Serotonin limits generation of chromaffin cells during adrenal organ development
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DOC 33
Austrian Science Fund FWF - Austria
PubMed
35614045
PubMed Central
PMC9133002
DOI
10.1038/s41467-022-30438-w
PII: 10.1038/s41467-022-30438-w
Knihovny.cz E-zdroje
- MeSH
- chromafinní buňky * metabolismus MeSH
- katecholaminy metabolismus MeSH
- myši MeSH
- nadledviny metabolismus MeSH
- neuroblastom * metabolismus MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- katecholaminy MeSH
- serotonin MeSH
Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.
Center for Neuroscience and Cognitive Systems Istituto Italiano di Tecnologia Rovereto Italy
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Charité Universitätsmedizin Berlin 10117 Berlin Germany
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Neuroimmunology Center for Brain Research Medical University Vienna Vienna Austria
Department of Neuroscience Karolinska Institute Stockholm Sweden
Department of Physiology and Pharmacology Karolinska Institute Stockholm Sweden
German Center for Cardiovascular Research Partner Site Berlin Germany
INSERM Paris Brain Institute Paris France
Institute for Biology University of Lübeck 23562 Lübeck Germany
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Koltsov Institute of Developmental Biology Russian Academy of Sciences Moscow Russia
Max Delbrück Center for Molecular Medicine 13125 Berlin Buch Germany
National Medical Research Center for Endocrinology Moscow Russia
Sechenov 1st Moscow State Medical University Moscow Russia
Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Unit of Cell and Developmental Biology Department of Biology University of Pisa Pisa Italy
Zobrazit více v PubMed
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: a new developmental paradigm. Mol. Cell. Endocrinol. 2020;518:110998. doi: 10.1016/j.mce.2020.110998. PubMed DOI
Lin VTG, Pruitt HC, Samant RS, Shevde LA. Developing cures: targeting ontogenesis in cancer. Trends Cancer. 2017;3:126–136. doi: 10.1016/j.trecan.2016.12.007. PubMed DOI PMC
Tirosh I, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309–313. doi: 10.1038/nature20123. PubMed DOI PMC
Gojo J, et al. Single-cell RNA-Seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma. Cancer Cell. 2020;38:44–59.e49. doi: 10.1016/j.ccell.2020.06.004. PubMed DOI PMC
Couturier CP, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun. 2020;11:3406. doi: 10.1038/s41467-020-17186-5. PubMed DOI PMC
Furlan, A. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science357, eaal3753 (2017). PubMed PMC
La Manno G, et al. RNA velocity of single cells. Nature. 2018;560:494–498. doi: 10.1038/s41586-018-0414-6. PubMed DOI PMC
Kastriti, M. E. et al. Schwann cell precursors generate the majority of chromaffin cells in Zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosc.12, 10.3389/fnmol.2019.00006 (2019). PubMed PMC
Kameneva, P. et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat. Genet.53, 694-706 (2021). PubMed PMC
Cote, F. et al. Maternal serotonin is crucial for murine embryonic development. Proc. Natl Acad. Sci. USA104, 329–334 (2007). PubMed PMC
Alenina, N. et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl Acad. Sci. USA106, 10332–10337 (2009). PubMed PMC
Narboux-Neme N, et al. Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem. Neurosci. 2013;4:171–181. doi: 10.1021/cn300165x. PubMed DOI PMC
Ivashkin E, et al. Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails. Cell Rep. 2015;12:1144–1158. doi: 10.1016/j.celrep.2015.07.022. PubMed DOI
