Association of Rare APOE Missense Variants V236E and R251G With Risk of Alzheimer Disease
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
MC_PC_17228
Medical Research Council - United Kingdom
MC_QA137853
Medical Research Council - United Kingdom
MR/L010305/1
Medical Research Council - United Kingdom
PubMed
35639372
PubMed Central
PMC9157381
DOI
10.1001/jamaneurol.2022.1166
PII: 2793004
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Alzheimerova nemoc * epidemiologie genetika MeSH
- apolipoprotein E2 genetika MeSH
- apolipoprotein E4 genetika MeSH
- apolipoproteiny E genetika MeSH
- genotyp MeSH
- lidé MeSH
- věk při počátku nemoci MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- apolipoprotein E2 MeSH
- apolipoprotein E4 MeSH
- apolipoproteiny E MeSH
IMPORTANCE: The APOE ε2 and APOE ε4 alleles are the strongest protective and risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD). However, the mechanisms linking APOE to AD-particularly the apoE protein's role in AD pathogenesis and how this is affected by APOE variants-remain poorly understood. Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new insights, but given the low frequency of additional missense variants, AD genetic cohorts have previously been too small to interrogate this question robustly. OBJECTIVE: To determine whether rare missense variants on APOE are associated with AD risk. DESIGN, SETTING, AND PARTICIPANTS: Association with case-control status was tested in a sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages 2 and 3). This study combined case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409 nonunique participants of European or admixed European ancestry, with 11 868 individuals with AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and 328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this study was performed a posteriori on individuals who were genotyped. Among the available genotypes, 76 195 were excluded. All data were retrieved between September 2015 and November 2021 and analyzed between April and November 2021. MAIN OUTCOMES AND MEASURES: In primary analyses, the AD risk associated with each missense variant was estimated, as appropriate, with either linear mixed-model regression or logistic regression. In secondary analyses, associations were estimated with age at onset using linear mixed-model regression and risk of conversion to AD using competing-risk regression. RESULTS: A total of 544 384 participants were analyzed in the primary case-control analysis; 312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years. Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4 (R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10-8) and APOE ε3 (V236E) (odds ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10-6). Additionally, the cumulative incidence of AD in carriers of these variants was found to grow more slowly with age compared with noncarriers. CONCLUSIONS AND RELEVANCE: In this genetic association study, a novel variant associated with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates the ε4-associated AD risk. The protective effect of the V236E variant, which is always coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants confirms that the carboxyl-terminal portion of apoE plays an important role in AD pathogenesis. The large risk reductions reported here suggest that protein chemistry and functional assays of these variants should be pursued, as they have the potential to guide drug development targeting APOE.
1st Department of Neurology Medical School Aristotle University of Thessaloniki Thessaloniki Greece
Alzheimer Research Center and Memory Clinic Andalusian Institute for Neuroscience Málaga Spain
Alzheimer's Centre Reina Sofia CIEN Foundation Madrid Spain
Centro de Biología Molecular Severo Ochoa Universidad Autónoma de Madrid Madrid Spain
CHU de Bordeaux Pole santé publique Bordeaux France
Clinic of Neurology UH Alexandrovska Medical University Sofia Sofia Bulgaria
Complex Genetics of Alzheimer's Disease Group VIB Center for Molecular Neurology VIB Antwerp Belgium
Department of Biomedical Sciences University of Antwerp Antwerp Belgium
Department of Biomedical Sciences University of Cagliari Cagliari Italy
Department of Biomedical Surgical and Dental Sciences University of Milan Milan Italy
Department of Clinical Biochemistry Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
