Orientation selective DBS of entorhinal cortex and medial septal nucleus modulates activity of rat brain areas involved in memory and cognition
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
U01 NS103569
NINDS NIH HHS - United States
U01 NS103569
NIH HHS - United States
RISE project #691110 (MICROBRADAM)
Marie Curie - United Kingdom
PubMed
35595790
PubMed Central
PMC9122972
DOI
10.1038/s41598-022-12383-2
PII: 10.1038/s41598-022-12383-2
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * diagnostické zobrazování terapie MeSH
- cortex entorhinalis diagnostické zobrazování fyziologie MeSH
- hluboká mozková stimulace * metody MeSH
- kognice MeSH
- krysa rodu Rattus MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek MeSH
- septální jádra * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
Department of Neurosurgery University of Minnesota Minneapolis USA
Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN USA
Zobrazit více v PubMed
Bick SK, Eskandar EN. Neuromodulation for restoring memory. Neurosurg. Focus. 2016;40:E5. doi: 10.3171/2016.3.FOCUS162. PubMed DOI
Encinas JM, Hamani C, Lozano AM, Enikolopov G. Neurogenic hippocampal targets of deep brain stimulation. J. Comp. Neurol. 2011;519:6–20. doi: 10.1002/cne.22503. PubMed DOI PMC
Khan IS, D'Agostino EN, Calnan DR, Lee JE, Aronson JP. Deep brain stimulation for memory modulation: A new frontier. World Neurosurg. 2019;126:638–646. doi: 10.1016/j.wneu.2018.12.184. PubMed DOI
Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW. Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model alzheimer's disease. Neuropsychopharmacology. 2017;42:2493–2503. doi: 10.1038/npp.2017.100. PubMed DOI PMC
Viana JNM, Vickers JC, Cook MJ, Gilbert F. Currents of memory: Recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease. Neurobiol. Aging. 2017;56:202–210. doi: 10.1016/j.neurobiolaging.2017.03.001. PubMed DOI
Baldermann JC, Hardenacke K, Hu X, Koster P, Horn A, Freund HJ, Zilles K, Sturm V, Visser-Vandewalle V, Jessen F, Maintz D, Kuhn J. Neuroanatomical characteristics associated with response to deep brain stimulation of the nucleus basalis of Meynert for Alzheimer's disease. Neuromodulation. 2018;21:184–190. doi: 10.1111/ner.12626. PubMed DOI
Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J. Neurosurg. 2008;108:132–138. doi: 10.3171/JNS/2008/108/01/0132. PubMed DOI
Jeong DU, Lee JE, Lee SE, Chang WS, Kim SJ, Chang JW. Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. Biomed. Res. Int. 2014;2014:568587. doi: 10.1155/2014/568587. PubMed DOI PMC
Fields RD. A new mechanism of nervous system plasticity: Activity-dependent myelination. Nat. Rev. Neurosci. 2015;16:756–767. doi: 10.1038/nrn4023. PubMed DOI PMC
Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 2011;31:13469–13484. doi: 10.1523/JNEUROSCI.3100-11.2011. PubMed DOI PMC
Hescham S, Jahanshahi A, Schweimer JV, Mitchell SN, Carter G, Blokland A, Sharp T, Temel Y. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus. Brain Struct. Funct. 2016;221:4281–4286. doi: 10.1007/s00429-015-1144-2. PubMed DOI PMC
Gondard E, Chau HN, Mann A, Tierney TS, Hamani C, Kalia SK, Lozano AM. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix. Brain Stimul. 2015;8:1058–1064. doi: 10.1016/j.brs.2015.07.044. PubMed DOI
Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 2011;334:1415–1420. doi: 10.1126/science.1210125. PubMed DOI
Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–173. doi: 10.1038/336170a0. PubMed DOI
Wang XJ. Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J. Neurophysiol. 2002;87:889–900. doi: 10.1152/jn.00135.2001. PubMed DOI
Pevzner A, Izadi A, Lee DJ, Shahlaie K, Gurkoff GG. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury. Front. Syst. Neurosci. 2016;10:30. doi: 10.3389/fnsys.2016.00030. PubMed DOI PMC
Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J. Neurotrauma. 2013;30:131–139. doi: 10.1089/neu.2012.2646. PubMed DOI
Huerta PT, Lisman JE. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 1995;15:1053–1063. doi: 10.1016/0896-6273(95)90094-2. PubMed DOI
Etter G, van der Veldt S, Manseau F, Zarrinkoub I, Trillaud-Doppia E, Williams S. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer's disease mouse model. Nat. Commun. 2019;10:5322. doi: 10.1038/s41467-019-13260-9. PubMed DOI PMC
Takeuchi Y, Harangozo M, Pedraza L, Foldi T, Kozak G, Li Q, Berenyi A. Closed-loop stimulation of the medial septum terminates epileptic seizures. Brain. 2021;144:885–908. doi: 10.1093/brain/awaa450. PubMed DOI