Bonnin A, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472:347–350. doi: 10.1038/nature09972. PubMed DOI PMC
Vitalis T, Ansorge MS, Dayer AG. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci. 2013;7:93. doi: 10.3389/fncel.2013.00093. PubMed DOI PMC
Migliarini S, Pacini G, Pelosi B, Lunardi G, Pasqualetti M. Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Mol. Psychiatry. 2013;18:1106–1118. doi: 10.1038/mp.2012.128. PubMed DOI
Lv J, Liu F. The role of serotonin beyond the central nervous system during embryogenesis. Front Cell Neurosci. 2017;11:74. doi: 10.3389/fnpit.2017.00400. PubMed DOI PMC
Rauw WM, Johnson AK, Gomez-Raya L, Dekkers JCM. A hypothesis and review of the relationship between selection for improved production efficiency, coping behavior, and domestication. Front Genet. 2017;8:134. doi: 10.3389/fgene.2017.00134. PubMed DOI PMC
Cagan A, Blass T. Identification of genomic variants putatively targeted by selection during dog domestication. BMC Evol. Biol. 2016;16:10. doi: 10.1186/s12862-015-0579-7. PubMed DOI PMC
Trut L, Oskina I, Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. BioEssays. 2009;31:349–360. doi: 10.1002/bies.200800070. PubMed DOI PMC
Wilkins AS, Wrangham RW, Fitch WT. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795–808. doi: 10.1534/genetics.114.165423. PubMed DOI PMC
Jansky S, et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat. Genet. 2021;53:683–693. doi: 10.1038/s41588-021-00806-1. PubMed DOI
Munoz-Manchado AB, et al. Novel striatal gabaergic interneuron populations labeled in the 5HT3a(EGFP) mouse. Cereb. Cortex. 2016;26:96–105. doi: 10.1093/cercor/bhu179. PubMed DOI PMC
Finger TE, Bartel DL, Shultz N, Goodson NB, Greer CA. 5HTR3A-driven GFP labels immature olfactory sensory neurons. J. Comp. Neurol. 2017;525:1743–1755. doi: 10.1002/cne.24180. PubMed DOI PMC
Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 2005;6:671–682. doi: 10.1038/nrn1746. PubMed DOI
Schroeter, S., Levey, A. I. & Blakely, R. D. Polarized expression of the antidepressant-sensitive serotonin transporter in epinephrine-synthesizing chromaffin cells of the rat adrenal gland. Mol. Cell Neurosci. 9, 170–184 (1997). PubMed
Brindley RL, Bauer MB, Blakely RD, Currie KPM. Serotonin and serotonin transporters in the adrenal medulla: a potential hub for modulation of the sympathetic stress response. ACS Chem. Neurosci. 2017;8:943–954. doi: 10.1021/acschemneuro.7b00026. PubMed DOI PMC
Delarue C, Becquet D, Idres S, Hery F, Vaudry H. Serotonin synthesis in adrenochromaffin cells. Neuroscience. 1992;46:495–500. doi: 10.1016/0306-4522(92)90069-E. PubMed DOI
García-Arrarás JE, Martínez R. Developmental expression of serotonin-like immunoreactivity in the sympathoadrenal system of the chicken. Cell Tissue Res. 1990;262:363–372. doi: 10.1007/BF00309891. PubMed DOI
Bondarenko NS, et al. Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis. Biochemistry. 2017;82:373–379. PubMed
Mitchell JA, Hammer RE, Goldman H. Serotonin induced disruption of implantation in rats: II. Suppression of decidualization. Biol. Reprod. 1983;29:6. doi: 10.1095/biolreprod29.1.151. PubMed DOI
Udenfriend S, Weissbach H, Bordanski D. Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. Bilogical Chem. 1957;224:7. PubMed
Bogdanski DF, Weissbach H, Udenfriend S. Pharmacological studies with the serotonin precursor, 5-hydroxytryptophan. J. Pharm. Exp. Ther. 1958;122:182–194. PubMed
Schneider, B. F. & Norton, S. Equivalent ages in rat, mouse and chick embryos. Teratology19, 273–278 (1979). PubMed
Le Douarin NM, Smith J, Le Lievre CS. From the neural crest to the ganglia of the peripheral nervous system. Annu. Rev. Physiol. 1981;43:653–671. doi: 10.1146/annurev.ph.43.030181.003253. PubMed DOI
