Germline mutation in the TP53 gene in uveal melanoma
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29769598
PubMed Central
PMC5955881
DOI
10.1038/s41598-018-26040-0
PII: 10.1038/s41598-018-26040-0
Knihovny.cz E-zdroje
- MeSH
- ATM protein genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanom genetika patologie MeSH
- míra přežití MeSH
- mladý dospělý MeSH
- mutační analýza DNA MeSH
- nádorové supresorové proteiny genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory jater genetika sekundární MeSH
- nádory uvey genetika patologie MeSH
- prognóza MeSH
- senioři MeSH
- thiolesterasa ubikvitinu genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein, human MeSH Prohlížeč
- ATM protein MeSH
- BAP1 protein, human MeSH Prohlížeč
- nádorové supresorové proteiny MeSH
- nádorový supresorový protein p53 MeSH
- thiolesterasa ubikvitinu MeSH
- TP53 protein, human MeSH Prohlížeč
We performed comprehensive molecular analysis of five cases of metastasizing uveal malignant melanoma (UM) (fresh-frozen samples) with an NGS panel of 73 genes. A likely pathogenic germline TP53 mutation c.760A > G (p.I254V) was found in two tumor samples and matched nontumor tissue. In three cases, pathogenic BAP1 mutation was detected together with germline missense variants of uncertain significance in ATM. All cases carried recurrent activating GNAQ or GNA11 mutation. Moreover, we analyzed samples from another 16 patients with primary UM by direct Sanger sequencing focusing only on TP53 coding region. No other germline TP53 mutation was detected in these samples. Germline TP53 mutation, usually associated with Li-Fraumeni syndrome, is a rare event in UM. To the best of our knowledge, only one family with germline TP53 mutation has previously been described. In our study, we detected TP53 mutation in two patients without known family relationship. The identification of germline aberrations in TP53 or BAP1 is important to identify patients with Li-Fraumeni syndrome or BAP1 cancer syndrome, which is also crucial for proper genetic counseling.
Zobrazit více v PubMed
Jovanovic P, et al. Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol. 2013;6:1230–44. PubMed PMC
Harbour, J.W. The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell & Melanoma Research25 (2012). PubMed PMC
Pandiani C, Beranger GE, Leclerc J, Ballotti R, Bertolotto C. Focus on cutaneous and uveal melanoma specificities. Genes Dev. 2017;31:724–743. doi: 10.1101/gad.296962.117. PubMed DOI PMC
Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–289. doi: 10.2147/OPTH.S89591. PubMed DOI PMC
Singh AD, Turell ME, Topham AK. Uveal Melanoma: Trends in Incidence, Treatment, and Survival. Ophthalmology. 2011;118:1881–1885. doi: 10.1016/j.ophtha.2011.01.040. PubMed DOI
Goh AY, Layton CJ. Evolving systemic targeted therapy strategies in uveal melanoma and implications for ophthalmic management: a review. Clin Exp Ophthalmol. 2016;44:509–19. doi: 10.1111/ceo.12688. PubMed DOI
Coupland SE, Lake SL, Zeschnigk M, Damato BE. Molecular pathology of uveal melanoma. Eye. 2013;27:230–242. doi: 10.1038/eye.2012.255. PubMed DOI PMC
Dogrusoz, M. & Jager, M.J. Genetic prognostication in uveal melanoma. Acta Ophthalmol (2017). PubMed
Harbour JW, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3. doi: 10.1126/science.1194472. PubMed DOI PMC
Onken MD, et al. Oncogenic Mutations in GNAQ Occur Early in Uveal Melanoma. Investigative Ophthalmology & Visual Science. 2008;49:5230–5234. doi: 10.1167/iovs.08-2145. PubMed DOI PMC
