Phospholipid-Based Microemulsions for Cutaneous Imiquimod Delivery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09600S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/18_069/0010046
InoMed
GAUK 274221
Charles University
SVV 260547
Charles University
PubMed
35631342
PubMed Central
PMC9147306
DOI
10.3390/ph15050515
PII: ph15050515
Knihovny.cz E-zdroje
- Klíčová slova
- dermal delivery, imiquimod, infrared spectroscopy, microemulsions, oleic acid, transepidermal water loss,
- Publikační typ
- časopisecké články MeSH
Imiquimod (IMQ) is a potent immune response modifier with antiviral and antitumor properties. IMQ's low aqueous solubility and unsatisfactory cutaneous permeability limit its formulation into effective dosage forms. This work aimed to develop IMQ-loaded microemulsions (MEs) based on phospholipids and oleic acid to improve IMQ penetration into the epidermis. A pseudo-ternary phase diagram was constructed, and the microstructure of the formulations was examined by measuring the conductivity values. Selected MEs were characterized and studied for their ability to deliver IMQ into and through ex vivo human skin. ME1 with 1% IMQ (bicontinuous ME with Bingham rheology) delivered similar IMQ quantities to the human epidermis ex vivo as the commercial product while having a 5-fold lower IMQ dose. IMQ was not detected in the acceptor phase after the permeation experiment, suggesting a lower systemic absorption risk than the established product. Infrared spectroscopy of the stratum corneum revealed less ordered and less tightly packed lipids after ME1 application. The ME1-induced barrier disruption recovered within less than 5 h after the formulation removal, as detected by transepidermal water loss measurements. In conclusion, our findings demonstrate that phospholipid and oleic acid-based MEs could become a promising alternative for topical IMQ administration.
Zobrazit více v PubMed
Telò I., Pescina S., Padula C., Santi P., Nicoli S. Mechanisms of imiquimod skin penetration. Int. J. Pharm. 2016;511:516–523. doi: 10.1016/j.ijpharm.2016.07.043. PubMed DOI
Horváth S., Komlódi R., Perkecz A., Pintér E., Gyulai R., Kemény Á. Methodological refinement of Aldara-induced psoriasiform dermatitis model in mice. Sci. Rep. 2019;9:3685. doi: 10.1038/s41598-019-39903-x. PubMed DOI PMC
Rossbach K., Wahle K., Bruer G., Brehm R., Langeheine M., Rode K., Schaper-Gerhardt K., Gutzmer R., Werfel T., Kietzmann M., et al. Histamine 2 Receptor Agonism and Histamine 4 Receptor Antagonism Ameliorate Inflammation in a Model of Psoriasis. Acta Derm. Venereol. 2020;100 doi: 10.2340/00015555-3674. PubMed DOI PMC
Nerurkar L., McColl A., Graham G., Cavanagh J. The Systemic Response to Topical Aldara Treatment is Mediated Through Direct TLR7 Stimulation as Imiquimod Enters the Circulation. Sci. Rep. 2017;7:16570. doi: 10.1038/s41598-017-16707-5. PubMed DOI PMC
Yang R., Xu J., Xu L., Sun X., Chen Q., Zhao Y., Peng R., Liu Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano. 2018;12:5121–5129. doi: 10.1021/acsnano.7b09041. PubMed DOI
Zhang L., Wu S., Qin Y., Fan F., Zhang Z., Huang C., Ji W., Lu L., Wang C., Sun H., et al. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. Nano Lett. 2019;19:4237–4249. doi: 10.1021/acs.nanolett.9b00030. PubMed DOI
Jiménez-Sánchez G., Pavot V., Chane-Haong C., Handké N., Terrat C., Gigmes D., Trimaille T., Verrier B. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm. Res. 2015;32:311–320. doi: 10.1007/s11095-014-1465-5. PubMed DOI
Ma M., Wang J., Guo F., Lei M., Tan F., Li N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med. 2015;26:191. doi: 10.1007/s10856-015-5524-1. PubMed DOI
