Phospholipid-Based Microemulsions for Cutaneous Imiquimod Delivery

. 2022 Apr 22 ; 15 (5) : . [epub] 20220422

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631342

Grantová podpora
19-09600S Czech Science Foundation
CZ.02.1.01/0.0/0.0/18_069/0010046 InoMed
GAUK 274221 Charles University
SVV 260547 Charles University

Imiquimod (IMQ) is a potent immune response modifier with antiviral and antitumor properties. IMQ's low aqueous solubility and unsatisfactory cutaneous permeability limit its formulation into effective dosage forms. This work aimed to develop IMQ-loaded microemulsions (MEs) based on phospholipids and oleic acid to improve IMQ penetration into the epidermis. A pseudo-ternary phase diagram was constructed, and the microstructure of the formulations was examined by measuring the conductivity values. Selected MEs were characterized and studied for their ability to deliver IMQ into and through ex vivo human skin. ME1 with 1% IMQ (bicontinuous ME with Bingham rheology) delivered similar IMQ quantities to the human epidermis ex vivo as the commercial product while having a 5-fold lower IMQ dose. IMQ was not detected in the acceptor phase after the permeation experiment, suggesting a lower systemic absorption risk than the established product. Infrared spectroscopy of the stratum corneum revealed less ordered and less tightly packed lipids after ME1 application. The ME1-induced barrier disruption recovered within less than 5 h after the formulation removal, as detected by transepidermal water loss measurements. In conclusion, our findings demonstrate that phospholipid and oleic acid-based MEs could become a promising alternative for topical IMQ administration.

Zobrazit více v PubMed

Telò I., Pescina S., Padula C., Santi P., Nicoli S. Mechanisms of imiquimod skin penetration. Int. J. Pharm. 2016;511:516–523. doi: 10.1016/j.ijpharm.2016.07.043. PubMed DOI

Horváth S., Komlódi R., Perkecz A., Pintér E., Gyulai R., Kemény Á. Methodological refinement of Aldara-induced psoriasiform dermatitis model in mice. Sci. Rep. 2019;9:3685. doi: 10.1038/s41598-019-39903-x. PubMed DOI PMC

Rossbach K., Wahle K., Bruer G., Brehm R., Langeheine M., Rode K., Schaper-Gerhardt K., Gutzmer R., Werfel T., Kietzmann M., et al. Histamine 2 Receptor Agonism and Histamine 4 Receptor Antagonism Ameliorate Inflammation in a Model of Psoriasis. Acta Derm. Venereol. 2020;100 doi: 10.2340/00015555-3674. PubMed DOI PMC

Nerurkar L., McColl A., Graham G., Cavanagh J. The Systemic Response to Topical Aldara Treatment is Mediated Through Direct TLR7 Stimulation as Imiquimod Enters the Circulation. Sci. Rep. 2017;7:16570. doi: 10.1038/s41598-017-16707-5. PubMed DOI PMC

Yang R., Xu J., Xu L., Sun X., Chen Q., Zhao Y., Peng R., Liu Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano. 2018;12:5121–5129. doi: 10.1021/acsnano.7b09041. PubMed DOI

Zhang L., Wu S., Qin Y., Fan F., Zhang Z., Huang C., Ji W., Lu L., Wang C., Sun H., et al. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. Nano Lett. 2019;19:4237–4249. doi: 10.1021/acs.nanolett.9b00030. PubMed DOI

Jiménez-Sánchez G., Pavot V., Chane-Haong C., Handké N., Terrat C., Gigmes D., Trimaille T., Verrier B. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm. Res. 2015;32:311–320. doi: 10.1007/s11095-014-1465-5. PubMed DOI

Ma M., Wang J., Guo F., Lei M., Tan F., Li N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med. 2015;26:191. doi: 10.1007/s10856-015-5524-1. PubMed DOI

Al-Mayahy M.H., Sabri A.H., Rutland C.S., Holmes A., McKenna J., Marlow M., Scurr D.J. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. Eur. J. Pharm. Biopharm. 2019;139:33–43. doi: 10.1016/j.ejpb.2019.02.006. PubMed DOI

