Plant Physiol. 2004;135(1):421–431. doi: 10.1104/pp.104.040949. PubMed DOI PMC

Rönspies M, Schindele P, Puchta H. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. J Exp Bot. 2021;72(2):177–183. doi: 10.1093/jxb/eraa463. PubMed DOI

Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H. The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J. 2012;72(5):781–790. doi: 10.1111/j.1365-313X.2012.05119.x. PubMed DOI

Sakuma S, Pourkheirandish M, Hensel G, Kumlehn J, Stein N, Tagiri A, Yamaji N, Ma JF, Sassa H, Koba T, Komatsuda T. Divergence of expression pattern contributed to neofunctionalization of duplicated HD-Zip I transcription factor in barley. New Phytol. 2013;197(3):939–948. doi: 10.1111/nph.12068. PubMed DOI

Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J. 2018;16(4):902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC

Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM. Opportunities for products of new plant breeding techniques. Trends Plant Sci. 2016;21(5):438–449. doi: 10.1016/j.tplants.2015.11.006. PubMed DOI

Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun. 2020;11(1):4418. doi: 10.1038/s41467-020-18277-z. PubMed DOI PMC

Schmidt SM, Belisle M, Frommer WB. The evolving landscape around genome editing in agriculture. EMBO Rep. 2020;21(6):e50680. doi: 10.15252/embr.202050680. PubMed DOI PMC

Schouten HJ, Jacobsen E. Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci. 2008;13(6):260–261. doi: 10.1016/j.tplants.2008.04.005. PubMed DOI

Schouten HJ, Krens FA, Jacobsen E. Do cisgenic plants warrant less stringent oversight? Nat Biotechnol. 2006;24(7):753–753. doi: 10.1038/nbt0706-753. PubMed DOI

Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714. doi: 10.1038/s41580-019-0152-0. PubMed DOI PMC

Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18(1):134–147. doi: 10.1038/cr.2007.111. PubMed DOI

Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437–441. doi: 10.1038/nature07992. PubMed DOI

Şöllü C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res. 2010;38(22):8269–8276. doi: 10.1093/nar/gkq720. PubMed DOI PMC

Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH. CRISPR-engineered T cells in patients with refractory cancer. Science (new York, NY) 2020 doi: 10.1126/science.aba7365. PubMed DOI PMC

Swaminathan MS. Obituary: Norman E. Borlaug (1914–2009) Nature. 2009;461(7266):894. doi: 10.1038/461894a. PubMed DOI

Takayama M, Koike S, Kusano M, Matsukura C, Saito K, Ariizumi T, Ezura H. Tomato glutamate decarboxylase genes SlGAD2 and SlGAD3 play key roles in regulating gamma-aminobutyric acid levels in tomato (Solanum lycopersicum) Plant Cell Physiol. 2015;56(8):1533–1545. doi: 10.1093/pcp/pcv075. PubMed DOI

Takayama M, Matsukura C, Ariizumi T, Ezura H. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit. Plant Cell Rep. 2017;36(1):103–116. doi: 10.1007/s00299-016-2061-4. PubMed DOI

Teferra TF. Should we still worry about the safety of GMO foods? Why and why not? A review. Food Sci Nutr. 2021;9(9):5324–5331. doi: 10.1002/fsn3.2499. PubMed DOI PMC

Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3 (bethesda) 2013;3(12):2233–2238. doi: 10.1534/g3.113.008847. PubMed DOI PMC

Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–651. doi: 10.1038/nature03556. PubMed DOI

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–646. doi: 10.1038/nrg2842. PubMed DOI

USDA (2020) Genetically engineered soybean, cotton, and corn seeds have become widely adopted

van Dijk M, Morley T, Rau ML, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food. 2021;2(7):494–501. doi: 10.1038/s43016-021-00322-9. PubMed DOI

Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and perspectives in homology-directed gene targeting in monocot plants. Rice (n y) 2019;12(1):95. doi: 10.1186/s12284-019-0355-1. PubMed DOI PMC

Vanamee ES, Santagata S, Aggarwal AK. FokI requires two specific DNA sites for cleavage. J Mol Biol. 2001;309(1):69–78. doi: 10.1006/jmbi.2001.4635. PubMed DOI

