Genomic analysis of qnr-harbouring IncX plasmids and their transferability within different hosts under induced stress
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35590235
PubMed Central
PMC9118779
DOI
10.1186/s12866-022-02546-6
PII: 10.1186/s12866-022-02546-6
Knihovny.cz E-zdroje
- Klíčová slova
- Bacterial background, Escherichia coli, IS26, IncX, Induced stress, PMQR, Plasmid conjugation, Plasmid persistence, Qnr, Transfer rate,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- ciprofloxacin farmakologie MeSH
- Escherichia coli * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- konjugace genetická MeSH
- plazmidy genetika MeSH
- proteiny z Escherichia coli * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- ciprofloxacin MeSH
- proteiny z Escherichia coli * MeSH
- Qnr protein, E coli MeSH Prohlížeč
BACKGROUND: Conjugative plasmids play a major role in the dissemination of antibiotic resistance genes. Knowledge of the plasmid characteristics and behaviour can allow development of control strategies. Here we focus on the IncX group of plasmids carrying genes conferring quinolone resistance (PMQR), reporting their transfer and persistence within host bacteria of various genotypes under distinct conditions and levels of induced stress in form of temperature change and various concentrations of ciprofloxacin supplementation. METHODS: Complete nucleotide sequences were determined for eight qnr-carrying IncX-type plasmids, of IncX1 (3), IncX2 (3) and a hybrid IncX1-2 (2) types, recovered from Escherichia coli of various origins. This data was compared with further complete sequences of IncX1 and IncX2 plasmids carrying qnr genes (n = 41) retrieved from GenBank and phylogenetic tree was constructed. Representatives of IncX1 (pHP2) and IncX2 (p194) and their qnrS knockout mutants, were studied for influence of induced stress and genetic background on conjugative transfer and maintenance. RESULTS: A high level of IncX core-genome similarity was found in plasmids of animal, environmental and clinical origin. Significant differences were found between the individual IncX plasmids, with IncX1 subgroup plasmids showing higher conjugative transfer rates than IncX2 plasmids. Knockout of qnr modified transfer frequency of both plasmids. Two stresses applied simultaneously were needed to affect transfer rate of wildtype plasmids, whereas a single stress was sufficient to affect the IncX ΔqnrS plasmids. The conjugative transfer was shown to be biased towards the host phylogenetic proximity. A long-term cultivation experiment pointed out the persistence of IncX plasmids in the antibiotic-free environment. CONCLUSIONS: The study indicated the stimulating effect of ciprofloxacin supplementation on the plasmid transfer that can be nullified by the carriage of a single PMQR gene. The findings present the significant properties and behaviour of IncX plasmids carrying antibiotic resistance genes that are likely to play a role in their dissemination and stability in bacterial populations.
CEITEC University of Veterinary Sciences Brno Brno Czech Republic
Faculty of Medicine Biomedical Center Charles University Pilsen Czech Republic
Parasites and Microbes Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton CB10 1SA UK
Zobrazit více v PubMed
Cassini A, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi: 10.1016/S1473-3099(18)30605-4. PubMed DOI PMC
ECDC, “Antimicrobial Resistance Tackling the Burden in the European Union,” Eur. Cent. Dis. Prev. Control, pp. 1–20, 2019, [Online]. Available: https://www.oecd.org/health/health-systems/AMR-Tackling-the-Burden-in-the-EU-OECD-ECDC-Briefing-Note-2019.pdf.
D. P. Snustad and M. J. Simmons, Principles of genetics. John Wiley & Sons, 2015.
Ruiz J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin Microbiol Rev. 2019;32(4):e00007–19. doi: 10.1128/CMR.00007-19. PubMed DOI PMC
G. A. Jacoby, “Plasmid-Mediated Quinolone Resistance BT - Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, Volume 1,” D. L. Mayers, J. D. Sobel, M. Ouellette, K. S. Kaye, and D. Marchaim, Eds. Cham: Springer International Publishing, 2017, pp. 265–268.