Cheraghali AM, Knaus EE, Wiebe LI. Bioavailability and pharmacokinetic parameters for 5-ethyl-2′-deoxyuridine. Antivir. Res. 1994;25:259–267. doi: 10.1016/0166-3542(94)90008-6. PubMed DOI
Chan WH, et al. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Developmental Neurobiol. 2016;76:137–149. doi: 10.1002/dneu.22304. PubMed DOI PMC
Alexandrov A, Colognori D, Shu M-D, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc. Natl Acad. Sci. USA. 2012;109:21313. doi: 10.1073/pnas.1219725110. PubMed DOI PMC
Steckelberg A-L, Boehm V, Gromadzka AM, Gehring NH. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2012;2:454–461. doi: 10.1016/j.celrep.2012.08.017. PubMed DOI
Anderson KM, et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature. 2016;539:433–436. doi: 10.1038/nature20128. PubMed DOI PMC
Morikawa Y, D’Autréaux F, Gershon MD, Cserjesi P. Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Developmental Biol. 2007;307:114–126. doi: 10.1016/j.ydbio.2007.04.027. PubMed DOI PMC
McCann JL, et al. The DNA deaminase APOBEC3B interacts with the cell-cycle protein CDK4 and disrupts CDK4-mediated nuclear import of Cyclin D1. J. Biol. Chem. 2019;294:12099–12111. doi: 10.1074/jbc.RA119.008443. PubMed DOI PMC
Martin V, et al. Response of Htr3a knockout mice to antidepressant treatment and chronic stress. Br. J. Pharm. 2017;174:2471–2483. doi: 10.1111/bph.13857. PubMed DOI PMC
Zimmerman MW, et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 2018;8:320. doi: 10.1158/2159-8290.CD-17-0993. PubMed DOI PMC
Wang LL, et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children’s Oncology Group study. Br. J. Cancer. 2015;113:57–63. doi: 10.1038/bjc.2015.188. PubMed DOI PMC
Eisenhofer G, et al. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel–Lindau disease and multiple endocrine neoplasia type 2. N. Engl. J. Med. 1999;340:1872–1879. doi: 10.1056/NEJM199906173402404. PubMed DOI
Raber W, et al. Diagnostic efficacy of unconjugated plasma metanephrines for the detection of pheochromocytoma. Arch. Intern. Med. 2000;160:2957–2963. doi: 10.1001/archinte.160.19.2957. PubMed DOI
Axelrod J. Metabolism of epinephrine and other sympathomimetic amines. Physiological Rev. 1959;39:751–776. doi: 10.1152/physrev.1959.39.4.751. PubMed DOI
Axelrod J. Noradrenaline: fate and control of its biosynthesis. Science. 1971;173:598–606. doi: 10.1126/science.173.3997.598. PubMed DOI
Kopin IJ. Storage and metabolism of catecholamines: the role of monoamine oxidase. Pharm. Rev. 1964;16:179–191. PubMed
Parvez H, Ismahan G, Parvez S, Youdim MB. Developmental changes in the activity of catechol-O-methyl transferase in rat and rabbit fetuses. J. Neural Transm. 1979;44:65–75. doi: 10.1007/BF01252702. PubMed DOI
Chen HJ, et al. Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Transl. Psychiatry. 2020;10:191. doi: 10.1038/s41398-020-00876-5. PubMed DOI PMC
Dmitriev SG, Zakharov VM, Sheftel BI. Cytogenetic homeostasis and population density in red-backed voles Clethrionomys glareolus and C. rutilus in central Siberia. Acta Theriologica. 1997;Suppl. 4:49–55. doi: 10.4098/AT.arch.97-46. DOI
Zakharov VM, Trofimov IE, Sheftel BI. Fluctuating asymmetry and population dynamics of the common shrew, Sorex araneus, in Central Siberia under climate change conditions. Symmetry. 2020;12:1960. doi: 10.3390/sym12121960. DOI
Henttonen H, McGuire AD, Hansson L. Comparisons of amplitudes and frequencies (spectral analyses) of density variations in long-term data sets of Clethrionomys species. Annales Zoologici Fennici. 1985;22:221–227.
