Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ZIA CP010144
Intramural NIH HHS - United States
PubMed
28254861
PubMed Central
PMC7457206
DOI
10.1158/0008-5472.can-16-2179
PII: 0008-5472.CAN-16-2179
Knihovny.cz E-zdroje
- MeSH
- genetická variace genetika MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory diagnóza genetika terapie MeSH
- řízení kvality * MeSH
- směrnice pro lékařskou praxi jako téma normy MeSH
- validační studie jako téma MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- TP53 protein, human MeSH Prohlížeč
Accurate assessment of TP53 gene status in sporadic tumors and in the germline of individuals at high risk of cancer due to Li-Fraumeni Syndrome (LFS) has important clinical implications for diagnosis, surveillance, and therapy. Genomic data from more than 20,000 cancer genomes provide a wealth of information on cancer gene alterations and have confirmed TP53 as the most commonly mutated gene in human cancer. Analysis of a database of 70,000 TP53 variants reveals that the two newly discovered exons of the gene, exons 9β and 9γ, generated by alternative splicing, are the targets of inactivating mutation events in breast, liver, and head and neck tumors. Furthermore, germline rearrange-ments in intron 1 of TP53 are associated with LFS and are frequently observed in sporadic osteosarcoma. In this context of constantly growing genomic data, we discuss how screening strategies must be improved when assessing TP53 status in clinical samples. Finally, we discuss how TP53 alterations should be described by using accurate nomenclature to avoid confusion in scientific and clinical reports. Cancer Res; 77(6); 1250-60. ©2017 AACR.
Bergonié Cancer Institute University of Bordeaux 229 cours de l'Argonne 33076 Bordeaux France
Cancer Division Garvan Institute of Medical Research Darlinghurst NSW Australia
Children's Medical Research Institute University of Sydney Westmead NSW Australia
Department of Genetics Institute for Cancer Research Oslo University Hospital Oslo Norway
Department of Gynecology and Obstetrics Innsbruck Medical University Innsbruck Austria
Department of Oncology Pathology Karolinska Institutet Cancer Center Karolinska Stockholm Sweden
Department of Pathology Stony Brook University Stony Brook New York
Dept of Pathology School of Medicine University of Otago Dunedin New Zealand
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland
Human Genome Sequencing Center Baylor College of Medicine Houston Texas
INSERM U1138 Centre de Recherche des Cordeliers Paris France
Molecular Oncology Unit Hospital Saint Louis Paris France
Sorbonne Université UPMC Univ Paris 06 Paris France
The University of Texas MD Anderson Cancer Center Houston Texas
Zobrazit více v PubMed
McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2011;364:340–50. PubMed
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9. PubMed PMC
Soussi T Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm. Hum Mutat 2014;35:643–53. PubMed
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14:455–67. PubMed PMC
Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244:217–21. PubMed
Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246:491–4. PubMed
Soussi T, Ishioka C, Claustres M, Beroud C. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer. 2006;6:83–90. PubMed
Olivier M, Hollstein M, Hainaut P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb Perspect Biol 2010;2:a001008. PubMed PMC
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014;35:672–88. PubMed
Nichols KE, Malkin D. Genotype Versus Phenotype: The Yin and Yang of Germline TP53 Mutations in Li-Fraumeni Syndrome. J Clin Oncol 2015;33:2331–3. PubMed
Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–908. PubMed
Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012;26:1268–86. PubMed PMC
Wang SJ, Gu W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol 2014;26:78–85. PubMed PMC
Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014;35:702–14. PubMed
Stindt MH, Muller PA, Ludwig RL, Kehrloesser S, Dötsch V, Vousden KH. Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene 2014 PubMed PMC
Marine JC. MDM2 and MDMX in cancer and development. Curr Top Dev Biol 2011;94:45–75. PubMed
Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 2009;458:1127–30. PubMed PMC
Hock AK, Vousden KH. Tumor Suppression by p53: Fall of the Triumvirate? Cell. 2012;149:1183–5. PubMed
Lee P, Vousden KH, Cheung EC. TIGAR, TIGAR, burning bright. Cancer Metab 2014;2:1. PubMed PMC
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015;16:393–405. PubMed
Bieging KT, Attardi LD. Cancer: A piece of the p53 puzzle. Nature. 2015;520:37–8. PubMed
Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015;22:1239–49. PubMed PMC
Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012;18:1239–47. PubMed PMC
Eischen CM, Lozano G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat 2014;35:728–37. PubMed PMC
Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L et al. HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation. Cell Stem Cell. 2015;17:597–610. PubMed PMC
Cooper GM. Parlez-vous VUS. Genome Res 2015;25:1423–6. PubMed PMC
Amendola LM, Dorschner MO, Robertson PD, Salama JS, Hart R, Shirts BH et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res 2015;25:305–15. PubMed PMC
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622–9. PubMed
Carlsson J, Soussi T, Persson B. Investigation and prediction of the severity of p53 mutants using parameters from structural calculations. FEBS J 2009;276:4142–55. PubMed PMC
Osman AA, Neskey DM, Katsonis P, Patel AA, Ward AM, Hsu TK et al. Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients. Cancer Res 2015;75:1205–15. PubMed PMC
Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70. PubMed PMC
Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2010;2:a001107. PubMed PMC
Jackson JG, Lozano G. The mutant p53 mouse as a pre-clinical model. Oncogene 2013;32:4325–30. PubMed
Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004;119:847–60. PubMed
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72. PubMed
Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G. Mutant p53: an oncogenic transcription factor. Oncogene 2007;26:2212–9. PubMed
Silwal-Pandit L, Vollan HK, Chin SF, Rueda OM, McKinney S, Osako T et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res 2014;20:3569–80. PubMed
Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010;2:a001016. PubMed PMC
Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007;26:2157–65. PubMed
Bertheau P, Lehmann-Che J, Varna M, Dumay A, Poirot B, Porcher R et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast. 2013;22 Suppl 2:S27–9. PubMed
Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 2006;12:1157–67. PubMed
Young KH, Leroy K, Moller MB, Colleoni GW, Sanchez-Beato M, Kerbauy FR et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112:3088–98. PubMed PMC
Gruber M, Wu CJ. Evolving understanding of the CLL genome. Semin Hematol 2014;51:177–87. PubMed PMC
Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner K et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54. PubMed
Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 2012;26:1458–61. PubMed
Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013;10:472–84. PubMed
Izumchenko E, Chang X, Brait M, Fertig E, Kagohara LT, Bedi A et al. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat Commun 2015;6:8258. PubMed PMC
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24. PubMed PMC
Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17. PubMed PMC
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5. PubMed
Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127:1323–34. PubMed
Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U et al. Targeting p53 in Vivo: A First-in-Human Study With p53-Targeting Compound APR-246 in Refractory Hematologic Malignancies and Prostate Cancer. J Clin Oncol 2012;30:3633–9. PubMed
Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352–6. PubMed PMC
Zhang S, Zhou L, Hong B, van den Heuvel AP, Prabhu VV, Warfel NA et al. Small-Molecule NSC59984 Restores p53 Pathway Signaling and Antitumor Effects against Colorectal Cancer via p73 Activation and Degradation of Mutant p53. Cancer Res 2015;75:3842–52. PubMed PMC
Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol 2011;8:25–37. PubMed
Malkin D, Li FP, Strong LC, Fraumeni JFJ, Nelson CE, Kim DH et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. PubMed
McBride KA, Ballinger ML, Killick E, Kirk J, Tattersall MH, Eeles RA et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 2014;11:260–71. PubMed
Gonzalez KD, Buzin CH, Noltner KA, Gu D, Li W, Malkin D et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet 2009;46:689–93. PubMed
Villani A, Tabori U, Schiffman J, Shlien A, Beyene J, Druker H et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 2011;12:559–67. PubMed
Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci U S A 2001;98:9330–5. PubMed PMC
Legal EF, Ascurra M, Custódio G, Ayala HL, Monteiro M, Vega C et al. Prevalence of an inherited cancer predisposition syndrome associated with the germ line TP53 R337H mutation in Paraguay. Cancer Epidemiol 2015;39:166–9. PubMed
Giacomazzi J, Selistre SG, Rossi C, Alemar B, Santos-Silva P, Pereira FS et al. Li-Fraumeni and Li-Fraumeni-like syndrome among children diagnosed with pediatric cancer in Southern Brazil. Cancer. 2013;119:4341–9. PubMed
McCuaig JM, Armel SR, Novokmet A, Ginsburg OM, Demsky R, Narod SA et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer. 2012;11:607–13. PubMed
Maxwell KN, Wubbenhorst B, D’Andrea K, Garman B, Long JM, Powers J et al. Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genet Med 2015;17:630–8. PubMed PMC
Li J, Meeks H, Feng BJ, Healey S, Thorne H, Makunin I et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet 2016;53:34–42. PubMed PMC
Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121:25–33. PubMed
Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342:705–8. PubMed
Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005;19:2122–37. PubMed PMC
Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 2011;18:1815–24. PubMed PMC
Slatter TL, Hung N, Campbell H, Rubio C, Mehta R, Renshaw P et al. Hyperproliferation, cancer, and inflammation in mice expressing a Δ133p53-like isoform. Blood. 2011;117:5166–77. PubMed
Flaman JM, Waridel F, Estreicher A, Vannier A, Limacher JM, Gilbert D et al. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene 1996;12:813–8. PubMed
Surget S, Khoury MP, Bourdon JCS-PL. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 2013;7:57–68. PubMed PMC
Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci U S A 1987;84:7716–9. PubMed PMC
Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida J et al. Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res 1990;50:7950–4. PubMed
Ribi S, Baumhoer D, Lee K, Edison, Teo AS, Madan B et al. TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome. Oncotarget 2015;6:7727–40. PubMed PMC
Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 2014;7:104–12. PubMed PMC
Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3. PubMed
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–24. PubMed PMC
Tinat J, Bougeard G, Baert-Desurmont S, Vasseur S, Martin C, Bouvignies E et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2009;27:e108–9; author reply e110. PubMed
Hettmer S, Archer NM, Somers GR, Novokmet A, Wagers AJ, Diller L et al. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer. 2014;120:1068–75. PubMed PMC
Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 2015;33:2345–52. PubMed
Soussi T, Leroy B, Taschner PE. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum Mutat 2014;35:766–78. PubMed
Kern SE, Winter JM. Elegance, silence and nonsense in the mutations literature for solid tumors. Cancer Biol Ther 2006;5:349–59. PubMed
Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 2011;43:1098–103. PubMed PMC
Iggo R, Rudewicz J, Monceau E, Sevenet N, Bergh J, Sjoblom T et al. Validation of a yeast functional assay for p53 mutations using clonal sequencing. J Pathol 2013;231:441–8. PubMed