Mulching impact of Jatropha curcas L. leaves on soil fertility and yield of wheat under water stress

. 2022 May 25 ; 12 (1) : 8891. [epub] 20220525

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35614339
Odkazy

PubMed 35614339
PubMed Central PMC9132902
DOI 10.1038/s41598-022-13005-7
PII: 10.1038/s41598-022-13005-7
Knihovny.cz E-zdroje

In present studies we have evaluated mulching impact of Jatropha curcas leaves on soil health and yield of two wheat (Triticum aestivum L.) varieties Wadan-2017 (rainfed) and Pirsabak-2013 (irrigated) under imposed water stress. Mulch of Jatropha leaves was spread on the soil surface at the rate of 0, 1, 3 and 5 Mg ha-1 after seed germination of wheat. Water stress was imposed by skipping irrigations for one month at anthesis stage of wheat maintaining 40% soil field capacity. We found a significant decline in soil microbial biomass carbon (30.27%), total nitrogen (22.28%) and organic matter content (21.73%) due to imposed water stress in non-mulch plots. However, mulch application at 5 Mg ha-1 significantly improved soil organic matter (38.18%), total nitrogen (37.75%), phenolics content (16.95 mg gallic acid equivalents/g) and soil microbial biomass carbon (26.66%) as compared to non-mulch control. Soil health indicators like soil carbonates, bicarbonates, electrical conductivity, chloride ions and total dissolved salts were decreased by 5 Mg ha-1 mulch application. We noted a decline in yield indicators like spike weight (14.74%), grain spike-1 (7.02%), grain length (3.79%), grain width (3.16%), 1000 grains weight (6.10%), Awn length (9.21%), straw weight (23.53%) and total grain yield (5.98%) of wheat due to imposed water stress. Reduction in yield traits of wheat due to water stress was higher in Pirsabak-2013 than Wadan-2017. Jatropha leaves mulch application at 5 Mg ha-1 significantly minimized the loss in yield traits of wheat crop caused by water stress. Jatropha curcas leaves mulch application at 5 Mg ha-1 is recommended for the successful establishment of wheat crop under water deficit conditions.

Zobrazit více v PubMed

Khamraev ShR, Bezborodov YuG. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World. 2016;2(33):86–93.

Khan AU, et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability. 2021;13(1):1–19.

Patil Shirish S, Kelkar Tushar S, Bhalerao Satish A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 2013;1(3):26–29.

Matkovic A, et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine. 2015;35:37–51. doi: 10.5937/leksir1535037M. DOI

Nawaz A, Lal R, Shrestha RK, Farooq M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 2016;28(2):673–681. doi: 10.1002/ldr.2553. DOI

Brant V, et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 2017;12(2):106–116. doi: 10.17221/147/2015-SWR. DOI

Kumar R, et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 2014;8(3):311–334.

Seleiman MF, Kheir AMS. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere. 2018;204:514–522. doi: 10.1016/j.chemosphere.2018.04.073. PubMed DOI

Seleiman MF, Kheir AMS. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere. 2018;193:538–546. doi: 10.1016/j.chemosphere.2017.11.053. PubMed DOI

Chakraborty D, et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 2008;95(12):1323–1334. doi: 10.1016/j.agwat.2008.06.001. DOI

Ahmad ZI, Ansar M, Iqbal M, Minhas NM. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 2007;39(4):1189–1195.

Teame G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 2017;12(38):2836–2843. doi: 10.5897/AJAR2017.12478. DOI

Lehar L, Wardiyati T, Moch Dawam M, Suryanto A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 2017;24(3):1338–1344.

Arash K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2013;2(3):60–64.

Artyszak A, Gozdowski D, Kucińska K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 2014;60(10):464–469. doi: 10.17221/428/2014-PSE. DOI

Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.org

Elbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).

King AJ, et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 2009;60(10):2897–2905. doi: 10.1093/jxb/erp025. PubMed DOI

Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).

Ullah F, Bano A, Nosheen A. Sustainable measures for biodiesel. Effects. 2014;36(23):2621–2628.

Irshad M, et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 2021;21(1):1–12. doi: 10.1186/s12870-021-03097-0. PubMed DOI PMC

Dieye T, et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal) J. Soil Sci. Environ Manag. 2016;7(3):32–44. doi: 10.5897/JSSEM15.0528. DOI

Kafi M, Salehi M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 2012;44:257–262.

