Impact of methodological choices in comparative effectiveness studies: application in natalizumab versus fingolimod comparison among patients with multiple sclerosis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35637426
PubMed Central
PMC9150358
DOI
10.1186/s12874-022-01623-8
PII: 10.1186/s12874-022-01623-8
Knihovny.cz E-zdroje
- Klíčová slova
- Causal contrasts, Censoring, Effectiveness, Indication bias, Multiple sclerosis, Positivity assumption, Propensity score,
- MeSH
- fingolimod hydrochlorid terapeutické užití MeSH
- lidé MeSH
- natalizumab terapeutické užití MeSH
- relabující-remitující roztroušená skleróza * farmakoterapie MeSH
- roztroušená skleróza * farmakoterapie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fingolimod hydrochlorid MeSH
- natalizumab MeSH
BACKGROUND: Natalizumab and fingolimod are used as high-efficacy treatments in relapsing-remitting multiple sclerosis. Several observational studies comparing these two drugs have shown variable results, using different methods to control treatment indication bias and manage censoring. The objective of this empirical study was to elucidate the impact of methods of causal inference on the results of comparative effectiveness studies. METHODS: Data from three observational multiple sclerosis registries (MSBase, the Danish MS Registry and French OFSEP registry) were combined. Four clinical outcomes were studied. Propensity scores were used to match or weigh the compared groups, allowing for estimating average treatment effect for treated or average treatment effect for the entire population. Analyses were conducted both in intention-to-treat and per-protocol frameworks. The impact of the positivity assumption was also assessed. RESULTS: Overall, 5,148 relapsing-remitting multiple sclerosis patients were included. In this well-powered sample, the 95% confidence intervals of the estimates overlapped widely. Propensity scores weighting and propensity scores matching procedures led to consistent results. Some differences were observed between average treatment effect for the entire population and average treatment effect for treated estimates. Intention-to-treat analyses were more conservative than per-protocol analyses. The most pronounced irregularities in outcomes and propensity scores were introduced by violation of the positivity assumption. CONCLUSIONS: This applied study elucidates the influence of methodological decisions on the results of comparative effectiveness studies of treatments for multiple sclerosis. According to our results, there are no material differences between conclusions obtained with propensity scores matching or propensity scores weighting given that a study is sufficiently powered, models are correctly specified and positivity assumption is fulfilled.
Aarhus University Hospital Neurology PJJ Boulevard DK 8200 Aarhus N Denmark
Arènes UMR 6051 RSMS U 1309 Univ Rennes EHESP CNRS Inserm Rennes France
Assistance Publique Des Hôpitaux de Paris Hôpital Henri Mondor Service de neurologie Créteil France
Assistance Publique Des Hôpitaux de Paris Hôpital Saint Antoine Service de neurologie Paris France
Azienda Ospedaliera Di Rilievo Nazionale San Giuseppe Moscati Avellino Avellino Italy
Central Clinical School Monash University Melbourne Australia
Centre Hospitalier de Pontoise Service de neurologie Pontoise France
Centre Hospitalier de Saint Denis Hôpital Casanova Service de neurologie Saint Denis France
Centre Hospitalier de Versailles Hôpital André Mignot Service de neurologie Le Chesnay France
Centre Hospitalier Intercommunal de Poissy Saint Germain en Laye Service de neurologie Poissy France
Centre Hospitalier Sud Francilien Service de neurologie Corbeil Essonnes France
Centre Hospitalier Universitaire d'Amiens Picardie Site sud Service de neurologie Amiens France
Centre Hospitalier Universitaire de Bordeaux Hôpital Pellegrin Service de neurologie Bordeaux France
