Orientation selective DBS of entorhinal cortex and medial septal nucleus modulates activity of rat brain areas involved in memory and cognition

. 2022 May 20 ; 12 (1) : 8565. [epub] 20220520

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35595790

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
U01 NS103569 NINDS NIH HHS - United States
U01 NS103569 NIH HHS - United States
RISE project #691110 (MICROBRADAM) Marie Curie - United Kingdom

Odkazy

PubMed 35595790
PubMed Central PMC9122972
DOI 10.1038/s41598-022-12383-2
PII: 10.1038/s41598-022-12383-2
Knihovny.cz E-zdroje

The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.

Zobrazit více v PubMed

Bick SK, Eskandar EN. Neuromodulation for restoring memory. Neurosurg. Focus. 2016;40:E5. doi: 10.3171/2016.3.FOCUS162. PubMed DOI

Encinas JM, Hamani C, Lozano AM, Enikolopov G. Neurogenic hippocampal targets of deep brain stimulation. J. Comp. Neurol. 2011;519:6–20. doi: 10.1002/cne.22503. PubMed DOI PMC

Khan IS, D'Agostino EN, Calnan DR, Lee JE, Aronson JP. Deep brain stimulation for memory modulation: A new frontier. World Neurosurg. 2019;126:638–646. doi: 10.1016/j.wneu.2018.12.184. PubMed DOI

Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW. Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model alzheimer's disease. Neuropsychopharmacology. 2017;42:2493–2503. doi: 10.1038/npp.2017.100. PubMed DOI PMC

Viana JNM, Vickers JC, Cook MJ, Gilbert F. Currents of memory: Recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease. Neurobiol. Aging. 2017;56:202–210. doi: 10.1016/j.neurobiolaging.2017.03.001. PubMed DOI

Baldermann JC, Hardenacke K, Hu X, Koster P, Horn A, Freund HJ, Zilles K, Sturm V, Visser-Vandewalle V, Jessen F, Maintz D, Kuhn J. Neuroanatomical characteristics associated with response to deep brain stimulation of the nucleus basalis of Meynert for Alzheimer's disease. Neuromodulation. 2018;21:184–190. doi: 10.1111/ner.12626. PubMed DOI

Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J. Neurosurg. 2008;108:132–138. doi: 10.3171/JNS/2008/108/01/0132. PubMed DOI

Jeong DU, Lee JE, Lee SE, Chang WS, Kim SJ, Chang JW. Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. Biomed. Res. Int. 2014;2014:568587. doi: 10.1155/2014/568587. PubMed DOI PMC

Fields RD. A new mechanism of nervous system plasticity: Activity-dependent myelination. Nat. Rev. Neurosci. 2015;16:756–767. doi: 10.1038/nrn4023. PubMed DOI PMC

Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 2011;31:13469–13484. doi: 10.1523/JNEUROSCI.3100-11.2011. PubMed DOI PMC

Hescham S, Jahanshahi A, Schweimer JV, Mitchell SN, Carter G, Blokland A, Sharp T, Temel Y. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus. Brain Struct. Funct. 2016;221:4281–4286. doi: 10.1007/s00429-015-1144-2. PubMed DOI PMC

Gondard E, Chau HN, Mann A, Tierney TS, Hamani C, Kalia SK, Lozano AM. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix. Brain Stimul. 2015;8:1058–1064. doi: 10.1016/j.brs.2015.07.044. PubMed DOI

Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 2011;334:1415–1420. doi: 10.1126/science.1210125. PubMed DOI

Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–173. doi: 10.1038/336170a0. PubMed DOI

Wang XJ. Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J. Neurophysiol. 2002;87:889–900. doi: 10.1152/jn.00135.2001. PubMed DOI

Pevzner A, Izadi A, Lee DJ, Shahlaie K, Gurkoff GG. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury. Front. Syst. Neurosci. 2016;10:30. doi: 10.3389/fnsys.2016.00030. PubMed DOI PMC

Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J. Neurotrauma. 2013;30:131–139. doi: 10.1089/neu.2012.2646. PubMed DOI

Huerta PT, Lisman JE. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 1995;15:1053–1063. doi: 10.1016/0896-6273(95)90094-2. PubMed DOI

Etter G, van der Veldt S, Manseau F, Zarrinkoub I, Trillaud-Doppia E, Williams S. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer's disease mouse model. Nat. Commun. 2019;10:5322. doi: 10.1038/s41467-019-13260-9. PubMed DOI PMC

Takeuchi Y, Harangozo M, Pedraza L, Foldi T, Kozak G, Li Q, Berenyi A. Closed-loop stimulation of the medial septum terminates epileptic seizures. Brain. 2021;144:885–908. doi: 10.1093/brain/awaa450. PubMed DOI

Hristova K, Martinez-Gonzalez C, Watson TC, Codadu NK, Hashemi K, Kind PC, Nolan MF, Gonzalez-Sulser A. Medial septal GABAergic neurons reduce seizure duration upon optogenetic closed-loop stimulation. Brain. 2021;144:1576–1589. doi: 10.1093/brain/awab042. PubMed DOI PMC