Al-Mayahy M.H., Sabri A.H., Rutland C.S., Holmes A., McKenna J., Marlow M., Scurr D.J. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. Eur. J. Pharm. Biopharm. 2019;139:33–43. doi: 10.1016/j.ejpb.2019.02.006. PubMed DOI
Myhre P.E., Levy M.L., Eichenfield L.F., Kolb V.B., Fielder S.L., Meng T.-C. Pharmacokinetics and Safety of Imiquimod 5% Cream in the Treatment of Molluscum Contagiosum in Children. Pediatric Dermatol. 2008;25:88–95. doi: 10.1111/j.1525-1470.2007.00590.x. PubMed DOI
Hanna E., Abadi R., Abbas O. Imiquimod in dermatology: An overview. Int. J. Dermatol. 2016;55:831–844. doi: 10.1111/ijd.13235. PubMed DOI
Vicente S., Peleteiro M., Díaz-Freitas B., Sanchez A., González-Fernández Á., Alonso M.J. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: A needle-free vaccination strategy. J. Control. Release. 2013;172:773–781. doi: 10.1016/j.jconrel.2013.09.012. PubMed DOI
Telò I., Favero E.D., Cantù L., Frattini N., Pescina S., Padula C., Santi P., Sonvico F., Nicoli S. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin. Mol. Pharm. 2017;14:3281–3289. doi: 10.1021/acs.molpharmaceut.7b00348. PubMed DOI
Pescina S., Garrastazu G., Del Favero E., Rondelli V., Cantù L., Padula C., Santi P., Nicoli S. Microemulsions based on TPGS and isostearic acid for imiquimod formulation and skin delivery. Eur. J. Pharm. Sci. 2018;125:223–231. doi: 10.1016/j.ejps.2018.10.007. PubMed DOI
Gogoll K., Stein P., Lee K.D., Arnold P., Peters T., Schild H., Radsak M., Langguth P. Solid nanoemulsion as antigen and immunopotentiator carrier for transcutaneous immunization. Cell Immunol. 2016;308:35–43. doi: 10.1016/j.cellimm.2016.06.001. PubMed DOI
Lopez P.A., Denny M., Hartmann A.K., Alflen A., Probst H.C., von Stebut E., Tenzer S., Schild H., Stassen M., Langguth P., et al. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection. J. Derm. Sci. 2017;87:252–259. doi: 10.1016/j.jdermsci.2017.06.012. PubMed DOI
Theochari I., Ilic T., Nicolic I., Dobricic V., Tenchiou A., Papahatjis D., Savic S., Xenakis A., Papadimitriou V., Pletsa V. Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics. 2021;6:10. doi: 10.3390/biomimetics6010010. PubMed DOI PMC
Klier J., Tucker C.J., Kalantar T.H., Green D.P. Properties and Applications of Microemulsions. Adv. Mater. 2000;12:1751–1757. doi: 10.1002/1521-4095(200012)12:23<1751::AID-ADMA1751>3.0.CO;2-I. DOI
Malakar J., Sen S.O., Nayak A.K., Sen K.K. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm. 2011;2011:780150. doi: 10.5402/2011/780150. PubMed DOI PMC
Ganggwar N., Singh M., Parashar P., Tripathi C.B., Arya M., Saraf S., Saha S. Topical Delivery of Fluconazole via Microemulsion Incorporated Hydrogel for the Management of Fungal Dermatophytosis. Curr. Drug Ther. 2016;11:129–141. doi: 10.2174/1574885511666160822143148. DOI
Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006;123:369–385. doi: 10.1016/j.cis.2006.05.014. PubMed DOI
Peira E., Chirio D., Carlotti M.E., Spagnolo R., Trotta M. Formulation studies of microemulsions for topical applications of acyclovir. J. Drug Deliv. Sci. Technol. 2009;19:191–196. doi: 10.1016/S1773-2247(09)50035-4. DOI
Asbill C.S., El-Kattan A.F., Michniak B. Enhancement of transdermal drug delivery: Chemical and physical approaches. Crit. Rev. Drug Carr. Syst. 2000;17:621–658. doi: 10.1615/CritRevTherDrugCarrierSyst.v17.i6.20. PubMed DOI
Lopes L.B. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics. 2014;6:52–77. doi: 10.3390/pharmaceutics6010052. PubMed DOI PMC