Myhre P.E., Levy M.L., Eichenfield L.F., Kolb V.B., Fielder S.L., Meng T.-C. Pharmacokinetics and Safety of Imiquimod 5% Cream in the Treatment of Molluscum Contagiosum in Children. Pediatric Dermatol. 2008;25:88–95. doi: 10.1111/j.1525-1470.2007.00590.x. PubMed DOI

Hanna E., Abadi R., Abbas O. Imiquimod in dermatology: An overview. Int. J. Dermatol. 2016;55:831–844. doi: 10.1111/ijd.13235. PubMed DOI

Vicente S., Peleteiro M., Díaz-Freitas B., Sanchez A., González-Fernández Á., Alonso M.J. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: A needle-free vaccination strategy. J. Control. Release. 2013;172:773–781. doi: 10.1016/j.jconrel.2013.09.012. PubMed DOI

Telò I., Favero E.D., Cantù L., Frattini N., Pescina S., Padula C., Santi P., Sonvico F., Nicoli S. Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin. Mol. Pharm. 2017;14:3281–3289. doi: 10.1021/acs.molpharmaceut.7b00348. PubMed DOI

Pescina S., Garrastazu G., Del Favero E., Rondelli V., Cantù L., Padula C., Santi P., Nicoli S. Microemulsions based on TPGS and isostearic acid for imiquimod formulation and skin delivery. Eur. J. Pharm. Sci. 2018;125:223–231. doi: 10.1016/j.ejps.2018.10.007. PubMed DOI

Gogoll K., Stein P., Lee K.D., Arnold P., Peters T., Schild H., Radsak M., Langguth P. Solid nanoemulsion as antigen and immunopotentiator carrier for transcutaneous immunization. Cell Immunol. 2016;308:35–43. doi: 10.1016/j.cellimm.2016.06.001. PubMed DOI

Lopez P.A., Denny M., Hartmann A.K., Alflen A., Probst H.C., von Stebut E., Tenzer S., Schild H., Stassen M., Langguth P., et al. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection. J. Derm. Sci. 2017;87:252–259. doi: 10.1016/j.jdermsci.2017.06.012. PubMed DOI

Theochari I., Ilic T., Nicolic I., Dobricic V., Tenchiou A., Papahatjis D., Savic S., Xenakis A., Papadimitriou V., Pletsa V. Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics. 2021;6:10. doi: 10.3390/biomimetics6010010. PubMed DOI PMC

Klier J., Tucker C.J., Kalantar T.H., Green D.P. Properties and Applications of Microemulsions. Adv. Mater. 2000;12:1751–1757. doi: 10.1002/1521-4095(200012)12:23<1751::AID-ADMA1751>3.0.CO;2-I. DOI

Malakar J., Sen S.O., Nayak A.K., Sen K.K. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm. 2011;2011:780150. doi: 10.5402/2011/780150. PubMed DOI PMC

Ganggwar N., Singh M., Parashar P., Tripathi C.B., Arya M., Saraf S., Saha S. Topical Delivery of Fluconazole via Microemulsion Incorporated Hydrogel for the Management of Fungal Dermatophytosis. Curr. Drug Ther. 2016;11:129–141. doi: 10.2174/1574885511666160822143148. DOI

Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006;123:369–385. doi: 10.1016/j.cis.2006.05.014. PubMed DOI

Peira E., Chirio D., Carlotti M.E., Spagnolo R., Trotta M. Formulation studies of microemulsions for topical applications of acyclovir. J. Drug Deliv. Sci. Technol. 2009;19:191–196. doi: 10.1016/S1773-2247(09)50035-4. DOI

Asbill C.S., El-Kattan A.F., Michniak B. Enhancement of transdermal drug delivery: Chemical and physical approaches. Crit. Rev. Drug Carr. Syst. 2000;17:621–658. doi: 10.1615/CritRevTherDrugCarrierSyst.v17.i6.20. PubMed DOI

Lopes L.B. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics. 2014;6:52–77. doi: 10.3390/pharmaceutics6010052. PubMed DOI PMC

Theochari I., Mitsou E., Nikolic I., Ilic T., Dobricic V., Pletsa V., Savic S., Xenakis A., Papadimitriou V. Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances. J. Mol. Liq. 2021;334:116021. doi: 10.1016/j.molliq.2021.116021. DOI