Centre Hospitalier Universitaire de Lille Hôpital Salengro Service de neurologie D Lille France
Centre Hospitalier Universitaire de Nîmes Hôpital Carémeau Service de neurologie Nîmes France
Centre Hospitalier Universitaire de Rennes Hôpital Pontchaillou Service de neurologie Rennes France
Centre Hospitalier Universitaire Limoges Hôpital Dupuytren Service de neurologie Limoges France
CHU de Nantes Service de Neurologie and CIC015 INSERM 44093 Nantes France
CHUM and Universite de Montreal Montreal Canada
CISSS Chaudiere Appalache Levis Canada
CSSS Saint Jérôme Saint Jerome Canada
Department of Basic Medical Sciences Neuroscience and Sense Organs University of Bari Bari Italy
Department of Clinical Epidemiology Aarhus University Hospital Aarhus Aarhus Denmark
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Emergency and General Medicine Parma University Hospital Parma Italy
Department of Medicine and Surgery University of Parma Parma Italy
Department of Medicine University of Melbourne Melbourne Australia
Department of Neurology Aalborg University Hospital Multiple Sclerosis Unit Aalborg Denmark
Department of Neurology Box Hill Hospital Monash University Melbourne Australia
Department of Neurology Copenhagen University Hospital Herlev Copenhagen Denmark
Department of Neurology Faculty of Medicine University of Debrecen Debrecen Hungary
Department of Neurology John Hunter Hospital Hunter New England Health Newcastle Australia
Department of Neurology The Alfred Hospital Melbourne Australia
Department of Neurology University Hospital of Northern Sealand Copenhagen Denmark
Department of Neuroscience Azienda Ospedaliera Universitaria Modena Italy
Department of Neuroscience Imaging and Clinical Sciences University G d'Annunzio Chieti Italy
Dipartimento Di Scienze Biomediche E Neuromotorie Università Di Bologna Bologna Italy
Division of Neurology Department of Medicine Amiri Hospital Sharq Kuwait
Dokuz Eylul University Konak Izmir Turkey
Eugene Devic EDMUS Foundation 69677 Lyon Bron France
Flinders University Adelaide Australia
Fondation Adolphe de Rothschild de L'œil Et du Cerveau Service de neurologie Paris France
Garibaldi Hospital Catania Italy
GF Ingrassia Department University of Catania Catania Italy
Hacettepe University Ankara Turkey
Haydarpasa Numune Training and Research Hospital Istanbul Turkey
Hopital Notre Dame Montreal Canada
Hospital Universitario Virgen Macarena Seville Spain
INSERM CR1064 44000 Nantes France
IRCCS Istituto Delle Scienze Neurologiche Di Bologna Bologna Italy
Isfahan University of Medical Sciences Isfahan Iran
KTU Medical Faculty Farabi Hospital Trabzon Turkey
Medical Faculty 19 Mayis University Samsun Turkey
Melbourne MS Centre Department of Neurology Royal Melbourne Hospital Melbourne Australia
Monash University Melbourne Australia
Neuro Rive Sud Longueuil QC Canada
Policlinico G Rodolico Catania Italy
Rehabilitation and MS Centre Overpelt and Hasselt University Hasselt Belgium
Rouen University Hospital 76000 Rouen France
Royal Brisbane and Women's Hospital Herston Australia
School of Medicine and Public Health University Newcastle Newcastle Australia
Université Claude Bernard Lyon 1 Faculté de médecine Lyon Est 69000 Lyon France
Zobrazit více v PubMed
Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue E-W, et al. Natalizumab plus Interferon Beta-1a for Relapsing Multiple Sclerosis. N Engl J Med. 2006;354(9):911–23. PubMed
Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A Randomized, Placebo-Controlled Trial of Natalizumab for Relapsing Multiple Sclerosis. J new Engl Med. 2006;354(9):899–910. PubMed
Kappos L , Radue EW, O’Connor P , Polman C, Hohfeld R, Calabresi PA, et al. A Placebo-Controlled Trial of Oral Fingolimod in Relapsing Multiple Sclerosis Ludwig. New Engl J. 2010;362(5):387–401. PubMed
Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral Fingolimod or Intramuscular Interferon for Relapsing Multiple Sclerosis. N Engl J Med. 2010;362(5):402–15. PubMed