Fang H, et al. Sequencing of pT5282-CTXM, p13190-KPC and p30860-NR, and comparative genomics analysis of IncX8 plasmids. Int J Antimicrob Agents. 2018;52(2):210–217. doi: 10.1016/j.ijantimicag.2018.04.012. PubMed DOI
Rozwandowicz M, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73(5):1121–1137. doi: 10.1093/jac/dkx488. PubMed DOI
Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427(6969):72–74. doi: 10.1038/nature02241. PubMed DOI
M. Barlow, “What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer BT - Horizontal Gene Transfer: Genomes in Flux,” M. B. Gogarten, J. P. Gogarten, and L. C. Olendzenski, Eds. Totowa, NJ: Humana Press, 2009, pp. 397–411. PubMed
Blázquez J, Couce A, Rodríguez-Beltrán J, Rodríguez-Rojas A. Antimicrobials as promoters of genetic variation. Curr Opin Microbiol. 2012;15(5):561–569. doi: 10.1016/j.mib.2012.07.007. PubMed DOI
R. Pallares-Vega et al., “Temperature and Nutrient Limitations Decrease Transfer of Conjugative IncP-1 Plasmid pKJK5 to Wild Escherichia coli Strains ,” Frontiers in Microbiology , vol. 12. 2021, [Online]. Available: https://www.frontiersin.org/article/10.3389/fmicb.2021.656250. PubMed PMC
Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc R Soc B Biol Sci. 1905;286:2019. doi: 10.1098/rspb.2019.1110. PubMed DOI PMC
Wein T, Hülter NF, Mizrahi I, Dagan T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun. 2019;10(1):2595. doi: 10.1038/s41467-019-10600-7. PubMed DOI PMC
L. A. Vazquez, G. Tejerizo, and S. Brom, “Regulation of conjugative transfer of plasmids and integrative conjugative elements,” Plasmid, vol. 91, Apr. 2017, doi: 10.1016/j.plasmid.2017.04.002. PubMed
Dobiasova H, Dolejska M. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and β-lactam resistance genes in Escherichia coli originating from diverse sources and geographical areas. J Antimicrob Chemother. 2016;71(8):2118–2124. doi: 10.1093/jac/dkw144. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genomics. 2017;3(10):1–7. doi: 10.1099/mgen.0.000132. PubMed DOI PMC
H. Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,” ArXiv, vol. 1303, Mar. 2013.
Valcek A, Overballe-Petersen S, Hansen F, Dolejska M, Hasman H. Complete Genome Sequence of Escherichia coli MT102, a Plasmid-Free Recipient Resistant to Rifampin, Azide, and Streptomycin, Used in Conjugation Experiments. Microbiol Resour Announc. 2019;8(20):e00383–e419. doi: 10.1128/MRA.00383-19. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595–e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC
C. Papagiannitsis, I. Kutilová, M. Medvecky, J. Hrabák, and M. Dolejska, “Characterization of the complete nucleotide sequence of IncA/C2 plasmids carrying In809-like integrons from Enterobacteriaceae of wildlife origin,” Antimicrob. Agents Chemother., vol. 61, Jul. 2017, doi: 10.1128/AAC.01093-17. PubMed PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Page AJ, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–128. doi: 10.1093/bioinformatics/btl529. PubMed DOI
N.-F. Alikhan, N. K. Petty, N. L. Ben Zakour, and S. A. Beatson, “BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons,” BMC Genomics, vol. 12, no. 1, p. 402, 2011, doi: 10.1186/1471-2164-12-402. PubMed PMC
Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 2021;37(16):2473–2475. doi: 10.1093/bioinformatics/btab007. PubMed DOI
Johnson TJ, et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid. 2012;68(1):43–50. doi: 10.1016/j.plasmid.2012.03.001. PubMed DOI
A. Alonso-del Valle et al., “The distribution of plasmid fitness effects explains plasmid persistence in bacterial,” bioRxiv, p. 2020.08.01.230672, 2020, [Online]. Available: 10.1101/2020.08.01.230672.
Cottell JL, Saw HTH, Webber MA, Piddock LJV. Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid. BMC Microbiol. 2014;14(1):168. doi: 10.1186/1471-2180-14-168. PubMed DOI PMC
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088–e117. doi: 10.1128/CMR.00088-17. PubMed DOI PMC
Pu X-Y, Gu Y, Li J, Song S-J, Lu Z. Characterization of the complete sequences and stability of plasmids carrying the genes aac(6′)-Ib-cr or qnrS in Shigella flexneri in the Hangzhou area of China. World J Microbiol Biotechnol. 2018;34(6):72. doi: 10.1007/s11274-018-2454-3. PubMed DOI
Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J Antimicrob Chemother. 2014;69(9):2388–2393. doi: 10.1093/jac/dku172. PubMed DOI
