Dysregulation of the p53 pathway provides a therapeutic target in aggressive pediatric sarcomas with stem-like traits
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20J-07-00004
Ministry of Health of the Czech Republic
FNBr 65269705
Ministry of Health of the Czech Republic
Brno Ph.D. Talent Scholarship
Brno City Municipality
PubMed
39630408
DOI
10.1007/s13402-024-01020-x
PII: 10.1007/s13402-024-01020-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer stemness, Pediatric sarcomas, Prognosis, Targeted therapy, p53,
- MeSH
- dítě MeSH
- Krüppel-like faktor 4 * MeSH
- lidé MeSH
- mladiství MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky * metabolismus patologie MeSH
- nádorový supresorový protein p53 * metabolismus genetika MeSH
- předškolní dítě MeSH
- regulace genové exprese u nádorů MeSH
- sarkom * genetika patologie metabolismus MeSH
- signální transdukce MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- myši MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- KLF4 protein, human MeSH Prohlížeč
- Klf4 protein, mouse MeSH Prohlížeč
- Krüppel-like faktor 4 * MeSH
- nádorový supresorový protein p53 * MeSH
PURPOSE: Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear. METHODS: We utilized a unique panel of pediatric sarcoma models and tumor tissue cohorts to investigate the correlation between the expression of stemness-related transcription factors, p53 pathway dysregulations, tumorigenicity in vivo, and clinicopathological features. TP53 mutation status was assessed by next-generation sequencing. Major findings were validated via shRNA-mediated silencing and functional assays. The p53 pathway-targeting drugs were used to explore the effects and selectivity of p53 reactivation against sarcoma cells with stem-like traits. RESULTS: We found that highly tumorigenic stem-like sarcoma cells exhibit dysregulated p53, making them vulnerable to drugs that restore wild-type p53 activity. Immunohistochemistry of mouse xenografts and human tumor tissues revealed that p53 dysregulations, together with enhanced expression of the stemness-related transcription factors SOX2 or KLF4, are crucial features in pediatric osteosarcoma, rhabdomyosarcoma, and Ewing's sarcoma development. p53 dysregulation appears to be an important step for sarcoma cells to acquire a fully stem-like phenotype, and p53-positive pediatric sarcomas exhibit a high frequency of early metastasis. Importantly, reactivating p53 signaling via MDM2/MDMX inhibition selectively induces apoptosis in aggressive, stem-like Ewing's sarcoma cells while sparing healthy fibroblasts. CONCLUSIONS: Our results indicate that restoring canonical p53 activity provides a promising strategy for developing improved therapies for pediatric sarcomas with unfavorable stem-like traits.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 656 91 Czech Republic
Zobrazit více v PubMed
L. Curylova, H. Ramos, L. Saraiva, J. Skoda, Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett. 525, 131 (2022) PubMed DOI
E. Thoenen, A. Curl, T. Iwakuma, TP53 in bone and soft tissue sarcomas. Pharmacol. Ther. 202, 149 (2019) PubMed DOI PMC
J. Skoda, R. Veselska, Cancer stem cells in sarcomas: getting to the stemness core. Biochim. Biophys. Acta Gen. Subj. 1862, 2134 (2018) PubMed DOI
S.M. Perkins, E.T. Shinohara, T. DeWees, H. Frangoul, Outcome for children with metastatic solid tumors over the last four decades. PloS One. 9, e100396 (2014) PubMed DOI PMC