Izadi A, Pevzner A, Lee DJ, Ekstrom AD, Shahlaie K, Gurkoff GG. Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimul. 2019;12:735–742. doi: 10.1016/j.brs.2019.01.005. PubMed DOI

Laxton AW, Lozano AM. Deep brain stimulation for the treatment of Alzheimer disease and dementias. World Neurosurg. 2013;80(S28):e21–28. doi: 10.1016/j.wneu.2012.06.028. PubMed DOI

Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, Mai JK, Zilles K, Bauer A, Matusch A, Schulz RJ, Noreik M, Buhrle CP, Maintz D, Woopen C, Haussermann P, Hellmich M, Klosterkotter J, Wiltfang J, Maarouf M, Freund HJ, Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer's dementia. Mol. Psychiatry. 2015;20:353–360. doi: 10.1038/mp.2014.32. PubMed DOI

Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 2010;68:521–534. doi: 10.1002/ana.22089. PubMed DOI

Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch. Neurol. 2012;69:1141–1148. doi: 10.1001/archneurol.2012.590. PubMed DOI

Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, McAndrews MP, Tang-Wai DF, Workman CI, Smith GS, Lozano AM. Deep brain stimulation influences brain structure in Alzheimer's disease. Brain Stimul. 2015;8:645–654. doi: 10.1016/j.brs.2014.11.020. PubMed DOI PMC

Leoutsakos JS, Yan H, Anderson WS, Asaad WF, Baltuch G, Burke A, Chakravarty MM, Drake KE, Foote KD, Fosdick L, Giacobbe P, Mari Z, McAndrews MP, Munro CA, Oh ES, Okun MS, Pendergrass JC, Ponce FA, Rosenberg PB, Sabbagh MN, Salloway S, Tang-Wai DF, Targum SD, Wolk D, Lozano AM, Smith GS, Lyketsos CG. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance Trial): A two year follow-up including results of delayed activation. J. Alzheimers Dis. 2018;64:597–606. doi: 10.3233/JAD-180121. PubMed DOI PMC

Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, Drake KE, Lyman CH, Rosenberg PB, Anderson WS, Tang-Wai DF, Pendergrass JC, Salloway S, Asaad WF, Ponce FA, Burke A, Sabbagh M, Wolk DA, Baltuch G, Okun MS, Foote KD, McAndrews MP, Giacobbe P, Targum SD, Lyketsos CG, Smith GS. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease. J. Alzheimers Dis. 2016;54:777–787. doi: 10.3233/JAD-160017. PubMed DOI PMC

Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Grohn O, Michaeli S. Orientation selective deep brain stimulation. J. Neural Eng. 2017;14:016016. doi: 10.1088/1741-2552/aa5238. PubMed DOI PMC

Lehto LJ, Filip P, Laakso H, Sierra A, Slopsema JP, Johnson MD, Eberly LE, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Tuning neuromodulation effects by orientation selective deep brain stimulation in the rat medial frontal cortex. Front. Neurosci. 2018;12:899. doi: 10.3389/fnins.2018.00899. PubMed DOI PMC

Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage. 2020;213:116750. doi: 10.1016/j.neuroimage.2020.116750. PubMed DOI PMC

Slopsema JP, Pena E, Patriat R, Lehto LJ, Grohn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 2018;15:056029. doi: 10.1088/1741-2552/aad978. PubMed DOI PMC

Lehto LJ, Idiyatullin D, Zhang J, Utecht L, Adriany G, Garwood M, Grohn O, Michaeli S, Mangia S. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage. 2017;159:443–448. doi: 10.1016/j.neuroimage.2017.08.012. PubMed DOI PMC

Paasonen J, Laakso H, Pirttimaki T, Stenroos P, Salo RA, Zhurakovskaya E, Lehto LJ, Tanila H, Garwood M, Michaeli S, Idiyatullin D, Mangia S, Grohn O. Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat. Neuroimage. 2020;206:116338. doi: 10.1016/j.neuroimage.2019.116338. PubMed DOI PMC

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6. Academic Press; 2006. PubMed

Canals S, Beyerlein M, Murayama Y, Logothetis NK. Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn. Reason. Imaging. 2008;26:978–986. doi: 10.1016/j.mri.2008.02.018. PubMed DOI

Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S. Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 2017;11:46. doi: 10.3389/fnsys.2017.00046. PubMed DOI PMC

Amaral DG, Dolorfo C, Alvarez-Royo P. Organization of CA1 projections to the subiculum: A PHA-L analysis in the rat. Hippocampus. 1991;1:415–435. doi: 10.1002/hipo.450010410. PubMed DOI

van den Honert C, Mortimer JT. Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli. Science. 1979;206:1311–1312. doi: 10.1126/science.515733. PubMed DOI

Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017;356:73–78. doi: 10.1126/science.aam6808. PubMed DOI PMC

