Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35650336
PubMed Central
PMC9159980
DOI
10.1038/s42003-022-03480-z
PII: 10.1038/s42003-022-03480-z
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- mikroftalmičtí podzemní hlodavci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Zobrazit více v PubMed
Hildebrand M. Functional Vertebrate Morphology (eds. Hildebrand M., Bramble D., Liem K., Wake D. B.) 89–109 (The Belknap Press of Harvard University Press, 1985).
Stein B. Life Underground: the Biology of Subterranean Rodents (eds. Lacey E. A., Patton J., Cameron G. N.) 19–61 (The University of Chicago Press, 2000).
Vassallo A. I. et al. Tuco-Tucos An Evolutionary Approach to the Diversity of a Neotropical Subterranean Rodent (ed. Freitas T. R. O., Gonçalves G. L., Maestri R.) 141-166 (Springer, 2021).
VanBuren CS, Evans DC. Evolution and function of anterior cervical vertebral fusion in tetrapods. Biol. Rev. 2017;92:608–626. doi: 10.1111/brv.12245. PubMed DOI
Luna F, Antinuchi CD. Energy and distribution in subterranean rodents: sympatry between two species of the genus Ctenomys. Comp. Biochem. Physiol. A. 2007;147:948–954. doi: 10.1016/j.cbpa.2007.02.032. PubMed DOI
Zelová J, Sumbera R, Okrouhlík J, Burda H. Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol. Behav. 2010;99:54–58. doi: 10.1016/j.physbeh.2009.10.007. PubMed DOI
Casinos A, Quintana C, Viladiu C. Allometry and adaptation in the long bones of a digging group of rodents (Ctenomyinae) Zool. J. Linn. Soc. 1993;107:107–115. doi: 10.1111/j.1096-3642.1993.tb00216.x. DOI
Montoya-Sanhueza G, Chinsamy A. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening. J. Anat. 2017;230:203–233. doi: 10.1111/joa.12547. PubMed DOI PMC
Montoya-Sanhueza G, Wilson LAB, Chinsamy A. Postnatal development of the largest subterranean mammal (Bathyergus suillus): morphology, osteogenesis, and modularity of the appendicular skeleton. Dev. Dyn. 2019;248:1101–1128. doi: 10.1002/dvdy.81. PubMed DOI
Eilam D, Adijes M, Vilensky J. Uphill locomotion in mole rats: a possible advantage of backward locomotion. Physiol. Behav. 1995;58:483–489. doi: 10.1016/0031-9384(95)00076-U. PubMed DOI
Sánchez-Villagra MR, Menke PR, Geisler JH. Patterns of evolutionary transformation in the humerus of moles (Talpidae. Mammalia): a character analysis. Mammal Study. 2004;29:163–170. doi: 10.3106/mammalstudy.29.163. DOI
Sansalone G, et al. Decoupling functional and morphological convergence, the study case of fossorial mammalia. Front. Earth Sci. 2020;8:112. doi: 10.3389/feart.2020.00112. DOI
Puttick GM, Jarvis JUM. The functional anatomy of the neck and forelimbs of the cape golden mole, Chrysochloris asiatica (Lipotyphla: Chrysochloridae) Zool. Afr. 1977;12:445–458. doi: 10.1080/00445096.1977.11447589. DOI
Samuels JX, Van Valkenburgh B. Skeletal indicators of locomotor adaptations in living and extinct rodents. J. Morphol. 2008;269:1387–1411. doi: 10.1002/jmor.10662. PubMed DOI
Steiner‐Souza F, De Freitas TRO, Cordeiro‐Estrela P. Inferring adaptation within shape diversity of the humerus of subterranean rodent Ctenomys. Biol. J. Linn. Soc. 2010;100:353–367. doi: 10.1111/j.1095-8312.2010.01400.x. DOI
Morgan CC, Álvarez A. Shape variation of humerus of caviomorph rodents. J. Zool. 2013;290:107–116. doi: 10.1111/jzo.12017. DOI
Stern T, et al. Isometric scaling in developing long bones is achieved by an optimal epiphyseal growth balance. PLoS Biol. 2015;13:e1002212. doi: 10.1371/journal.pbio.1002212. PubMed DOI PMC
Le Comber SC, Spinks AC, Bennett NC, Jarvis JUM, Faulkes CG. Fractal dimension of African mole-rat burrows. Can. J. Zool. 2002;80:436–441. doi: 10.1139/z02-026. DOI
Bennett, N. C., Faulkes, C. G. African Mole Rats: Ecology and Eusociality (Cambridge University Press (2000).