Robertson AG, et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 2017;32:204–220 e15. doi: 10.1016/j.ccell.2017.07.003. PubMed DOI PMC
Rai K, et al. Germline BAP1 alterations in familial uveal melanoma. Genes Chromosomes Cancer. 2017;56:168–174. doi: 10.1002/gcc.22424. PubMed DOI PMC
Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. doi: 10.1038/nature01368. PubMed DOI
Shields, C.L. et al. Personalized Prognosis of Uveal Melanoma Based on Cytogenetic Profile in 1059 Patients over an 8-Year Period: The 2017 Harry S. Gradle Lecture. Ophthalmology (2017). PubMed
Kilic E, et al. Clinical and cytogenetic analyses in uveal melanoma. Invest Ophthalmol Vis Sci. 2006;47:3703–7. doi: 10.1167/iovs.06-0101. PubMed DOI
Olivier, M., Hollstein, M. & Hainaut, P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspectives in Biology2 (2010). PubMed PMC
Gonzalez KD, et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet. 2009;46:689–93. doi: 10.1136/jmg.2008.058958. PubMed DOI
Leroy B, et al. Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice. Cancer Res. 2017;77:1250–1260. doi: 10.1158/1538-7445.AM2017-1250. PubMed DOI PMC
Kratz CP, et al. Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clin Cancer Res. 2017;23:e38–e45. doi: 10.1158/1078-0432.CCR-17-0408. PubMed DOI
Curiel-Lewandrowski C, Speetzen LS, Cranmer L, Warneke JA, Loescher LJ. Multiple primary cutaneous melanomas in Li-Fraumeni syndrome. Arch Dermatol. 2011;147:248–50. doi: 10.1001/archdermatol.2010.428. PubMed DOI
Kollipara R, et al. Spitzoid melanoma in a child with Li-Fraumeni syndrome. Pediatr Dev Pathol. 2014;17:64–9. doi: 10.2350/13-09-1380-CR.1. PubMed DOI
Potzsch C, Voigtlander T, Lubbert M. p53 Germline mutation in a patient with Li-Fraumeni Syndrome and three metachronous malignancies. J Cancer Res Clin Oncol. 2002;128:456–60. doi: 10.1007/s00432-002-0360-3. PubMed DOI
Klein JD, Kupferman ME. Li-Fraumeni syndrome presenting as mucosal melanoma: Case report and treatment considerations. Head Neck. 2017;39:E20–E22. doi: 10.1002/hed.24594. PubMed DOI
Berger MF, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485:502–6. doi: 10.1038/nature11071. PubMed DOI PMC
Hodis E, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63. doi: 10.1016/j.cell.2012.06.024. PubMed DOI PMC
Hugo W, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165:35–44. doi: 10.1016/j.cell.2016.02.065. PubMed DOI PMC
van de Nes J, et al. Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. J Neurooncol. 2016;127:435–44. doi: 10.1007/s11060-015-2052-2. PubMed DOI PMC
Brantley MA. & Harbour, J.W. Deregulation of the Rb and p53 pathways in uveal melanoma. American Journal of Pathology. 2000;157:1795–1801. doi: 10.1016/S0002-9440(10)64817-1. PubMed DOI PMC
Chana JS, et al. c-myc, p53, and Bcl-2 expression and clinical outcome in uveal melanoma. British Journal of Ophthalmology. 1999;83:110–114. doi: 10.1136/bjo.83.1.110. PubMed DOI PMC
Kishore K, Ghazvini S, Char DH, Kroll S, Selle J. p53 gene and cell cycling in uveal melanoma. American Journal of Ophthalmology. 1996;121:561–567. doi: 10.1016/S0002-9394(14)75431-5. PubMed DOI
Tokosova E, Hermanova M, Uhmannova R, Smardova J, Hlinomazova Z. [Immunohistochemical detection of the gene p53 and p21 expression in cells of the malignant melanoma of the uvea] Cesk Slov Oftalmol. 2008;64:153–6. PubMed
Liu H, Zhou M. Evaluation of p53 gene expression and prognosis characteristics in uveal melanoma cases. Onco Targets Ther. 2017;10:3429–3434. doi: 10.2147/OTT.S136785. PubMed DOI PMC