V. Tirino, V. Desiderio, R. d’Aquino, F. De Francesco, G. Pirozzi, A. Graziano, U. Galderisi, C. Cavaliere, A. De Rosa, G. Papaccio, A. Giordano, Detection and characterization of CD133 + cancer stem cells in human solid tumours. PloS One. 3, e3469 (2008) PubMed DOI PMC
M.-L. Suvà, N. Riggi, J.-C. Stehle, K. Baumer, S. Tercier, J.-M. Joseph, D. Suvà, V. Clément, P. Provero, L. Cironi, M.-C. Osterheld, L. Guillou, I. Stamenkovic, Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res. 69, 1776 (2009) PubMed DOI
L. Wang, P. Park, H. Zhang, F.L. Marca, C.-Y. Lin, Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int. J. Cancer. 128, 294 (2011) PubMed DOI
J.-C. Yeo, H.-H. Ng, The transcriptional regulation of pluripotency. Cell. Res. 23, 20 (2013) PubMed DOI
J. Skoda, A. Nunukova, T. Loja, I. Zambo, J. Neradil, P. Mudry, K. Zitterbart, M. Hermanova, A. Hampl, J. Sterba, R. Veselska, Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice. Tumour Biol. 37, 9535 (2016) PubMed DOI
G. Maurizi, N. Verma, A. Gadi, A. Mansukhani, C. Basilico, Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene. 37, 4626 (2018) PubMed DOI PMC
K.C. Genadry, S. Pietrobono, R. Rota, C.M. Linardic, Soft tissue sarcoma cancer stem cells. Overv. Front. Oncol. 8, 475 (2018)
C.N. Amaya, B.A. Bryan, Enrichment of the embryonic stem cell reprogramming factors Oct4, nanog, Myc, and Sox2 in benign and malignant vascular tumors. BMC Clin. Pathol. 15, 18 (2015) PubMed DOI PMC
S.R. Martins-Neves, W.E. Corver, D.I. Paiva-Oliveira, B.E.W.M. van den Akker, I.H. Briaire-de-Bruijn, J.V.M.G. Bovée, C.M.F. Gomes, A.-M. Cleton-Jansen, Osteosarcoma Stem cells have active Wnt/β-catenin and overexpress SOX2 and KLF4. J. Cell. Physiol. 231, 876 (2016) PubMed DOI
A. Huyghe, A. Trajkova, F. Lavial, Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell. Biol. S0962 (2023)
D.J. Olivos, L.D. Mayo, Emerging non-canonical functions and regulation by p53: p53 and Stemness. Int. J. Mol. Sci. 17, (2016)
P. Kameneva, V.I. Melnikova, M.E. Kastriti, A. Kurtova, E. Kryukov, A. Murtazina, L. Faure, I. Poverennaya, A.V. Artemov, T.S. Kalinina, N.V. Kudryashov, M. Bader, J. Skoda, P. Chlapek, L. Curylova, L. Sourada, J. Neradil, M. Tesarova, M. Pasqualetti, P. Gaspar, V.D. Yakushov, B.I. Sheftel, T. Zikmund, J. Kaiser, K. Fried, N. Alenina, E.E. Voronezhskaya, I. Adameyko, Serotonin limits generation of chromaffin cells during adrenal organ development. Nat. Commun. 13, 2901 (2022) PubMed DOI PMC
B. Leroy, M.L. Ballinger, F. Baran-Marszak, G.L. Bond, A. Braithwaite, N. Concin, L.A. Donehower, W.S. El-Deiry, P. Fenaux, G. Gaidano, A. Langerød, E. Hellstrom-Lindberg, R. Iggo, J. Lehmann-Che, P.L. Mai, D. Malkin, U.M. Moll, J.N. Myers, K.E. Nichols, S. Pospisilova, P. Ashton-Prolla, D. Rossi, S.A. Savage, L.C. Strong, P.N. Tonin, R. Zeillinger, T. Zenz, J.F. Fraumeni, P.E.M. Taschner, P. Hainaut, T. Soussi, Recommended guidelines for Validation, Quality Control, and reporting of TP53 variants in clinical practice. Cancer Res. 77, 1250 (2017) PubMed DOI PMC
J. Malcikova, S. Pavlova, B. Kunt Vonkova, L. Radova, K. Plevova, J. Kotaskova, K. Pal, B. Dvorackova, M. Zenatova, J. Hynst, E. Ondrouskova, A. Panovska, Y. Brychtova, K. Zavacka, B. Tichy, N. Tom, J. Mayer, M. Doubek, S. Pospisilova, Low-burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. Blood. 138, 2670 (2021) PubMed DOI PMC
Y. Hu, G.K. Smyth, ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods. 347, 70 (2009) PubMed DOI