Department of Clinical Genetics VU University Medical Centre Amsterdam the Netherlands
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Epidemiology ErasmusMC Rotterdam the Netherlands
Department of Geriatric Psychiatry University Hospital of Psychiatry Zürich Zurich Switzerland
Department of Neurology and Neurological Sciences Stanford University Palo Alto California
Department of Neurology Bordeaux University Hospital Bordeaux France
Department of Neurology ErasmusMC Rotterdam the Netherlands
Department of Neurology Hospital Universitario Donostia San Sebastian Spain
Department of Neuroscience Rita Levi Montalcini University of Torino Torino Italy
Department of Neuroscience Università Cattolica del Sacro Cuore Rome Italy
Department of Psychiatry and Behavioral Sciences Baylor College of Medicine Houston Texas
Department of Psychiatry and Psychotherapy University Medical Center Goettingen Goettingen Germany
Department of Public Health and Caring Sciences Geriatrics Uppsala University Uppsala Sweden
Department of Radiology and Nuclear Medicine ErasmusMC Rotterdam the Netherlands
Faculty of Medicine University of Lisbon Lisbon Portugal
Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Fundació Docència i Recerca MútuaTerrassa Terrassa Spain
German Center for Neurodegenerative Diseases Berlin Germany
German Center for Neurodegenerative Diseases Bonn Germany
German Center for Neurodegenerative Diseases Goettingen Germany
German Center for Neurodegenerative Diseases Magdeburg Germany
German Center for Neurodegenerative Diseases Munich Germany
Institut de Recerca Biomedica de Lleida Lleida Spain
Institut du Cerveau Paris Brain Institute Paris France
Institute for Regenerative Medicine University of Zürich Zurich Switzerland
Institute for Urban Public Health University Hospital of University Duisburg Essen Essen Germany
Institute of Biomedicine University of Eastern Finland Joensuu Kuopio Finland
Institute of Clinical Medicine Neurology University of Eastern Finland Kuopio Finland
Institute of Clinical Medicine University of Oslo Oslo Norway
Institute of Neurology Catholic University of the Sacred Heart Rome Italy
Instituto de Investigacion Sanitaria 'Hospital la Paz' Madrid Spain
Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
IRCCS Fondazione Don Carlo Gnocchi Florence Italy
Krembil Brain Institute University Health Network Toronto Ontario Canada
Laboratorio de Genética Hospital Universitario Central de Asturias Oviedo Spain
Laboratory of Neurogenetics Born Bunge Institute Antwerp Belgium
Laboratory of Neuropsychiatry IRCCS Santa Lucia Foundation Rome Italy
Medical University of Vienna Department of Psychiatry and Psychotherapy Vienna Austria
Memory Disorders Unit Department of Neurology Hospital Universitari Mutua de Terrassa Terrassa Spain
Munich Cluster for Systems Neurology Munich Germany
Networking Research Center on Neurodegenerative Diseases Instituto de Salud Carlos 3 Madrid Spain
Neurodegenerative Diseases Unit Fondazione IRCCS Ca' Granda Ospedale Policlinico Milan Italy
Neurological Tissue Bank Hospital Clinic IDIBAPS Barcelona Spain
Neurology San Gerardo Hospital Monza and University of Milano Bicocca Milan Italy
Neurology Service Marqués de Valdecilla University Hospital Santander Spain
Neurology Unit IRCCS Fondazione Policlinico Universitario A Gemelli Rome Italy
Neuroscience Center Zurich University of Zurich and ETH Zurich Zurich Switzerland
Neurosciences Area Instituto Biodonostia San Sebastian Spain
NORMENT Centre Division of Mental Health and Addiction Oslo University Hospital Oslo Norway
Nuffield Department of Population Health Oxford University Oxford United Kingdom
Old Age Psychiatry Department of Psychiatry Lausanne University Hospital Lausanne Switzerland
Quantitative Sciences Unit Department of Medicine Stanford University Palo Alto California
School of Biosciences and Veterinary Medicine University of Camerino Camerino Italy
School of Medicine Cardiff University Cardiff United Kingdom
Translational Health Sciences Bristol Medical School University of Bristol Bristol United Kingdom
Unidad Mixta de Neurologia Genètica Instituto de Investigación Sanitaria La Fe Valencia Spain
Unit for Hereditary Dementias Theme Aging Karolinska University Hospital Solna Stockholm Sweden
Unit of Neurology University of Parma Parma Italy
Unitat de Genètica Molecular Institut de Biomedicina de València CSIC Valencia Spain