Liu J, et al. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt’s voles (Lasiopodomys brandtii) Hormones Behav. 2020;126:104838. doi: 10.1016/j.yhbeh.2020.104838. PubMed DOI
Huber K, Kalcheim C, Unsicker K. The development of the chromaffin cell lineage from the neural crest. Auton. Neurosci. 2009;151:10–16. doi: 10.1016/j.autneu.2009.07.020. PubMed DOI
Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise? Developmental Biol. 2018;444:S25–S35. doi: 10.1016/j.ydbio.2018.02.008. PubMed DOI
Duester GRetinoic. Acid synthesis and signaling during early organogenesis. Cell. 2008;134:921–931. doi: 10.1016/j.cell.2008.09.002. PubMed DOI PMC
Nicosia RF, Zorzi P, Ligresti G, Morishita A, Aplin AC. Paracrine regulation of angiogenesis by different cell types in the aorta ring model. Int. J. Dev. Biol. 2011;55:447–453. doi: 10.1387/ijdb.103222rn. PubMed DOI
Hockman D, et al. Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev. Biol. 2018;444:S308–S324. doi: 10.1016/j.ydbio.2018.05.016. PubMed DOI PMC
St-Pierre J, Laurent L, King S, Vaillancourt C. Effects of prenatal maternal stress on serotonin and fetal development. Placenta. 2016;48:S66–S71. doi: 10.1016/j.placenta.2015.11.013. PubMed DOI
Nordquist N, Oreland L. Serotonin, genetic variability, behaviour, and psychiatric disorders—a review. Upsala J. Med. Sci. 2010;115:2–10. doi: 10.3109/03009730903573246. PubMed DOI PMC
Kalueff AV, Olivier JDA, Nonkes LJP, Homberg JR. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci. Biobehav. Rev. 2010;34:373–386. doi: 10.1016/j.neubiorev.2009.08.003. PubMed DOI
Brindley RL, et al. Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter. Pharmacol. Res. 2019;140:56–66. doi: 10.1016/j.phrs.2018.06.008. PubMed DOI PMC
Noorlander CW, et al. Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities. PLoS ONE. 2008;3:e2782. doi: 10.1371/journal.pone.0002782. PubMed DOI PMC
Gutknecht L, et al. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. PLoS ONE. 2012;7:e43157. doi: 10.1371/journal.pone.0043157. PubMed DOI PMC
Schaefer TL, Vorhees CV, Williams MT. Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. Neuroscience. 2009;164:1431–1443. doi: 10.1016/j.neuroscience.2009.09.059. PubMed DOI PMC
Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature. 1985;313:404–406. doi: 10.1038/313404a0. PubMed DOI
Hölzel M, et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell. 2010;142:218–229. doi: 10.1016/j.cell.2010.06.004. PubMed DOI PMC
Bayeva, N., Coll, E. & Piskareva, O. Differentiating neuroblastoma: a systematic review of the retinoic acid, its derivatives, and synergistic interactions. J. Pers. Med.11 (2021). PubMed PMC
Dong R, et al. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell. 2020;38:716–733.e716. doi: 10.1016/j.ccell.2020.08.014. PubMed DOI
Bedoya-Reina OC, et al. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat. Commun. 2021;12:5309. doi: 10.1038/s41467-021-24870-7. PubMed DOI PMC
Hanemaaijer ES, et al. Single-cell atlas of developing murine adrenal gland reveals relation of Schwann cell precursor signature to neuroblastoma phenotype. Proc. Natl Acad. Sci. USA. 2021;118:e2022350118. doi: 10.1073/pnas.2022350118. PubMed DOI PMC
Kildisiute, G. et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci. Adv. 7, eabd3311 (2021). PubMed PMC
Kliman HJ, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159:1609–1629. doi: 10.1210/en.2017-03025. PubMed DOI
Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. doi: 10.1016/j.neuroscience.2011.10.005. PubMed DOI PMC