Theochari I., Mitsou E., Nikolic I., Ilic T., Dobricic V., Pletsa V., Savic S., Xenakis A., Papadimitriou V. Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances. J. Mol. Liq. 2021;334:116021. doi: 10.1016/j.molliq.2021.116021. DOI
Hoeller S., Klang V., Valenta C. Skin-compatible lecithin drug delivery systems for fluconazole: Effect of phosphatidylethanolamine and oleic acid on skin permeation. J. Pharm. Pharm. 2008;60:587–591. doi: 10.1211/jpp.60.5.0003. PubMed DOI
Xu J., Yin A., Zhao J., Li D., Hou W. Surfactant-free microemulsion composed of oleic acid, n-propanol, and H2O. J. Phys. Chem. B. 2013;117:450–456. doi: 10.1021/jp310282a. PubMed DOI
Cilek A., Celebi N., Tirnaksiz F. Lecithin-based microemulsion of a peptide for oral administration: Preparation, characterization, and physical stability of the formulation. Drug Deliv. 2006;13:19–24. doi: 10.1080/10717540500313109. PubMed DOI
Kato A., Ishibashi Y., Miyake Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol. 1987;39:399–400. doi: 10.1111/j.2042-7158.1987.tb03407.x. PubMed DOI
Raza K., Negi P., Takyar S., Shukla A., Amarji B., Katare O.P. Novel dithranol phospholipid microemulsion for topical application: Development, characterization and percutaneous absorption studies. J. Microencapsul. 2011;28:190–199. doi: 10.3109/02652048.2010.546435. PubMed DOI
Lachenmeier D.W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 2008;3:26. doi: 10.1186/1745-6673-3-26. PubMed DOI PMC
Chollet J.L., Jozwiakowski M.J., Phares K.R., Reiter M.J., Roddy P.J., Schultz H.J., Ta Q.V., Tomai M.A. Development of a topically active imiquimod formulation. Pharm. Dev. Technol. 1999;4:35–43. doi: 10.1080/10837459908984222. PubMed DOI
Craig D.Q.M., Barker S.A., Banning D., Booth S.W. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 1995;114:103–110. doi: 10.1016/0378-5173(94)00222-Q. DOI
Li J., Wang X., Zhang T., Wang C., Huang Z., Luo X., Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015;10:81–98. doi: 10.1016/j.ajps.2014.09.004. DOI
Swanson N., Smith C.C., Kaur M., Goldenberg G. Imiquimod 2.5% and 3.75% for the treatment of actinic keratoses: Two phase 3, multicenter, randomized, double-blind, placebo-controlled studies. J. Drugs Derm. 2014;13:166–169. PubMed
Jewell J.R., Myers S.A. Topical Therapy Primer for Nondermatologists. Med. Clin. N. Am. 2015;99:1167–1182. doi: 10.1016/j.mcna.2015.06.001. PubMed DOI
Zang J., Feng M., Zhao J., Wang J. Micellar and bicontinuous microemulsion structures show different solute–solvent interactions: A case study using ultrafast nonlinear infrared spectroscopy. Phys. Chem. Chem. Phys. 2018;20:19938–19949. doi: 10.1039/C8CP01024B. PubMed DOI
Szumała P. Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol. J. Surfactants Deterg. 2015;18:97–106. doi: 10.1007/s11743-014-1618-x. PubMed DOI PMC
Djordjevic L., Primorac M., Stupar M., Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int. J. Pharm. 2004;271:11–19. doi: 10.1016/j.ijpharm.2003.10.037. PubMed DOI
Yuan J.S., Ansari M., Samaan M., Acosta E.J. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int. J. Pharm. 2008;349:130–143. doi: 10.1016/j.ijpharm.2007.07.047. PubMed DOI
Sintov A.C. Transdermal delivery of curcumin via microemulsion. Int. J. Pharm. 2015;481:97–103. doi: 10.1016/j.ijpharm.2015.02.005. PubMed DOI
Fenner J., Clark R.A.F. Chapter 1—Anatomy, Physiology, Histology, and Immunohistochemistry of Human Skin. In: Albanna M.Z., Holmes Iv J.H., editors. Skin Tissue Engineering and Regenerative Medicine. Academic Press; Boston, MA, USA: 2016. pp. 1–17. DOI