Brothers LA, Finch DM. Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat. Brain Res. 1985;359:10–20. doi: 10.1016/0006-8993(85)91407-6. PubMed DOI

McDonald AJ, Mascagni F. Projections of the lateral entorhinal cortex to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1997;77:445–459. doi: 10.1016/s0306-4522(96)00478-2. PubMed DOI

Mouly AM, Di Scala G. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat. Neuroscience. 2006;137:1131–1141. doi: 10.1016/j.neuroscience.2005.10.024. PubMed DOI

Petrovich GD, Risold PY, Swanson LW. Organization of projections from the basomedial nucleus of the amygdala: A PHAL study in the rat. J. Comp. Neurol. 1996;374:387–420. doi: 10.1002/(SICI)1096-9861(19961021)374:3<387::AID-CNE6>3.0.CO;2-Y. PubMed DOI

Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus. 1997;7:146–183. doi: 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L. PubMed DOI

Krayniak PF, Meibach RC, Siegel A. A projection from the entorhinal cortex to the nucleus accumbens in the rat. Brain Res. 1981;209:427–431. doi: 10.1016/0006-8993(81)90165-7. PubMed DOI

Moffitt MA, McIntyre CC. Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 2005;116:2240–2250. doi: 10.1016/j.clinph.2005.05.018. PubMed DOI

Shrivastava D, Abosch A, Hanson T, Tian JF, Gupte A, Iaizzo PA, Vaughan JT. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz) J. Magn. Reason. Imaging. 2010;32:600–607. doi: 10.1002/jmri.22292. PubMed DOI PMC

Shrivastava D, Abosch A, Hughes J, Goerke U, DelaBarre L, Visaria R, Harel N, Vaughan JT. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys. Med. Biol. 2012;57:5651–5665. doi: 10.1088/0031-9155/57/17/5651. PubMed DOI PMC

Lai HY, Albaugh DL, Kao YCJ, Younce JR, Shih YYI. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn. Reson. Med. 2015;73:1246–1251. doi: 10.1002/mrm.25239. PubMed DOI

Lai HY, Younce JR, Albaugh DL, Kao YCJ, Shih YYI. Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus. Neuroimage. 2014;84:11–18. doi: 10.1016/j.neuroimage.2013.08.026. PubMed DOI

Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A, Epilepsy Foundation of America Working, G Photic- and pattern-induced seizures: A review for the Epilepsy Foundation of America Working Group. Epilepsia. 2005;46:1426–1441. doi: 10.1111/j.1528-1167.2005.31405.x. PubMed DOI

Liu Y, Postupna N, Falkenberg J, Anderson ME. High frequency deep brain stimulation: What are the therapeutic mechanisms? Neurosci. Biobehav. Rev. 2008;32:343–351. doi: 10.1016/j.neubiorev.2006.10.007. PubMed DOI

Knight EJ, Testini P, Min HK, Gibson WS, Gorny KR, Favazza CP, Felmlee JP, Kim I, Welker KM, Clayton DA, Klassen BT, Chang SY, Lee KH. Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: Intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin. Proc. 2015;90:773–785. doi: 10.1016/j.mayocp.2015.03.022. PubMed DOI PMC

Liu X, Li R, Yang Z, Hudetz AG, Li SJ. Differential effect of isoflurane, medetomidine, and urethane on BOLD responses to acute levo-tetrahydropalmatine in the rat. Magn. Reason. Med. 2012;68:552–559. doi: 10.1002/mrm.23243. PubMed DOI PMC

Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Grohn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9–20. doi: 10.1016/j.neuroimage.2018.01.014. PubMed DOI

Idiyatullin D, Corum CA, Garwood M. Multi-band-SWIFT. J. Magn. Reason. 2015;251:19–25. doi: 10.1016/j.jmr.2014.11.014. PubMed DOI PMC

Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009;18:2419–2434. doi: 10.1109/TIP.2009.2028250. PubMed DOI

Silva AC, Koretsky AP, Duyn JH. Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn. Reason. Med. 2007;57:1110–1118. doi: 10.1002/mrm.21246. PubMed DOI PMC

Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi: 10.1016/j.neuroimage.2019.116137. PubMed DOI

Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn. Reason. Med. 2016;76:1582–1593. doi: 10.1002/mrm.26059. PubMed DOI PMC

Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 2012;22:53–66. doi: 10.1002/ima.22005. DOI

Smith RE, Tournier JD, Calamante F, Connelly ASIFT. Spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298–312. doi: 10.1016/j.neuroimage.2012.11.049. PubMed DOI

Laitinen T, Sierra A, Pitkanen A, Grohn O. Diffusion tensor MRI of axonal plasticity in the rat hippocampus. Neuroimage. 2010;51:521–530. doi: 10.1016/j.neuroimage.2010.02.077. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Resting-state functional MRI of the nose as a novel investigational window into the nervous system

. 2024 Nov 01 ; 14 (1) : 26352. [epub] 20241101

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...