Hoeller S., Klang V., Valenta C. Skin-compatible lecithin drug delivery systems for fluconazole: Effect of phosphatidylethanolamine and oleic acid on skin permeation. J. Pharm. Pharm. 2008;60:587–591. doi: 10.1211/jpp.60.5.0003. PubMed DOI

Xu J., Yin A., Zhao J., Li D., Hou W. Surfactant-free microemulsion composed of oleic acid, n-propanol, and H2O. J. Phys. Chem. B. 2013;117:450–456. doi: 10.1021/jp310282a. PubMed DOI

Cilek A., Celebi N., Tirnaksiz F. Lecithin-based microemulsion of a peptide for oral administration: Preparation, characterization, and physical stability of the formulation. Drug Deliv. 2006;13:19–24. doi: 10.1080/10717540500313109. PubMed DOI

Kato A., Ishibashi Y., Miyake Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol. 1987;39:399–400. doi: 10.1111/j.2042-7158.1987.tb03407.x. PubMed DOI

Raza K., Negi P., Takyar S., Shukla A., Amarji B., Katare O.P. Novel dithranol phospholipid microemulsion for topical application: Development, characterization and percutaneous absorption studies. J. Microencapsul. 2011;28:190–199. doi: 10.3109/02652048.2010.546435. PubMed DOI

Lachenmeier D.W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 2008;3:26. doi: 10.1186/1745-6673-3-26. PubMed DOI PMC

Chollet J.L., Jozwiakowski M.J., Phares K.R., Reiter M.J., Roddy P.J., Schultz H.J., Ta Q.V., Tomai M.A. Development of a topically active imiquimod formulation. Pharm. Dev. Technol. 1999;4:35–43. doi: 10.1080/10837459908984222. PubMed DOI

Craig D.Q.M., Barker S.A., Banning D., Booth S.W. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 1995;114:103–110. doi: 10.1016/0378-5173(94)00222-Q. DOI

Li J., Wang X., Zhang T., Wang C., Huang Z., Luo X., Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015;10:81–98. doi: 10.1016/j.ajps.2014.09.004. DOI

Swanson N., Smith C.C., Kaur M., Goldenberg G. Imiquimod 2.5% and 3.75% for the treatment of actinic keratoses: Two phase 3, multicenter, randomized, double-blind, placebo-controlled studies. J. Drugs Derm. 2014;13:166–169. PubMed

Jewell J.R., Myers S.A. Topical Therapy Primer for Nondermatologists. Med. Clin. N. Am. 2015;99:1167–1182. doi: 10.1016/j.mcna.2015.06.001. PubMed DOI

Zang J., Feng M., Zhao J., Wang J. Micellar and bicontinuous microemulsion structures show different solute–solvent interactions: A case study using ultrafast nonlinear infrared spectroscopy. Phys. Chem. Chem. Phys. 2018;20:19938–19949. doi: 10.1039/C8CP01024B. PubMed DOI

Szumała P. Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol. J. Surfactants Deterg. 2015;18:97–106. doi: 10.1007/s11743-014-1618-x. PubMed DOI PMC

Djordjevic L., Primorac M., Stupar M., Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int. J. Pharm. 2004;271:11–19. doi: 10.1016/j.ijpharm.2003.10.037. PubMed DOI

Yuan J.S., Ansari M., Samaan M., Acosta E.J. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int. J. Pharm. 2008;349:130–143. doi: 10.1016/j.ijpharm.2007.07.047. PubMed DOI

Sintov A.C. Transdermal delivery of curcumin via microemulsion. Int. J. Pharm. 2015;481:97–103. doi: 10.1016/j.ijpharm.2015.02.005. PubMed DOI

Fenner J., Clark R.A.F. Chapter 1—Anatomy, Physiology, Histology, and Immunohistochemistry of Human Skin. In: Albanna M.Z., Holmes Iv J.H., editors. Skin Tissue Engineering and Regenerative Medicine. Academic Press; Boston, MA, USA: 2016. pp. 1–17. DOI