Jiang S.J., Zhou X.J. Examination of the mechanism of oleic acid-induced percutaneous penetration enhancement: An ultrastructural study. Biol. Pharm. Bull. 2003;26:66–68. doi: 10.1248/bpb.26.66. PubMed DOI
Touitou E., Godin B., Karl Y., Bujanover S., Becker Y. Oleic acid, a skin penetration enhancer, affects Langerhans cells and corneocytes. J. Control. Release Off. J. Control. Release Soc. 2002;80:1–7. doi: 10.1016/S0168-3659(02)00004-4. PubMed DOI
Ongpipattanakul B., Burnette R.R., Potts R.O., Francoeur M.L. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm. Res. 1991;8:350–354. doi: 10.1023/A:1015845632280. PubMed DOI
Williams A.C., Barry B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004;56:603–618. doi: 10.1016/j.addr.2003.10.025. PubMed DOI
Naik A., Pechtold L.A.R.M., Potts R.O., Guy R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release. 1995;37:299–306. doi: 10.1016/0168-3659(95)00088-7. DOI
Dubey V., Mishra D., Dutta T., Nahar M., Saraf D.K., Jain N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release. 2007;123:148–154. doi: 10.1016/j.jconrel.2007.08.005. PubMed DOI
Kim D.D., Kim J.L., Chien Y.W. Mutual hairless rat skin permeation-enhancing effect of ethanol/water system and oleic acid. J. Pharm. Sci. 1996;85:1191–1195. doi: 10.1021/js9601041. PubMed DOI
Grissinger M. Fentanyl Transdermal Patches: More Protection Needed for Patients and Their Families. Pharm. Ther. 2009;34:343–390.
Grubauer G., Elias P.M., Feingold K.R. Transepidermal water loss: The signal for recovery of barrier structure and function. J. Lipid. Res. 1989;30:323–333. doi: 10.1016/S0022-2275(20)38361-9. PubMed DOI
Alexander H., Brown S., Danby S., Flohr C. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Investig. Dermatol. 2018;138:2295–2300.e2291. doi: 10.1016/j.jid.2018.09.001. PubMed DOI
Kopečná M., Macháček M., Nováčková A., Paraskevopoulos G., Roh J., Vávrová K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019;9:14617. doi: 10.1038/s41598-019-51226-5. PubMed DOI PMC
Boncheva M., Damien F., Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta. 2008;1778:1344–1355. doi: 10.1016/j.bbamem.2008.01.022. PubMed DOI
Mendelsohn R., Flach C.R., Moore D.J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta BBA—Biomembr. 2006;1758:923–933. doi: 10.1016/j.bbamem.2006.04.009. PubMed DOI
Schwarz J.C., Klang V., Hoppel M., Mahrhauser D., Valenta C. Natural microemulsions: Formulation design and skin interaction. Eur. J. Pharm. Biopharm. 2012;81:557–562. doi: 10.1016/j.ejpb.2012.04.003. PubMed DOI
Damien F., Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Derm. 2010;130:611–614. doi: 10.1038/jid.2009.272. PubMed DOI
Mendelsohn R., Moore D.J. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI
Santos P., Watkinson A.C., Hadgraft J., Lane M.E. Application of Microemulsions in Dermal and Transdermal Drug Delivery. Ski. Pharmacol. Physiol. 2008;21:246–259. doi: 10.1159/000140228. PubMed DOI
Hung W.-H., Chen P.-K., Fang C.-W., Lin Y.-C., Wu P.-C. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics. 2021;13:410. doi: 10.3390/pharmaceutics13030410. PubMed DOI PMC
Hashem F.M., Shaker D.S., Ghorab M.K., Nasr M., Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS Pharm. Sci. Tech. 2011;12:879–886. doi: 10.1208/s12249-011-9653-7. PubMed DOI PMC
Kopečná M., Macháček M., Prchalová E., Štěpánek P., Drašar P., Kotora M., Vávrová K. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids. Pharm. Res. 2017;34:640–653. doi: 10.1007/s11095-016-2093-z. PubMed DOI
Kligman A.M., Christophers E. Preparation of Isolated Sheets of Human Stratum Corneum. Arch. Derm. 1963;88:702–705. doi: 10.1001/archderm.1963.01590240026005. PubMed DOI