Unitat Trastorns Cognitius Hospital Universitari Santa Maria de Lleida Lleida Spain
Université de Paris EA 4468 APHP Hôpital Broca Paris France
Université Paris Saclay CEA Centre National de Recherche en Génomique Humaine Evry France
University Bordeaux Inserm Bordeaux Population Health Research Center Bordeaux France
Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
doi: 10.1001/jamaneurol.2022.0854 PubMed
Zobrazit více v PubMed
Bellenguez C, Küçükali F, Jansen I, et al. . New insights on the genetic etiology of Alzheimer’s and related dementia. medRxiv. Preprint posted online December 14, 2020. doi:10.1101/2020.10.01.20200659 DOI
de Rojas I, Moreno-Grau S, Tesi N, et al. ; EADB contributors; GR@ACE study group; DEGESCO consortium; IGAP (ADGC, CHARGE, EADI, GERAD); PGC-ALZ consortia . Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12(1):3417. doi:10.1038/s41467-021-22491-8 PubMed DOI PMC
Corder EH, Saunders AM, Risch NJ, et al. . Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7(2):180-184. doi:10.1038/ng0694-180 PubMed DOI
Corder EH, Saunders AM, Strittmatter WJ, et al. . Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921-923. doi:10.1126/science.8346443 PubMed DOI
Ridge PG, Hoyt KB, Boehme K, et al. ; Alzheimer’s Disease Genetics Consortium (ADGC) . Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging. 2016;41:200.e13-200.e20. doi:10.1016/j.neurobiolaging.2016.02.024 PubMed DOI PMC
Morris JC, Roe CM, Xiong C, et al. . APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67(1):122-131. doi:10.1002/ana.21843 PubMed DOI PMC
Castellano JM, Kim J, Stewart FR, et al. . Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57. doi:10.1126/scitranslmed.3002156 PubMed DOI PMC
Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019;101(5):820-838. doi:10.1016/j.neuron.2019.01.056 PubMed DOI PMC
Mak ACY, Pullinger CR, Tang LF, et al. . Effects of the absence of apolipoprotein e on lipoproteins, neurocognitive function, and retinal function. JAMA Neurol. 2014;71(10):1228-1236. doi:10.1001/jamaneurol.2014.2011 PubMed DOI PMC
Le Guen Y, Belloy ME, Eger SJ, et al. . APOE missense variant R145C is associated with increased Alzheimer’s disease risk in African ancestry individuals with the APOE E3/E4 genotype. medRxiv. Preprint posted online October 26, 2021. doi:10.1101/2021.10.20.21265141 DOI
Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. . Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25(11):1680-1683. doi:10.1038/s41591-019-0611-3 PubMed DOI PMC
Liu CC, Murray ME, Li X, et al. . APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci Transl Med. 2021;13(613):eabc9375. doi:10.1126/scitranslmed.abc9375 PubMed DOI PMC
Medway CW, Abdul-Hay S, Mims T, et al. . ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer’s disease. Mol Neurodegener. 2014;9(1):11. doi:10.1186/1750-1326-9-11 PubMed DOI PMC
Taliun D, Harris DN, Kessler MD, et al. ; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium . Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature. 2021;590(7845):290-299. doi:10.1038/s41586-021-03205-y PubMed DOI PMC
Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. APOE and dementia—resequencing and genotyping in 105,597 individuals. Alzheimers Dement. 2020;16(12):1624-1637. doi:10.1002/alz.12165 PubMed DOI PMC
Beecham GW, Bis JC, Martin ER, et al. . The Alzheimer’s Disease Sequencing Project: study design and sample selection. Neurol Genet. 2017;3(5):e194. doi:10.1212/NXG.0000000000000194 PubMed DOI PMC
Weiner MW, Aisen PS, Jack CR Jr, et al. ; Alzheimer’s Disease Neuroimaging Initiative . The Alzheimer’s Disease Neuroimaging Initiative: progress report and future plans. Alzheimers Dement. 2010;6(3):202-11.e7. doi:10.1016/j.jalz.2010.03.007 PubMed DOI PMC
Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the Rush Memory and Aging Project. Curr Alzheimer Res. 2012;9(6):646-663. doi:10.2174/156720512801322663 PubMed DOI PMC
Kunkle BW, Grenier-Boley B, Sims R, et al. ; Alzheimer Disease Genetics Consortium (ADGC); European Alzheimer’s Disease Initiative (EADI); Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES) . Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414-430. doi:10.1038/s41588-019-0358-2 PubMed DOI PMC
Kunkle BW, Schmidt M, Klein HU, et al. ; Writing Group for the Alzheimer’s Disease Genetics Consortium (ADGC) . Novel Alzheimer disease risk loci and pathways in African American individuals using the African Genome Resources Panel: a meta-analysis. JAMA Neurol. 2021;78(1):102-113. doi:10.1001/jamaneurol.2020.3536 PubMed DOI PMC