Yang YM, Liu XJ, Li WQ, Li CZ. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B. 2006;7(11):858–867. doi: 10.1631/jzus.2006.B0858. PubMed DOI PMC

Xie ZK, Wang YJ, Li FM. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 2005;75(1):71–83. doi: 10.1016/j.agwat.2004.12.014. DOI

Khan RH, Anwar-ul-Haq K, Sajjad MR. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 2014;4(12):85–91.

Weidhuner A, Afshar RK, Luo Y, Battaglia M, Sadeghpour A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 2019;111(6):3398–3402. doi: 10.2134/agronj2019.03.0164. DOI

Ding Z, et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 2020;10(1):1–13. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Rummana S, Amin AKMR, Islam MS, Faruk GM. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 2018;21(1):71–76. doi: 10.3329/baj.v21i1.39362. DOI

Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).

McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).

Walkley A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947;63:251–264. doi: 10.1097/00010694-194704000-00001. DOI

Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI

Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19:703–707. doi: 10.1016/0038-0717(87)90052-6. DOI

Bremner JM, Mulvaney CS. Nitrogen-total. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Soil Sci. Society America; 1982. pp. 595–624.

Steel RGD, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. 3. McGraw-Hill; 1997. p. 246.

Brady NC, Weil RR. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils. 2008;5(13):311–358.

Scharenbroch BC, Lloyd JE. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 2006;32(4):180–191. doi: 10.48044/jauf.2006.024. DOI

Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).

Chalker-Scott L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 2007;25(4):239–249. doi: 10.24266/0738-2898-25.4.239. DOI

Liu Z, Fu B, Zheng X, Liu G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 2010;42(3):445–450. doi: 10.1016/j.soilbio.2009.11.027. DOI

Bai SH, Blumfield TJ, Reverchon F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils. 2014;50(1):37–44. doi: 10.1007/s00374-013-0829-z. DOI

Yang H, et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.) Soil Tillage Res. 2020;197:104485. doi: 10.1016/j.still.2019.104485. DOI

Li XJ, et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics. 2010;1804(4):929–940. doi: 10.1016/j.bbapap.2010.01.004. PubMed DOI

Fang S, Xie B, Liu D, Liu J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 2011;41(2):147–162. doi: 10.1007/s11056-010-9217-9. DOI

Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).

Johnson D, et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 2003;54(4):671–678. doi: 10.1046/j.1351-0754.2003.0562.x. DOI

Johnson MJ, Lee KY, Scow KM. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma. 2003;114:279–303. doi: 10.1016/S0016-7061(03)00045-4. DOI

Nielsen NM, Winding A, Binnerup S. Microorganisms as Indicators of Soil Health. Ministry of the Environment, National Environ. Res. Inst.; 2002. pp. 15–16.

Wilkinson SC, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 2002;34(2):189–200. doi: 10.1016/S0038-0717(01)00168-7. DOI

Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 2004;48(3):424–430. doi: 10.1007/s00248-003-1063-2. PubMed DOI

Liu YY, Yao HY, Huang CY. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 2006;43:828–834.

Jensen KD, Beier C, Michelsen A, Emmett BA. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 2003;24(2):165–176. doi: 10.1016/S0929-1393(03)00091-X. DOI

Stoklosa A, Hura T, Stupnicka-Rodzynkiewicz E, Dabkowska T, Lepiarczyk A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 2008;61(2):205–219.

Ohno T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 2001;30(5):1631–1635. doi: 10.2134/jeq2001.3051631x. PubMed DOI

Farooq S, Shahid M, Khan MB, Hussain M, Farooq M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 2015;201(3):173–188. doi: 10.1111/jac.12093. DOI

Madani A, Rad AS, Pazoki A, Nourmohammadi G, Zarghami R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 2010;32:145–151. doi: 10.4025/actasciagron.v32i1.6273. DOI

Deng XP, Shan L, Zhang H, Turner NC. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006;80(1–3):23–40. doi: 10.1016/j.agwat.2005.07.021. DOI

Athar HR, Khan A, Ashraf M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 2009;32:1799–1817. doi: 10.1080/01904160903242334. DOI

Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 2020;738:139808. doi: 10.1016/j.scitotenv.2020.139808. PubMed DOI

Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 2021;41(1):1–12. doi: 10.1007/s13593-020-00659-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...