P. Bankhead, M.B. Loughrey, J.A. Fernández, Y. Dombrowski, D.G. McArt, P.D. Dunne, S. McQuaid, R.T. Gray, L.J. Murray, H.G. Coleman, J.A. James, M. Salto-Tellez, P.W. Hamilton, QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017) PubMed DOI PMC
J.D. Lathia, H. Liu, Overview of cancer stem cells and stemness for community oncologists. Target. Oncol. 12, 387 (2017) PubMed DOI PMC
E. Halachmi, I.P. Witz, Differential tumorigenicity of 3T3 cells transformed in vitro with polyoma virus and in vivo selection for high tumorigenicity. Cancer Res. 49, 2383 (1989) PubMed
B. Graves, T. Thompson, M. Xia, C. Janson, C. Lukacs, D. Deo, P. Di Lello, D. Fry, C. Garvie, K.-S. Huang, L. Gao, C. Tovar, A. Lovey, J. Wanner, L.T. Vassilev, Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. U. S. A. 109, 11788 (2012)
V.J.N. Bykov, N. Zache, H. Stridh, J. Westman, J. Bergman, G. Selivanova, K.G. Wiman, PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene. 24, 3484 (2005) PubMed DOI
S. Jamil, I. Lam, M. Majd, S.-H. Tsai, V. Duronio, Etoposide induces cell death via mitochondrial-dependent actions of p53. Cancer Cell. Int. 15, 79 (2015) PubMed DOI PMC
A. Montecucco, F. Zanetta, G. Biamonti, Molecular mechanisms of etoposide. EXCLI J. 14, 95 (2015) PubMed PMC
G. Sannino, A. Marchetto, A. Ranft, S. Jabar, C. Zacherl, R. Alba-Rubio, S. Stein, F.S. Wehweck, M.M. Kiran, T.L.B. Hölting, J. Musa, L. Romero-Pérez, F. Cidre-Aranaz, M.M.L. Knott, J. Li, H. Jürgens, A. Sastre, J. Alonso, W. Da Silveira, G. Hardiman, J.S. Gerke, M.F. Orth, W. Hartmann, T. Kirchner, S. Ohmura, U. Dirksen, T.G.P. Grünewald, Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in ewing sarcoma patients. EBioMedicine. 47, 156 (2019) PubMed DOI PMC
U. Basu-Roy, E. Seo, L. Ramanathapuram, T.B. Rapp, J.A. Perry, S.H. Orkin, A. Mansukhani, C. Basilico, Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene. 31, 2270 (2012) PubMed DOI
S.T. Menendez, V. Rey, L. Martinez-Cruzado, M.V. Gonzalez, A. Morales-Molina, L. Santos, V. Blanco, C. Alvarez, O. Estupiñan, E. Allonca, J.P. Rodrigo, J. García-Castro, J.M. Garcia-Pedrero, R. Rodriguez, SOX2 expression and transcriptional activity identifies a subpopulation of Cancer Stem cells in Sarcoma with prognostic implications. Cancers. 12, 964 (2020) PubMed DOI PMC
D. Walter, S. Satheesha, P. Albrecht, B.C. Bornhauser, V. D’Alessandro, S.M. Oesch, H. Rehrauer, I. Leuschner, E. Koscielniak, C. Gengler, H. Moch, M. Bernasconi, F.K. Niggli, B.W. Schäfer, and CWS Study Group, CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres. PloS One. 6, e19506 (2011) PubMed DOI PMC
R. Aloni-Grinstein, Y. Shetzer, T. Kaufman, V. Rotter, p53: the barrier to cancer stem cell formation. FEBS Lett. 588, 2580 (2014) PubMed DOI
W.D. Pontius, E.S. Hong, Z.J. Faber, J. Gray, C.D. Peacock, I. Bayles, K. Lovrenert, D.H. Chin, B.E. Gryder, C.F. Bartels, P.C. Scacheri, Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis. Nat. Commun. 14, 7209 (2023) PubMed DOI PMC
Y. Li, M. Xian, B. Yang, M. Ying, Q. He, Inhibition of KLF4 by statins reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma cells. Stem Cell. Rep. 8, 1617 (2017) DOI
L. Zhang, L. Zhang, X. Xia, S. He, H. He, W. Zhao, Krüppel-like factor 4 promotes human osteosarcoma growth and metastasis via regulating CRYAB expression. Oncotarget. 7, 30990 (2016) PubMed DOI PMC
C. Ren, T. Ren, K. Yang, S. Wang, X. Bao, F. Zhang, W. Guo, Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewing’s sarcoma through the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 35, 44 (2016) PubMed DOI PMC