Vangheluwe N, Swinnen G, de Koning R, Meyer P, Houben M, Huybrechts M, Sajeev N, Rienstra J, Boer D. Give CRISPR a chance: the GeneSprout initiative. Trends Plant Sci. 2020;25(7):624–627. doi: 10.1016/j.tplants.2020.04.011. PubMed DOI

Vergauwen D, De Smet I. From early farmers to Norman Borlaug - the making of modern wheat. Curr Biol. 2017;27(17):R858–R862. doi: 10.1016/j.cub.2017.06.061. PubMed DOI

Voss-Fels KP, Stahl A, Hickey LT. Q&A: modern crop breeding for future food security. BMC Biol. 2019;17(1):18. doi: 10.1186/s12915-019-0638-4. PubMed DOI PMC

Vu TV, Sivankalyani V, Kim EJ, Doan DTH, Tran MT, Kim J, Sung YW, Park M, Kang YJ, Kim JY. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol J. 2020 doi: 10.1111/pbi.13373. PubMed DOI PMC

Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE. 2016;11(4):e0154027. doi: 10.1371/journal.pone.0154027. PubMed DOI PMC

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–951. doi: 10.1038/nbt.2969. PubMed DOI

Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol. 2011;192(4):805–822. doi: 10.1111/j.1469-8137.2011.03926.x. PubMed DOI

Whelan AI, Gutti P, Lema MA. Gene editing regulation and innovation economics. Front Bioeng Biotechnol. 2020 doi: 10.3389/fbioe.2020.00303. PubMed DOI PMC

Wolt JD, Wang K, Yang B. The regulatory status of genome-edited crops. Plant Biotechnol J. 2016;14(2):510–518. doi: 10.1111/pbi.12444. PubMed DOI PMC

Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33(11):1162–1164. doi: 10.1038/nbt.3389. PubMed DOI

Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci. 2015;112(11):3570. doi: 10.1073/pnas.1420294112. PubMed DOI PMC

Xie K, Zhang J, Yang Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant. 2014;7(5):923–926. doi: 10.1093/mp/ssu009. PubMed DOI

Xiong X, Liang J, Li Z, Gong BQ, Li JF. Multiplex and optimization of dCas9-TV-mediated gene activation in plants. J Integr Plant Biol. 2021;63(4):634–645. doi: 10.1111/jipb.13023. PubMed DOI

Yu H, Lin T, Meng X, Du H, Zhang J, Liu G, Chen M, Jing Y, Kou L, Li X, Gao Q, Liang Y, Liu X, Fan Z, Liang Y, Cheng Z, Chen M, Tian Z, Wang Y, Chu C, Zuo J, Wan J, Qian Q, Han B, Zuccolo A, Wing RA, Gao C, Liang C, Li J. A route to de novo domestication of wild allotetraploid rice. Cell. 2021;184(5):1156–1170.e1114. doi: 10.1016/j.cell.2021.01.013. PubMed DOI

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–771. doi: 10.1016/j.cell.2015.09.038. PubMed DOI PMC

Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A. 2010;107(26):12028–12033. doi: 10.1073/pnas.0914991107. PubMed DOI PMC

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013;161(1):20–27. doi: 10.1104/pp.112.205179. PubMed DOI PMC

Zheng T, Hou Y, Zhang P, Zhang Z, Xu Y, Zhang L, Niu L, Yang Y, Liang D, Yi F, Peng W, Feng W, Yang Y, Chen J, Zhu YY, Zhang LH, Du Q. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci Rep. 2017;7:40638. doi: 10.1038/srep40638. PubMed DOI PMC

Zhu S, Duwal A, Su Q, Vossen JH, Visser RGF, Jacobsen E. Vector integration in triple R gene transformants and the clustered inheritance of resistance against potato late blight. Transgenic Res. 2013;22(2):315–325. doi: 10.1007/s11248-012-9644-9. PubMed DOI

Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol. 2000;18(5):555–558. doi: 10.1038/75435. PubMed DOI

Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol. 2018;36(12):1211–1216. doi: 10.1038/nbt.4272. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...