Hristova K, Martinez-Gonzalez C, Watson TC, Codadu NK, Hashemi K, Kind PC, Nolan MF, Gonzalez-Sulser A. Medial septal GABAergic neurons reduce seizure duration upon optogenetic closed-loop stimulation. Brain. 2021;144:1576–1589. doi: 10.1093/brain/awab042. PubMed DOI PMC
Izadi A, Pevzner A, Lee DJ, Ekstrom AD, Shahlaie K, Gurkoff GG. Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimul. 2019;12:735–742. doi: 10.1016/j.brs.2019.01.005. PubMed DOI
Laxton AW, Lozano AM. Deep brain stimulation for the treatment of Alzheimer disease and dementias. World Neurosurg. 2013;80(S28):e21–28. doi: 10.1016/j.wneu.2012.06.028. PubMed DOI
Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, Mai JK, Zilles K, Bauer A, Matusch A, Schulz RJ, Noreik M, Buhrle CP, Maintz D, Woopen C, Haussermann P, Hellmich M, Klosterkotter J, Wiltfang J, Maarouf M, Freund HJ, Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer's dementia. Mol. Psychiatry. 2015;20:353–360. doi: 10.1038/mp.2014.32. PubMed DOI
Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 2010;68:521–534. doi: 10.1002/ana.22089. PubMed DOI
Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch. Neurol. 2012;69:1141–1148. doi: 10.1001/archneurol.2012.590. PubMed DOI
Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, McAndrews MP, Tang-Wai DF, Workman CI, Smith GS, Lozano AM. Deep brain stimulation influences brain structure in Alzheimer's disease. Brain Stimul. 2015;8:645–654. doi: 10.1016/j.brs.2014.11.020. PubMed DOI PMC
Leoutsakos JS, Yan H, Anderson WS, Asaad WF, Baltuch G, Burke A, Chakravarty MM, Drake KE, Foote KD, Fosdick L, Giacobbe P, Mari Z, McAndrews MP, Munro CA, Oh ES, Okun MS, Pendergrass JC, Ponce FA, Rosenberg PB, Sabbagh MN, Salloway S, Tang-Wai DF, Targum SD, Wolk D, Lozano AM, Smith GS, Lyketsos CG. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance Trial): A two year follow-up including results of delayed activation. J. Alzheimers Dis. 2018;64:597–606. doi: 10.3233/JAD-180121. PubMed DOI PMC
Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, Drake KE, Lyman CH, Rosenberg PB, Anderson WS, Tang-Wai DF, Pendergrass JC, Salloway S, Asaad WF, Ponce FA, Burke A, Sabbagh M, Wolk DA, Baltuch G, Okun MS, Foote KD, McAndrews MP, Giacobbe P, Targum SD, Lyketsos CG, Smith GS. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease. J. Alzheimers Dis. 2016;54:777–787. doi: 10.3233/JAD-160017. PubMed DOI PMC
Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Grohn O, Michaeli S. Orientation selective deep brain stimulation. J. Neural Eng. 2017;14:016016. doi: 10.1088/1741-2552/aa5238. PubMed DOI PMC
Lehto LJ, Filip P, Laakso H, Sierra A, Slopsema JP, Johnson MD, Eberly LE, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Tuning neuromodulation effects by orientation selective deep brain stimulation in the rat medial frontal cortex. Front. Neurosci. 2018;12:899. doi: 10.3389/fnins.2018.00899. PubMed DOI PMC
Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage. 2020;213:116750. doi: 10.1016/j.neuroimage.2020.116750. PubMed DOI PMC
Slopsema JP, Pena E, Patriat R, Lehto LJ, Grohn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 2018;15:056029. doi: 10.1088/1741-2552/aad978. PubMed DOI PMC
Lehto LJ, Idiyatullin D, Zhang J, Utecht L, Adriany G, Garwood M, Grohn O, Michaeli S, Mangia S. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage. 2017;159:443–448. doi: 10.1016/j.neuroimage.2017.08.012. PubMed DOI PMC
Paasonen J, Laakso H, Pirttimaki T, Stenroos P, Salo RA, Zhurakovskaya E, Lehto LJ, Tanila H, Garwood M, Michaeli S, Idiyatullin D, Mangia S, Grohn O. Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat. Neuroimage. 2020;206:116338. doi: 10.1016/j.neuroimage.2019.116338. PubMed DOI PMC
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6. Academic Press; 2006. PubMed
Canals S, Beyerlein M, Murayama Y, Logothetis NK. Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn. Reason. Imaging. 2008;26:978–986. doi: 10.1016/j.mri.2008.02.018. PubMed DOI
Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S. Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 2017;11:46. doi: 10.3389/fnsys.2017.00046. PubMed DOI PMC
Amaral DG, Dolorfo C, Alvarez-Royo P. Organization of CA1 projections to the subiculum: A PHA-L analysis in the rat. Hippocampus. 1991;1:415–435. doi: 10.1002/hipo.450010410. PubMed DOI
van den Honert C, Mortimer JT. Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli. Science. 1979;206:1311–1312. doi: 10.1126/science.515733. PubMed DOI
Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017;356:73–78. doi: 10.1126/science.aam6808. PubMed DOI PMC
Brothers LA, Finch DM. Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat. Brain Res. 1985;359:10–20. doi: 10.1016/0006-8993(85)91407-6. PubMed DOI
McDonald AJ, Mascagni F. Projections of the lateral entorhinal cortex to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1997;77:445–459. doi: 10.1016/s0306-4522(96)00478-2. PubMed DOI
Mouly AM, Di Scala G. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat. Neuroscience. 2006;137:1131–1141. doi: 10.1016/j.neuroscience.2005.10.024. PubMed DOI
Petrovich GD, Risold PY, Swanson LW. Organization of projections from the basomedial nucleus of the amygdala: A PHAL study in the rat. J. Comp. Neurol. 1996;374:387–420. doi: 10.1002/(SICI)1096-9861(19961021)374:3<387::AID-CNE6>3.0.CO;2-Y. PubMed DOI
Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus. 1997;7:146–183. doi: 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L. PubMed DOI
Krayniak PF, Meibach RC, Siegel A. A projection from the entorhinal cortex to the nucleus accumbens in the rat. Brain Res. 1981;209:427–431. doi: 10.1016/0006-8993(81)90165-7. PubMed DOI
Moffitt MA, McIntyre CC. Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 2005;116:2240–2250. doi: 10.1016/j.clinph.2005.05.018. PubMed DOI
Shrivastava D, Abosch A, Hanson T, Tian JF, Gupte A, Iaizzo PA, Vaughan JT. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz) J. Magn. Reason. Imaging. 2010;32:600–607. doi: 10.1002/jmri.22292. PubMed DOI PMC
Shrivastava D, Abosch A, Hughes J, Goerke U, DelaBarre L, Visaria R, Harel N, Vaughan JT. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys. Med. Biol. 2012;57:5651–5665. doi: 10.1088/0031-9155/57/17/5651. PubMed DOI PMC
Lai HY, Albaugh DL, Kao YCJ, Younce JR, Shih YYI. Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn. Reson. Med. 2015;73:1246–1251. doi: 10.1002/mrm.25239. PubMed DOI
Lai HY, Younce JR, Albaugh DL, Kao YCJ, Shih YYI. Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus. Neuroimage. 2014;84:11–18. doi: 10.1016/j.neuroimage.2013.08.026. PubMed DOI
Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A, Epilepsy Foundation of America Working, G Photic- and pattern-induced seizures: A review for the Epilepsy Foundation of America Working Group. Epilepsia. 2005;46:1426–1441. doi: 10.1111/j.1528-1167.2005.31405.x. PubMed DOI
Liu Y, Postupna N, Falkenberg J, Anderson ME. High frequency deep brain stimulation: What are the therapeutic mechanisms? Neurosci. Biobehav. Rev. 2008;32:343–351. doi: 10.1016/j.neubiorev.2006.10.007. PubMed DOI
Knight EJ, Testini P, Min HK, Gibson WS, Gorny KR, Favazza CP, Felmlee JP, Kim I, Welker KM, Clayton DA, Klassen BT, Chang SY, Lee KH. Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: Intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin. Proc. 2015;90:773–785. doi: 10.1016/j.mayocp.2015.03.022. PubMed DOI PMC
Liu X, Li R, Yang Z, Hudetz AG, Li SJ. Differential effect of isoflurane, medetomidine, and urethane on BOLD responses to acute levo-tetrahydropalmatine in the rat. Magn. Reason. Med. 2012;68:552–559. doi: 10.1002/mrm.23243. PubMed DOI PMC
Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Grohn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9–20. doi: 10.1016/j.neuroimage.2018.01.014. PubMed DOI
Idiyatullin D, Corum CA, Garwood M. Multi-band-SWIFT. J. Magn. Reason. 2015;251:19–25. doi: 10.1016/j.jmr.2014.11.014. PubMed DOI PMC
Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009;18:2419–2434. doi: 10.1109/TIP.2009.2028250. PubMed DOI
Silva AC, Koretsky AP, Duyn JH. Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn. Reason. Med. 2007;57:1110–1118. doi: 10.1002/mrm.21246. PubMed DOI PMC
Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi: 10.1016/j.neuroimage.2019.116137. PubMed DOI
Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn. Reason. Med. 2016;76:1582–1593. doi: 10.1002/mrm.26059. PubMed DOI PMC
Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 2012;22:53–66. doi: 10.1002/ima.22005. DOI
Smith RE, Tournier JD, Calamante F, Connelly ASIFT. Spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298–312. doi: 10.1016/j.neuroimage.2012.11.049. PubMed DOI
Laitinen T, Sierra A, Pitkanen A, Grohn O. Diffusion tensor MRI of axonal plasticity in the rat hippocampus. Neuroimage. 2010;51:521–530. doi: 10.1016/j.neuroimage.2010.02.077. PubMed DOI