Z. Firtina Karagonlar, S. Akbari, M. Karabicici, E. Sahin, S. Tercan Avci, N. Ersoy, K. Eren Ates, T. Balli, B. Karacicek, K.N. Kaplan, C. Celiker, N. Atabey, E. Erdal, A novel function for KLF4 in modulating the de-differentiation of EpCAM–/CD133– nonStem cells into EpCAM+/CD133 + liver Cancer stem cells in HCC Cell Line HuH7. Cells. 9, 1198 (2020) DOI PMC
M. Herreros-Villanueva, J.-S. Zhang, A. Koenig, E.V. Abel, T.C. Smyrk, W.R. Bamlet, A. a.-M., de Narvajas, T.S. Gomez, D.M. Simeone, L. Bujanda, D.D. Billadeau, SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2, e61 (2013)
S. Wang, Z. Li, P. Li, L. Li, Y. Liu, Y. Feng, R. Li, S. Xia, SOX2 promotes Radioresistance in Non-small Cell Lung Cancer by regulating Tumor cells dedifferentiation. Int. J. Med. Sci. 20, 781 (2023) PubMed DOI PMC
H. Li, X. Fan, R.C. Kovi, Y. Jo, B. Moquin, R. Konz, C. Stoicov, E. Kurt-Jones, S.R. Grossman, S. Lyle, A.B. Rogers, M. Montrose, J. Houghton, Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 67, 10889 (2007) PubMed DOI
P.P. Lin, M.K. Pandey, F. Jin, A.K. Raymond, H. Akiyama, G. Lozano, Targeted mutation of p53 and rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis. 30, 1789 (2009) PubMed DOI PMC
R. Rubio, I. Gutierrez-Aranda, A.I. Sáez-Castillo, A. Labarga, M. Rosu-Myles, S. Gonzalez-Garcia, M.L. Toribio, P. Menendez, R. Rodriguez, The differentiation stage of p53-Rb-deficient bone marrow mesenchymal stem cells imposes the phenotype of in vivo sarcoma development. Oncogene. 32, 4970 (2013) PubMed DOI
R. van Boxtel, R.V. Kuiper, P.W. Toonen, S. van Heesch, R. Hermsen, A. de Bruin, E. Cuppen, Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am. J. Pathol. 179, 1616 (2011) PubMed DOI PMC
Q. Tang, Z. Su, W. Gu, A.K. Rustgi, Mutant p53 on the path to Metastasis. Trends Cancer. 6, 62 (2020) PubMed DOI
D. Yao, G.-H. Cai, J. Chen, R. Ling, S.-X. Wu, Y.-P. Li, Prognostic value of p53 alterations in human osteosarcoma: a meta analysis. Int. J. Clin. Exp. Pathol. 7, 6725 (2014) PubMed PMC
J. Wu, A. Guo, Q. Li, D. Wang, Meta-analysis of clinical significance of p53 protein expression in patients with osteosarcoma. Future Oncol. 13, 1883 (2017) PubMed DOI
I. Leuschner, I. Langhans, R. Schmitz, D. Harms, A. Mattke, J. Treuner, and Kiel Pediatric Tumor Registry and the German Cooperative Soft tissue Sarcoma Study, p53 and mdm-2 expression in Rhabdomyosarcoma of childhood and adolescence: clinicopathologic study. Pediatr. Dev. Pathol. 6, 128 (2003) PubMed DOI
I. Ayan, O. Dŏgan, R. Kebudi, B. Bavbek, C. Alatli, S. Dervişoğlu, R. Dişçi, M. Demiryont, Immunohistochemical detection of p53 protein in rhabdomyosarcoma: association with clinicopathological features and outcome. J. Pediatr. Hematol. Oncol. 19, 48 (1997) PubMed DOI
Y. Yang, T. Zhen, F. Zhang, S. Dai, L. Kang, Y. Liang, L. Xue, A. Han, p53 and hepatoma-derived growth factor expression and their clinicopathological association with Ewing family tumour. J. Clin. Pathol. 67, 235 (2014) PubMed DOI
S. Ribi, D. Baumhoer, K. Lee, Edison, A.S.M. Teo, B. Madan, K. Zhang, W.K. Kohlmann, F. Yao, W.H. Lee, Q. Hoi, S. Cai, X.Y. Woo, P. Tan, G. Jundt, J. Smida, M. Nathrath, W.-K. Sung, J.D. Schiffman, D.M. Virshup, A.M. Hillmer, TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome. Oncotarget. 6, 7727 (2015)