Barbin L, Rousseau C, Jousset N, Casey R, Debouverie M, Vukusic S, et al. Comparative efficacy of fingolimod vs natalizumab A French multicenter observational study. Neurology. 2016;86(18):771–778. PubMed PMC
Kalincik T, Horakova D, Spelman T, Jokubaitis V, Trojano M, Lugaresi A, et al. Switch to natalizumab versus fingolimod in active relapsing-remitting multiple sclerosis. Ann Neurol. 2015;77(3):425–435. PubMed
Koch-Henriksen N, Magyari M, Sellebjerg F, Soelberg SP. A comparison of multiple sclerosis clinical disease activity between patients treated with natalizumab and fingolimod. Mult Scler J. 2017;23(2):234–241. PubMed
Lorscheider J, Benkert P, Lienert C, Hänni P, Derfuss T, Kuhle J, et al. Comparative analysis of natalizumab versus fingolimod as second-line treatment in relapsing–remitting multiple sclerosis. Mult Scler J. 2018;24(6):777–785. PubMed
Prosperini L, Saccà F, Cordioli C, Cortese A, Buttari F, Pontecorvo S, et al. Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naïve patients with multiple sclerosis. J Neurol. 2017;264(2):284–294. PubMed
Sharmin S, Lefort M, Andersen JB, Leray E, Horakova D, Havrdova EK, et al. Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs [Internet]. 2021;35(11):1217–32. PubMed
Andersen JB, Sharmin S, Lefort M, Koch-Henriksen N, Sellebjerg F, Sørensen PS, et al. The effectiveness of natalizumab vs fingolimod–A comparison of international registry studies. Mult Scler Relat Disord. 2021;53. PubMed
Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol. 2016;183(8):758–764. PubMed PMC
Austin PC. A tutorial and case study in propensity score analysis: An application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behav Res. 2011;46(1):119–151. PubMed PMC
Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424. PubMed PMC
Sedgwick P. Intention to treat analysis versus per protocol analysis of trial data. BMJ [Internet]. 2015;350(February):1–2. PubMed
Kalincik T, Jokubaitis V, Izquierdo G, Duquette P, Girard M, Grammond P, et al. Comparative effectiveness of glatiramer acetate and interferon beta formulations in relapsing–remitting multiple sclerosis. Mult Scler J. 2015;21(9):1159–1171. PubMed
Sharmin S, Lefort M, Andersen JB, Leray E, Horakova D, Havrdova EK, et al. Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs. 2021;35(11):1217–32. PubMed
Kalincik T, Butzkueven H. The MSBase registry: Informing clinical practice. Mult Scler J. 2019;25(14):1828–1834. PubMed
Butzkueven H, Chapman J, Cristiano E , Grand’Maison F, Hoffmann M, Izquierdo G, et al. MSBase: An international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler. 2006;12(6):769––74. PubMed
Magyari M, Joensen H, Laursen B, Koch-Henriksen N. The Danish Multiple Sclerosis Registry. Brain Behav. 2021;11(1):1–10. PubMed PMC
Magyari M, Koch-Henriksen N, Sørensen PS. The Danish multiple sclerosis treatment register. Clin Epidemiol. 2016;8:549–552. PubMed PMC
Vukusic S, Casey R, Rollot F, Brochet B, Pelletier J, Laplaud DA, et al. Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France. Mult Scler J. 2018;1–5. PubMed
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11):1444–1452. PubMed
Foo EC, Russell M, Lily O, Ford HL. Mitoxantrone in relapsing-remitting and rapidly progressive multiple sclerosis: Ten-year clinical outcomes post-treatment with mitoxantrone. Mult Scler Relat Disord. 2020;44:102330. PubMed
Chartier N, Epstein J, Soudant M, Dahan C, Michaud M, Pittion-Vouyovitch S, et al. Clinical follow-up of 411 patients with relapsing and progressive multiple sclerosis 10 years after discontinuing mitoxantrone treatment: a real-life cohort study. Eur J Neurol. 2018;25(12):1439–1445. PubMed
Le Page E, Leray E, Taurin G, Coustans M, Chaperon J, Morrissey SP, et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry. 2008;79(1):52–56. PubMed
Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for Causal Effects Effects. Biometrika. 1983;70(1):41–55.