Jarvis J, Sale J. Burrowing and burrow patterns of East African mole-rats Tachyoryctes, Heliophobius and Heterocephalus. J. Zool. 1971;163:451–479. doi: 10.1111/j.1469-7998.1971.tb04544.x. DOI
Jarvis JUM, Bennett NC. Eusociality has evolved independently in two genera of bathyergid mole-rats – but occurs in no other subterranean mammal. Behav. Ecol. Sociobiol. 1993;33:253–260. doi: 10.1007/BF02027122. DOI
Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW. Mammalian eusociality: a family affair. Trends Ecol. Evol. 1994;9:47–51. doi: 10.1016/0169-5347(94)90267-4. PubMed DOI
Burda H, et al. Are naked and common mole-rats eusocial and if so, why? Behav. Ecol. Sociobiol. 2002;47:293–303. doi: 10.1007/s002650050669. DOI
Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC. Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae) Mol. Ecol. 2004;13:613–629. doi: 10.1046/j.1365-294X.2004.02099.x. PubMed DOI
Visser JH, Bennett NC, Jansen van Vuuren B. Phylogeny and biogeography of the African Bathyergidae: a review of patterns and processes. PeerJ. 2019;7:e7730. doi: 10.7717/peerj.7730. PubMed DOI PMC
Uhrová M, et al. Species limits and phylogeographic structure in two genera of solitary African mole-rats Georychus and Heliophobius. Mol. Phylogenet. Evol. 2022;167:107337. doi: 10.1016/j.ympev.2021.107337. PubMed DOI
Lavocat, R. Les rongeurs du Miocène d’Afrique Orientale. Vol. 1, p. 1–284 (Montpellier, 1973).
Winkler, A. J., Denys, C. & Avery, D. M. Rodents in Cenozoic Mammals of Africa (eds. L. Werdelin & W. J. Sanders) 263-305 (University of California Press, 2010).
Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - a review. J. Therm. Biol. 2019;79:166–189. doi: 10.1016/j.jtherbio.2018.11.003. PubMed DOI
Gomes Rodrigues H, Šumbera R, Hautier L. Life in burrows channelled the morphological evolution of the skull in rodents: the case of African mole-rats (Bathyergidae, Rodentia) J. Mammal. Evol. 2015;23:175–189. doi: 10.1007/s10914-015-9305-x. DOI
McIntosh AF, Cox PG. Functional implications of craniomandibular morphology in African mole -rats (Rodentia: Bathyergidae) Biol. J. Linn. Soc. 2016;117:447–462. doi: 10.1111/bij.12691. DOI
Mason MJ, Cornwall HL, Smith ESJ. Ear structures of the naked mole-rat, Heterocephalus glaber, and its relatives (Rodentia: Bathyergidae) PLoS ONE. 2016;11:e0167079. doi: 10.1371/journal.pone.0167079. PubMed DOI PMC
Sahd L, Bennett NC, Kotzé SH. Hind foot drumming: morphological adaptations of the muscles and bones of the hind limb in three African mole-rat species. J. Anat. 2019;235:811–824. doi: 10.1111/joa.13028. PubMed DOI PMC
Doubell NS, Sahd L, Kotzé SH. Comparative forelimb morphology of scratch‐digging and chisel‐tooth digging African mole‐rat species. J. Morphol. 2020;281:1029–1046. doi: 10.1002/jmor.21229. PubMed DOI
Moore Crisp A, Barnes CJ, Lee DV. Tunnel-tube and Fourier methods for measuring three-dimensional medium reaction force in burrowing animals. J. Exp. Biol. 2019;5:jeb213553. doi: 10.1242/jeb.213553. PubMed DOI
Montoya-Sanhueza G., Šumbera, R., Bennett, N. C. & Chinsamy, A. Developmental plasticity in the ossification of the proximal femur of Heterocephalus glaber (Bathyergidae, Rodentia). J. Mammal. Evol.10.1007/s10914-022-09602-y (2022).
Gambaryan PP, Gasc J-P. Adaptive properties of the musculoskeletal system in the mole-rat Myospalax myospalax (Marnmalia, Rodentia), cinefluorographical, anatomical and biomechanical analyses of the burrowing. Zoologische Jahrb. Anat. 1993;123:363–401.
Van Wassenbergh S, Heindryckx S, Adriaens D. Kinematics of chisel-tooth digging by African mole-rats. J. Exp. Biol. 2017;220:4479–4485. PubMed
Theiler K. The House Mouse: Atlas of Embryonic Development (Springer, 1989).
Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140:2680–2690. doi: 10.1242/dev.093906. PubMed DOI
Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load- bearing capacity during embryogenesis. Development. 2011;138:3247–3259. doi: 10.1242/dev.063768. PubMed DOI
Felsenthal N, Zelzer E. Mechanical regulation of musculoskeletal system development. Development. 2017;144:4271–4283. doi: 10.1242/dev.151266. PubMed DOI PMC
Moss ML. A functional analysis of fusion of the tibia and fibula in the rat and mouse. Acta Anat. 1977;97:321–332. doi: 10.1159/000144749. PubMed DOI
Sears KE, Behringer RR, Rasweiler JJ, IV, Niswander LA. The evolutionary and developmental basis of parallel reduction in mammalian zeugopod elements. Am. Nat. 2007;169:105–117. doi: 10.1086/510259. PubMed DOI
Carleton A. A comparative study of the inferior tibio-fibular joint. J. Anat. Lond. 1941;76:45–55. PubMed PMC
Cubo J, Ventura J, Casinos A. A heterochronic interpretation of the origin of digging adaptations in the northern water vole, Arvicola terrestris (Rodentia: Arvicolidae) Biol. J. Linn. Soc. 2006;87:381–391. doi: 10.1111/j.1095-8312.2006.00575.x. DOI
Echeverría AI, Becerra F, Vassallo A. Postnatal ontogeny of limb proportions and functional indices in the subterranean rodent Ctenomys talarum (rodentia: ctenomyidae) J. Morphol. 2014;275:902–913. doi: 10.1002/jmor.20267. PubMed DOI
Hamilton, W. J. Jr. Heterocephalus, the Remarkable African Burrowing Rodent, Vol. 3. (The museum of the Brooklyn Institute of Arts and Sciences, 1928).
Hill WC, Porterr A, Bloom T, Seago J, Southwick D. Field and laboratory studies on the naked mole-rat (Heterocephalus glaber) Proc. Zool. Soc. Lond. 1957;128:455–513. doi: 10.1111/j.1096-3642.1957.tb00272.x. DOI
Lehmann T, Vignaud P, Likius A, Mackaye HT, Brunet M. A sub-complete fossil aardvark (Mammalia, Tubulidentata) from the Upper Miocene of Chad. Comptes Rendus Palevol. 2006;5:693–703. doi: 10.1016/j.crpv.2005.12.016. DOI
Salton J. A. & Sargis E. J. Evolutionary Morphology of the Tenrecoidea (Mammalia) Forelimb Skeleton in Mammalian Evolutionary Morphology, A Tribute to Frederick S. Szalay (eds. Sargis E., & Dagosto M.) 51–72 (Springer, 2008).
Barnett CH, Napier JR. The rotatory mobility of the fibula in eutherian mammals. J. Anat. 1953;87:11–21. PubMed PMC
Salton JA, Sargis EJ. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J. Morphol. 2009;270:367–387. doi: 10.1002/jmor.10697. PubMed DOI
Tucker R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 1981;168:51–71. doi: 10.1002/jmor.1051680107. PubMed DOI
Brett, R. A. The biology of the naked mole-rat (eds. P. W. Sherman, J. U. M. Jarvis & R. D. Alexander) 137–184 (Princeton University Press, 1991).
Holtze S, et al. The microenvironment of naked mole-rat burrows in East Africa. Afr. J. Ecol. 2018;56:279–289. doi: 10.1111/aje.12448. DOI
Lessa EP, Thaeler CS. A reassessment of morphological specializations for digging in pocket gophers. J. Mammal. 1989;70:689–700. doi: 10.2307/1381704. DOI
Cox P, Faulkes C. Digital dissection of the masticatory muscles of the naked mole-rat, Heterocephalus glaber (Mammalia, Rodentia) PeerJ. 2014;2:e448. doi: 10.7717/peerj.448. PubMed DOI PMC
Hite NJ, et al. The better to eat you with: bite force in the naked mole-rat (Heterocephalus glaber) is stronger than predicted based on body size. Front. Integr. Neurosci. 2019;13:70. doi: 10.3389/fnint.2019.00070. PubMed DOI PMC
Montoya-Sanhueza G. Functional Anatomy, Osteogenesis and Bone Microstructure of the Appendicular System of African Mole-Rats (Rodentia: Ctenohystrica: Bathyergidae). PhD Dissertation (University of Cape Town, 2020).