X. Chen, A. Bahrami, A. Pappo, J. Easton, J. Dalton, E. Hedlund, D. Ellison, S. Shurtleff, G. Wu, L. Wei, M. Parker, M. Rusch, P. Nagahawatte, J. Wu, S. Mao, K. Boggs, H. Mulder, D. Yergeau, C. Lu, L. Ding, M. Edmonson, C. Qu, J. Wang, Y. Li, F. Navid, N.C. Daw, E.R. Mardis, R.K. Wilson, J.R. Downing, J. Zhang, M.A. Dyer, and St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project, Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell. Rep. 7, 104 (2014) PubMed DOI PMC
S. Lorenz, T. Barøy, J. Sun, T. Nome, D. Vodák, J.-C. Bryne, A.-M. Håkelien, L. Fernandez-Cuesta, B. Möhlendick, H. Rieder, K. Szuhai, O. Zaikova, T.C. Ahlquist, G.O.S. Thomassen, R.I. Skotheim, R.A. Lothe, P.S. Tarpey, P. Campbell, A. Flanagan, O. Myklebost, L.A. Meza-Zepeda, Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget. 7, 5273 (2016) PubMed DOI
Y. Haupt, R. Maya, A. Kazaz, M. Oren, Mdm2 promotes the rapid degradation of p53. Nature. 387, 296 (1997) PubMed DOI
Y. Li, K. Tanaka, X. Fan, F. Nakatani, X. Li, T. Nakamura, M. Takasaki, S. Yamamoto, Y. Iwamoto, Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family tumors. Cancer Lett. 294, 57 (2010) PubMed DOI
X. Fu, S. Wu, B. Li, Y. Xu, J. Liu, Functions of p53 in pluripotent stem cells. Protein Cell. 11, 71 (2020) PubMed DOI
A. Liu, X. Yu, S. Liu, Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chin. J. Cancer. 32, 483 (2013) PubMed PMC
Z. Zeng, M. Fu, Y. Hu, Y. Wei, X. Wei, M. Luo, Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol. Cancer. 22, 172 (2023) PubMed DOI PMC
H. Fong, K.A. Hohenstein, P.J. Donovan, Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 26, 1931 (2008) PubMed DOI
N.K. Dhaliwal, L.E. Abatti, J.A. Mitchell, KLF4 protein stability regulated by interaction with pluripotency transcription factors overrides transcriptional control. Genes Dev. 33, 1069 (2019) PubMed DOI PMC
A. Gagliardi, N.P. Mullin, Z. Ying Tan, D. Colby, A.I. Kousa, F. Halbritter, J.T. Weiss, A. Felker, K. Bezstarosti, R. Favaro, J. Demmers, S.K. Nicolis, S.R. Tomlinson, R.A. Poot, I. Chambers, A direct physical interaction between nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO J. 32, 2231 (2013) PubMed DOI PMC
Z. An, P. Liu, J. Zheng, C. Si, T. Li, Y. Chen, T. Ma, M.Q. Zhang, Q. Zhou, S. Ding, Sox2 and Klf4 as the functional core in pluripotency induction without exogenous Oct4. Cell. Rep. 29, 1986 (2019) PubMed DOI
V. Guerlavais, T.K. Sawyer, L. Carvajal, Y.S. Chang, B. Graves, J.-G. Ren, D. Sutton, K.A. Olson, K. Packman, K. Darlak, C. Elkin, E. Feyfant, K. Kesavan, P. Gangurde, L.T. Vassilev, H.M. Nash, V. Vukovic, M. Aivado, D.A. Annis, Discovery of Sulanemadlin (ALRN-6924), the First Cell-Permeating, stabilized α-Helical peptide in Clinical Development. J. Med. Chem. 66, 9401 (2023) PubMed DOI
P. LoRusso, N. Yamamoto, M.R. Patel, S.A. Laurie, T.M. Bauer, J. Geng, T. Davenport, M. Teufel, J. Li, M. Lahmar, M.M. Gounder, The MDM2-p53 antagonist Brigimadlin (BI 907828) in patients with Advanced or metastatic solid tumors: results of a phase Ia, first-in-Human, dose-escalation study. Cancer Discov. 13, 1802 (2023) PubMed DOI PMC
T. Koyama, T. Shimizu, Y. Kojima, K. Sudo, H.S. Okuma, T. Shimoi, H. Ichikawa, S. Kohsaka, R. Sadachi, A. Hirakawa, A. Yoshida, R.M. Ando, T. Ueno, M. Yanagaki, N. Matsui, K. Nakamura, N. Yamamoto, K. Yonemori, Clinical activity and exploratory resistance mechanism of Milademetan, an MDM2 inhibitor, in Intimal Sarcoma with MDM2 amplification: an open-label phase Ib/II study. Cancer Discov. 13, 1814 (2023) PubMed DOI