Jiang S.J., Zhou X.J. Examination of the mechanism of oleic acid-induced percutaneous penetration enhancement: An ultrastructural study. Biol. Pharm. Bull. 2003;26:66–68. doi: 10.1248/bpb.26.66. PubMed DOI

Touitou E., Godin B., Karl Y., Bujanover S., Becker Y. Oleic acid, a skin penetration enhancer, affects Langerhans cells and corneocytes. J. Control. Release Off. J. Control. Release Soc. 2002;80:1–7. doi: 10.1016/S0168-3659(02)00004-4. PubMed DOI

Ongpipattanakul B., Burnette R.R., Potts R.O., Francoeur M.L. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm. Res. 1991;8:350–354. doi: 10.1023/A:1015845632280. PubMed DOI

Williams A.C., Barry B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004;56:603–618. doi: 10.1016/j.addr.2003.10.025. PubMed DOI

Naik A., Pechtold L.A.R.M., Potts R.O., Guy R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release. 1995;37:299–306. doi: 10.1016/0168-3659(95)00088-7. DOI

Dubey V., Mishra D., Dutta T., Nahar M., Saraf D.K., Jain N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release. 2007;123:148–154. doi: 10.1016/j.jconrel.2007.08.005. PubMed DOI

Kim D.D., Kim J.L., Chien Y.W. Mutual hairless rat skin permeation-enhancing effect of ethanol/water system and oleic acid. J. Pharm. Sci. 1996;85:1191–1195. doi: 10.1021/js9601041. PubMed DOI

Grissinger M. Fentanyl Transdermal Patches: More Protection Needed for Patients and Their Families. Pharm. Ther. 2009;34:343–390.

Grubauer G., Elias P.M., Feingold K.R. Transepidermal water loss: The signal for recovery of barrier structure and function. J. Lipid. Res. 1989;30:323–333. doi: 10.1016/S0022-2275(20)38361-9. PubMed DOI

Alexander H., Brown S., Danby S., Flohr C. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Investig. Dermatol. 2018;138:2295–2300.e2291. doi: 10.1016/j.jid.2018.09.001. PubMed DOI

Kopečná M., Macháček M., Nováčková A., Paraskevopoulos G., Roh J., Vávrová K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019;9:14617. doi: 10.1038/s41598-019-51226-5. PubMed DOI PMC

Boncheva M., Damien F., Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta. 2008;1778:1344–1355. doi: 10.1016/j.bbamem.2008.01.022. PubMed DOI

Mendelsohn R., Flach C.R., Moore D.J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta BBA—Biomembr. 2006;1758:923–933. doi: 10.1016/j.bbamem.2006.04.009. PubMed DOI

Schwarz J.C., Klang V., Hoppel M., Mahrhauser D., Valenta C. Natural microemulsions: Formulation design and skin interaction. Eur. J. Pharm. Biopharm. 2012;81:557–562. doi: 10.1016/j.ejpb.2012.04.003. PubMed DOI

Damien F., Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Derm. 2010;130:611–614. doi: 10.1038/jid.2009.272. PubMed DOI

Mendelsohn R., Moore D.J. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI

Santos P., Watkinson A.C., Hadgraft J., Lane M.E. Application of Microemulsions in Dermal and Transdermal Drug Delivery. Ski. Pharmacol. Physiol. 2008;21:246–259. doi: 10.1159/000140228. PubMed DOI

Hung W.-H., Chen P.-K., Fang C.-W., Lin Y.-C., Wu P.-C. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics. 2021;13:410. doi: 10.3390/pharmaceutics13030410. PubMed DOI PMC

Hashem F.M., Shaker D.S., Ghorab M.K., Nasr M., Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS Pharm. Sci. Tech. 2011;12:879–886. doi: 10.1208/s12249-011-9653-7. PubMed DOI PMC

Kopečná M., Macháček M., Prchalová E., Štěpánek P., Drašar P., Kotora M., Vávrová K. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids. Pharm. Res. 2017;34:640–653. doi: 10.1007/s11095-016-2093-z. PubMed DOI

Kligman A.M., Christophers E. Preparation of Isolated Sheets of Human Stratum Corneum. Arch. Derm. 1963;88:702–705. doi: 10.1001/archderm.1963.01590240026005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...