Hernán M, Robins J. Causal inference. Boca Raton. 2019.
Pirracchio R, Carone M, Rigon MR, Caruana E, Mebazaa A, Chevret S. Propensity score estimators for the average treatment effect and the average treatment effect on the treated may yield very different estimates. Stat Methods Med Res. 2013;25(5):1938–1954. PubMed
Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150–161. PubMed PMC
Vaughan AS, Kelley CF, Luisi N, Del Rio C, Sullivan PS, Rosenberg ES. An application of propensity score weighting to quantify the causal effect of rectal sexually transmitted infections on incident HIV among men who have sex with men Data analysis, statistics and modelling. BMC Med Res Methodol. 2015;15(1):1–9. PubMed PMC
Hirano K, Imbens GW, Geert R. Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score. Econometrica. 2003;71(4):1161–1189.
Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34(28):3661–79. PubMed PMC
Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed. 2004;75:45–49. PubMed
Kalincik T, Cutter G, Spelman T, Jokubaitis V, Havrdova E, Horakova D. Defining reliable disability outcomes in multiple sclerosis. Brain. 2015;138(11):3287–3298. PubMed
Cohen M, Mondot L, Bucciarelli F, Pignolet B, Laplaud DA, Wiertlewski S, et al. BEST-MS: A prospective head-to-head comparative study of natalizumab and fingolimod in active relapsing MS. Mult Scler J. 2020;1–8. PubMed
Austin PC. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Med Decis Mak. 2009;29(6):661–677. PubMed
Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med. 2007;26:3078–3094. PubMed
Austin PC. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med. 2010;29(20):2137–2148. PubMed PMC
Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32(16):2837–2849. PubMed PMC
Karim ME, Pellegrini F, Platt RW, Simoneau G, Rouette J, de Moor C. The use and quality of reporting of propensity score methods in multiple sclerosis literature: A review. Mult Scler J. 2020;1–7. PubMed PMC
Seeger JD, Bykov K, Bartels DB, Huybrechts K, Schneeweiss S. Propensity Score Weighting Compared to Matching in a Study of Dabigatran and Warfarin. Drug Saf. 2017;40(2):169–181. PubMed
Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9(1):48–55. PubMed PMC
Sormani MP, Bruzzi P. Can we measure long-term treatment effects in multiple sclerosis? Nat Rev Neurol. 2014;11(3):176–182. PubMed
Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28(1):54–59. PubMed PMC
Robins JM, Hernán MÁ, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–560. PubMed
Karim ME, Gustafson P, Petkau J, Zhao Y, Shirani A, Kingwell E, et al. Marginal structural cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol. 2014;180(2):160–171. PubMed PMC
Kalincik T, Diouf I, Sharmin S, Malpas C, Spelman T, Horakova D, et al. Effect of Disease-Modifying Therapy on Disability in Relapsing-Remitting Multiple Sclerosis Over 15 Years. Neurology [Internet]. 2021 Feb 2;96(5):e783 LP-e797. Available from: http://n.neurology.org/content/96/5/e783.abstract PubMed PMC
Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(7):1863–1874. PubMed
Bovis F, Signori A, Carmisciano L, Maietta I, Steinerman JR, Li T, et al. Expanded disability status scale progression assessment heterogeneity in multiple sclerosis according to geographical areas. Ann Neurol. 2018;84(4):621–625. PubMed