Montoya‐Sanhueza G, Bennett NC, Oosthuizen MK, Dengler‐Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole‐rat: histodiversity and intraspecific variation. J. Anat. 2021;238:1259–1283. doi: 10.1111/joa.13381. PubMed DOI PMC
O’Riain, M. J. Pup Ontogeny And Factors Influencing Behavioural And Morphological Variation In Naked Mole-rats, Heterocephalus glaber (Rodentia, Bathyergidae). (University of Cape Town, 1996).
De Graaff G. Molerats (Bathyergidae, Rodentia) in South African National Parks: notes on the Taxonomic “isolation” and Hystricomorph Affinities of the family. Koedoe. 1979;22:a653. doi: 10.4102/koedoe.v22i1.653. DOI
Patterson BD, Upham NS. A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica) Zool. J. Linn. Soc. 2014;172:942–963. doi: 10.1111/zoj.12201. DOI
Onwuama KT, Adeniyi OS, Olajide HJ, Tavershima D, Sulaiman SO. Macro–anatomical and morphometric studies of the Grasscutter (Thryonomys winderianus) forelimb skeleton. Int. J. Vet. Sci. Anim. Husb. 2015;2:6–12.
Bento Da Costa L, Senut B. Skeleton of early miocene Bathyergoides neotertiarius stromer, 1923 (Rodentia, Mammalia) from Namibia: behavioural implications. Geodiversitas. 2022;44:291–322.
McNamara K. J. Shapes Of Time: The Evolution Of Growth And Development (Johns Hopkins University Press, 1997).
O’Riain MJ, Jarvis JUM. The dynamics of growth in naked mole-rats: the effects of litter order and changes in social structure. J. Zool. 1998;246:49–60. doi: 10.1111/j.1469-7998.1998.tb00131.x. DOI
Skulachev VP. Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans) Physiol. Rev. 2007;97:699–720. doi: 10.1152/physrev.00040.2015. PubMed DOI
Buffenstein R. Probing pedomorphy and prolonged lifespan in naked mole-rats and dwarf mice. Physiology (Bethesda) 2020;35:96–111. PubMed
Spinks A, Plagányi É. Reduced starvation risks and habitat constraints promote cooperation in the common mole-rat, cryptomys hottentotus hottentotus: a computer-simulated foraging model. Oikos. 1999;85:435–444. doi: 10.2307/3546693. DOI
Houslay T, Vullioud P, Zöttl M, Clutton-Brock T. Benefits of cooperation in captive Damaraland mole-rats. Behav. Ecol. 2020;31:711–718. doi: 10.1093/beheco/araa015. DOI
Berkovitz B, Faulkes CG. Eruption rates of the mandibular incisors of naked mole-rats (Heterocephalus glaber) J. Zool. 2001;255:461–466. doi: 10.1017/S0952836901001546. DOI
IUCN (2020) The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org.
Ovchinnikov D. Alcian blue/Alizarin red staining of cartilage and bone in mouse. Cold Spring Harb Protoc.2009, pdb.prot5170 (2009). PubMed
Onwuama KT, et al. Macro-anatomical and morphometric studies of the hindlimb of grasscutter (Thryonomys swinderianus, Temminck-1827) Anat. Histol. Embryol. 2018;47:21–27. doi: 10.1111/ahe.12319. PubMed DOI
Hoffman, J. W. & de Beer, F. C. Characteristics of the Micro-Focus X-ray tomography facility (MIXRAD) at Necsa in South Africa. In: 18th World Conference on non-destructive testing, Durban, South Africa (2012).
Suchard M. A., et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol.4, vey016 (2018). PubMed PMC
Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17:e3000494. doi: 10.1371/journal.pbio.3000494. PubMed DOI PMC
McElreath, R. Statistical rethinking: a Bayesian course with examples in R and Stan. In Statistical Rethinking: A Bayesian Course with Examples in R and Stan. (CRC press, 2020).
Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2007).
Watanabe, S., & Opper, M. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 10.48550/arXiv.1004.2316 (2010).
Carpenter B, et al. Stan: a probabilistic programming language. J. Stat. Softw. 2017;76:1–32. doi: 10.18637/jss.v076.i01. PubMed DOI PMC
Huelsenbeck JP, Nielsen R, Bollback JP. Stochastic mapping of morphological characters. Syst. Biol. 2003;52:131–158. doi: 10.1080/10635150390192780. PubMed DOI
Bollback JP. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinform. 2006;7:1–7. doi: 10.1186/1471-2105-7-88. PubMed DOI PMC
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA URLhttp://www.rstudio.com/ (2021).