P. Kontomichalou, M. Mitani, and R. C. Clowes, “Circular R-Factor Molecules Controlling Penicillinase Synthesis, Replicating in <em>Escherichia coli</em> Under Either Relaxed or Stringent Control,” J. Bacteriol., vol. 104, no. 1, pp. 34 LP – 44, Oct. 1970, [Online]. Available: http://jb.asm.org/content/104/1/34.abstract. PubMed PMC
Bustamante P, Iredell JR. Carriage of type II toxin-antitoxin systems by the growing group of IncX plasmids. Plasmid. 2017;91:19–27. doi: 10.1016/j.plasmid.2017.02.006. PubMed DOI
Guo Q, Su J, McElheny CL, Stoesser N, Doi Y, Wang M. IncX2 and IncX1-X2 Hybrid Plasmids Coexisting in a FosA6-Producing Escherichia coli Strain. Antimicrob Agents Chemother. 2017;61(7):e00536–e617. doi: 10.1128/AAC.00536-17. PubMed DOI PMC
Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6):298–304. doi: 10.1016/j.ijmm.2013.02.001. PubMed DOI
Kotb DN, Mahdy WK, Mahmoud MS, Khairy RMM. Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infect Dis. 2019;19(1):979. doi: 10.1186/s12879-019-4606-y. PubMed DOI PMC
Liakopoulos A, et al. Genomic and functional characterisation of IncX3 plasmids encoding blaSHV-12 in Escherichia coli from human and animal origin. Sci Rep. 2018;8(1):7674. doi: 10.1038/s41598-018-26073-5. PubMed DOI PMC
G. Koraimann and M. A. Wagner, “Social behavior and decision making in bacterial conjugation ,” Frontiers in Cellular and Infection Microbiology , vol. 4. p. 54, 2014, [Online]. Available: https://www.frontiersin.org/article/10.3389/fcimb.2014.00054. PubMed PMC
Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol. 2013;97(1):317–328. doi: 10.1007/s00253-012-4179-9. PubMed DOI PMC
Schuurmans JM, et al. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid. 2014;72:1–8. doi: 10.1016/j.plasmid.2014.01.002. PubMed DOI
Xia Z-J, et al. Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. J Ind Microbiol Biotechnol. 2008;35(10):1157–1163. doi: 10.1007/s10295-008-0395-9. PubMed DOI
Zhang P-Y, Xu P-P, Xia Z-J, Wang J, Xiong J, Li Y-Z. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett. 2013;348(2):149–156. doi: 10.1111/1574-6968.12282. PubMed DOI
Lopatkin AJ, et al. Antibiotics as a selective driver for conjugation dynamics. Nat Microbiol. 2016;1(6):1–22. doi: 10.1038/nmicrobiol.2016.44. PubMed DOI PMC
E. Shun-Mei, J. M. Zeng, H. Yuan, Y. Lu, R. X. Cai, and C. Chen, “Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency,” Microb. Pathog., vol. 114, no. June 2017, pp. 57–62, 2018, doi: 10.1016/j.micpath.2017.11.036. PubMed
Qin T-T, Kang H-Q, Ma P, Li P-P, Huang L-Y, Gu B. SOS response and its regulation on the fluoroquinolone resistance. Ann Transl Med. 2015;3(22):358. doi: 10.3978/j.issn.2305-5839.2015.12.09. PubMed DOI PMC
Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. Plasmid. 2020;108:102489. doi: 10.1016/j.plasmid.2020.102489. PubMed DOI
Alderliesten JB, Duxbury SJN, Zwart MP, de Visser JAGM, Stegeman A, Fischer EAJ. Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BMC Microbiol. 2020;20(1):135. doi: 10.1186/s12866-020-01825-4. PubMed DOI PMC
Segura WD, et al. In vitro and in vivo persistence of IncN plasmids carrying qnr genes in uropathogenic Escherichia coli isolates. J Glob Antimicrob Resist. 2020;22:806–810. doi: 10.1016/j.jgar.2020.07.006. PubMed DOI
Unterholzner SJ, Hailer B, Poppenberger B, Rozhon W. Characterisation of the stbD/E toxin–antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. Plasmid. 2013;70(2):216–225. doi: 10.1016/j.plasmid.2013.04.002. PubMed DOI
Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol. 2018;64(5):293–304. doi: 10.1139/cjm-2017-0609. PubMed DOI
Svara F, Rankin DJ. The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol. 2011;11:130. doi: 10.1186/1471-2148-11-130. PubMed DOI PMC
N. Händel, S. Otte, M. Jonker, S. Brul, and B. H. ter Kuile, “Factors That Affect Transfer of the IncI1 β-Lactam Resistance Plasmid pESBL-283 between E. coli Strains,” PLoS One, vol. 10, no. 4, p. e0123039, Apr. 2015, [Online]. Available: 10.1371/journal.pone.0123039. PubMed PMC
A. San Millan, K. Heilbron, and R. C. MacLean, “Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations,” ISME J., vol. 8, no. 3, pp. 601–612, Mar. 2014, doi: 10.1038/ismej.2013.182. PubMed PMC
J. A. Gama, R. Zilhão, and F. Dionisio, “Plasmid Interactions Can Improve Plasmid Persistence in Bacterial Populations ,” Frontiers in Microbiology , vol. 11. p. 2033, 2020, [Online]. Available: https://www.frontiersin.org/article/10.3389/fmicb.2020.02033. PubMed PMC