Goeden N, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci. 2016;36:6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016. PubMed DOI PMC
Williams M, et al. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain. Dev. Neurosci. 2017;39:399–412. doi: 10.1159/000471509. PubMed DOI PMC
Ranzil S, et al. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2019;161:80–87. doi: 10.1016/j.biochi.2018.12.016. PubMed DOI
Koolhaas, J. M. et al. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J. Vis. Exp. e4367, 10.3791/4367 (2013). PubMed PMC
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci. Biobehav. Rev. 2017;74:401–422. doi: 10.1016/j.neubiorev.2016.07.008. PubMed DOI
Voronezhskaya EE, Khabarova MY, Nezlin LP, Ivashkin EG. Delayed action of serotonin in molluscan development. Acta Biol. Hung. 2012;63:210–216. doi: 10.1556/ABiol.63.2012.Suppl.2.28. PubMed DOI
Voronezhskaya, E. E. Maternal serotonin: shaping developmental patterns and behavioral strategy on progeny in molluscs. Front. Ecol. Evol.9, 10.3389/fevo.2021.739787 (2021).
Das S, et al. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife. 2020;9:e55246. doi: 10.7554/eLife.55246. PubMed DOI PMC
Andreassen HP, et al. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia. 2021;195:601–622. doi: 10.1007/s00442-020-04810-w. PubMed DOI PMC
Podgorny O, Peunova N, Park JH, Enikolopov G. Triple S-phase labeling of dividing stem cells. Stem Cell Rep. 2018;10:615–626. doi: 10.1016/j.stemcr.2017.12.020. PubMed DOI PMC
Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e1821. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC
Picelli S, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014;9:171–181. doi: 10.1038/nprot.2014.006. PubMed DOI
Becht E, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019;37:38–44. doi: 10.1038/nbt.4314. PubMed DOI
Huang Y, Sanguinetti G. BRIE: transcriptome-wide splicing quantification in single cells. Genome Biol. 2017;18:123. doi: 10.1186/s13059-017-1248-5. PubMed DOI PMC
Huang, Y. & Sanguinetti, G. BRIE2: computational identification of splicing phenotypes from single-cell transcriptomic experiments. Genome Biol. 22, 251 10.1186/s13059-021-02461-5 (2021). PubMed PMC
Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e3529. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC
Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–291 e289. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC
Blasco-Serra A, Gonzalez-Soler EM, Cervera-Ferri A, Teruel-Marti V, Valverde-Navarro AA. A standardization of the novelty-suppressed feeding test protocol in rats. Neurosci. Lett. 2017;658:73–78. doi: 10.1016/j.neulet.2017.08.019. PubMed DOI
Bali, A. & Jaggi, A. Electric foot shock stress: a useful tool in neuropsychiatric studies. Rev. Neurosci.26, 655–677 (2015). PubMed
Wall PM, Messier C. Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci. Behav. Rev. 2001;25:12. doi: 10.1016/S0149-7634(01)00013-6. PubMed DOI
Veselska R, et al. Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer. 2008;8:300. doi: 10.1186/1471-2407-8-300. PubMed DOI PMC
Veselska R, et al. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32. doi: 10.1186/1471-2407-6-32. PubMed DOI PMC
Dobrotkova V, et al. Prediction of neuroblastoma cell response to treatment with natural or synthetic retinoids using selected protein biomarkers. PLoS ONE. 2019;14:e0218269. doi: 10.1371/journal.pone.0218269. PubMed DOI PMC
Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods. 2009;347:70–78. doi: 10.1016/j.jim.2009.06.008. PubMed DOI
Mitoribosomal synthetic lethality overcomes multidrug resistance in MYC-driven neuroblastoma