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. doi:10.1186/s13742-015-0047-8 PubMed DOI PMC
Karczewski KJ, Francioli LC, Tiao G, et al. ; Genome Aggregation Database Consortium . The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7 PubMed DOI PMC
Le Guen Y, Belloy ME, Napolioni V, et al. ; Alzheimer’s Disease Neuroimaging Initiative . A novel age-informed approach for genetic association analysis in Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):72. doi:10.1186/s13195-021-00808-5 PubMed DOI PMC
Le Guen Y, Napolioni V, Belloy ME, et al. . Common X-chromosome variants are associated with Parkinson disease risk. Ann Neurol. 2021;90(1):22-34. doi:10.1002/ana.26051 PubMed DOI PMC
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867-2873. doi:10.1093/bioinformatics/btq559 PubMed DOI PMC
Chen CY, Pollack S, Hunter DJ, Hirschhorn JN, Kraft P, Price AL. Improved ancestry inference using weights from external reference panels. Bioinformatics. 2013;29(11):1399-1406. doi:10.1093/bioinformatics/btt144 PubMed DOI PMC
Auton A, Brooks LD, Durbin RM, et al. ; 1000 Genomes Project Consortium . A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi:10.1038/nature15393 PubMed DOI PMC
Bis JC, Jian X, Kunkle BW, et al. ; Alzheimer’s Disease Sequencing Project . Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry. 2020;25(8):1859-1875. doi:10.1038/s41380-018-0112-7 PubMed DOI PMC
Gogarten SM, Sofer T, Chen H, et al. . Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics. 2019;35(24):5346-5348. doi:10.1093/bioinformatics/btz567 PubMed DOI PMC
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509. doi:10.1080/01621459.1999.10474144 DOI
Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol. 2015;39(4):276-293. doi:10.1002/gepi.21896 PubMed DOI PMC
Conomos MP, Laurie CA, Stilp AM, et al. . Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet. 2016;98(1):165-184. doi:10.1016/j.ajhg.2015.12.001 PubMed DOI PMC
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1-48. doi:10.18637/jss.v036.i03 PubMed DOI
Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci. 2004;23(3):189-204. doi:10.1385/JMN:23:3:189 PubMed DOI
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72(pt A):3-12. doi:10.1016/j.nbd.2014.08.025 PubMed DOI PMC
Harris FM, Brecht WJ, Xu Q, et al. . Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003;100(19):10966-10971. doi:10.1073/pnas.1434398100 PubMed DOI PMC
Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Wang C, Huang Y. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-β (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proc Natl Acad Sci U S A. 2011;108(10):4236-4241. doi:10.1073/pnas.1018381108 PubMed DOI PMC
Huang YA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 2017;168(3):427-441.e21. doi:10.1016/j.cell.2016.12.044 PubMed DOI PMC
Choy N, Raussens V, Narayanaswami V. Inter-molecular coiled-coil formation in human apolipoprotein E C-terminal domain. J Mol Biol. 2003;334(3):527-539. doi:10.1016/j.jmb.2003.09.059 PubMed DOI
Westerlund JA, Weisgraber KH. Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J Biol Chem. 1993;268(21):15745-15750. doi:10.1016/S0021-9258(18)82318-3 PubMed DOI
Flowers SA, Rebeck GW. APOE in the normal brain. Neurobiol Dis. 2020;136:104724. doi:10.1016/j.nbd.2019.104724 PubMed DOI PMC
Dyer CA, Cistola DP, Parry GC, Curtiss LK. Structural features of synthetic peptides of apolipoprotein E that bind the LDL receptor. J Lipid Res. 1995;36(1):80-88. doi:10.1016/S0022-2275(20)39756-X PubMed DOI
Weisgraber KH, Shinto LH. Identification of the disulfide-linked homodimer of apolipoprotein E3 in plasma. impact on receptor binding activity. J Biol Chem. 1991;266(18):12029-12034. doi:10.1016/S0021-9258(18)99060-5 PubMed DOI
Minami SS, Cordova A, Cirrito JR, et al. . ApoE mimetic peptide decreases Abeta production in vitro and in vivo. Mol Neurodegener. 2010;5:16. doi:10.1186/1750-1326-5-16 PubMed DOI PMC
Minagawa H, Gong JS, Jung CG, et al. . Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J Neurosci Res. 2009;87(11):2498-2508. doi:10.1002/jnr.22073 PubMed DOI PMC
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry. 2018;83(4):347-357. doi:10.1016/j.biopsych.2017.03.003 PubMed DOI PMC
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):8. doi:10.1186/s13024-020-0358-9 PubMed DOI PMC