Tobal K, et al. Increased expression and mutation of p53 in choroidal melanoma. Br J Cancer. 1992;66:900–4. doi: 10.1038/bjc.1992.382. PubMed DOI PMC
Kong Y, et al. Analysis of mTOR Gene Aberrations in Melanoma Patients and Evaluation of Their Sensitivity to PI3K-AKT-mTOR Pathway Inhibitors. Clin Cancer Res. 2016;22:1018–27. doi: 10.1158/1078-0432.CCR-15-1110. PubMed DOI
Jay M, McCartney AC. Familial malignant melanoma of the uvea andp53: a Victorian detective story. Surv Ophthalmol. 1993;37:457–62. doi: 10.1016/0039-6257(93)90142-T. PubMed DOI
Foretova L, et al. Genetic testing and prevention of hereditary cancer at the MMCI–over 10 years of experience. Klin Onkol. 2010;23:388–400. PubMed
Smardova J, Pavlova S, Koukalova H. Determination of optimal conditions for analysis of p53 status in leukemic cells using functional analysis of separated alleles in yeast. Pathol Oncol Res. 2002;8:245–51. doi: 10.1007/BF03036739. PubMed DOI
Cho YJ, Gorina S, Jeffrey PD, Pavletich NP. Crystal-Structure of a P53 Tumor-Suppressor DNA Complex - Understanding Tumorigenic Mutations. Science. 1994;265:346–355. doi: 10.1126/science.8023157. PubMed DOI
Halvorsen AR, et al. TP53 Mutation Spectrum in Smokers and Never Smoking Lung Cancer Patients. Front Genet. 2016;7:85. doi: 10.3389/fgene.2016.00085. PubMed DOI PMC
Bougeard G, et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet. 2008;45:535–8. doi: 10.1136/jmg.2008.057570. PubMed DOI
Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol Cancer Ther. 2016;15:1781–91. doi: 10.1158/1535-7163.MCT-15-0945. PubMed DOI
Soukupova J, Dundr P, Kleibl Z, Pohlreich P. Contribution of mutations in ATM to breast cancer development in the Czech population. Oncol Rep. 2008;19:1505–10. PubMed
Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89:285–94. doi: 10.1111/cge.12630. PubMed DOI PMC
Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25:2865–71. doi: 10.1093/bioinformatics/btp394. PubMed DOI PMC
Zheng X, et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8. doi: 10.1093/bioinformatics/bts606. PubMed DOI PMC
Wiesner T, et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol. 2012;30:e337–40. doi: 10.1200/JCO.2011.41.2965. PubMed DOI
Muzeau F, et al. [Profile of p53 mutations and abnormal expression of P53 protein in 2 forms of esophageal cancer] Gastroenterol Clin Biol. 1996;20:430–7. PubMed
Ibrahim SO, et al. Mutations of the p53 gene in oral squamous-cell carcinomas from Sudanese dippers of nitrosamine-rich toombak and non-snuff-dippers from the Sudan and Scandinavia. Int J Cancer. 1999;81:527–34. doi: 10.1002/(SICI)1097-0215(19990517)81:4<527::AID-IJC4>3.0.CO;2-2. PubMed DOI
Iwamoto KS, et al. p53 mutations in tumor and non-tumor tissues of thorotrast recipients: a model for cellular selection during radiation carcinogenesis in the liver. Carcinogenesis. 1999;20:1283–91. doi: 10.1093/carcin/20.7.1283. PubMed DOI
Foulkes WD, et al. Primary node negative breast cancer in BRCA1 mutation carriers has a poor outcome. Annals of Oncology. 2000;11:307–313. doi: 10.1023/A:1008340723974. PubMed DOI
Kerbauy FR, et al. Detection and possible prognostic relevance of p53 gene mutations in diffuse large B-cell lymphoma. An analysis of 51 cases and review of the literature. Leukemia & Lymphoma. 2004;45:2071–2078. doi: 10.1080/10428190410001713170. PubMed DOI
Kurniawan AN, et al. Gene mutation analysis of sinonasal lymphomas in Indonesia. Oncology Reports. 2006;15:1257–1263. PubMed
Samuels Y, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554. doi: 10.1126/science.1096502. PubMed DOI