Paleohistology of Caraguatypotherium munozi (Mammalia, Notoungulata, Mesotheriidae) from the early late Miocene of northern Chile: A preliminary ontogenetic approach
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36928884
PubMed Central
PMC10019713
DOI
10.1371/journal.pone.0273127
PII: PONE-D-22-21089
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- humerus anatomie a histologie MeSH
- placentálové * MeSH
- savci * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Chile MeSH
The Miocene Caragua fossil fauna in northern Chile contains a considerable number (7) of articulated partial skeletons tentatively assigned to Caraguatypotherium munozi (Notoungulata, Mesotheriidae), which presents up to 40% body size difference. Since either inter- and intra- specific wide size range has been observed in the Mesotheriidae family in general, we wanted explore the ontogenic stage signature of the sample, by carrying out the first comprehensive paleohistological description of the appendicular system in Notoungulata. Results show that: 1) they can be classified as subadults and adults, based on the presence of bone tissues typical of ceased somatic growth; 2) there is a notorious inter-skeletal variation on bone growth rates (skeletal modularity), particularly, the humerus showed a slower diameter growth and less remodelling than the femur, resulting as a better element for ontogenetic analyses; 3) marked cyclical growth is observed, characterised by fast early ontogenic continuous growth, and subsequent fast/slow stratified bone tissue layering. In general, such growth pattern suggests that C. munozi had a similar ontogenetic growth process as other modern mammals, that it should also be influenced by other sex-related, ecological and environmental factors. Likely related to the presence of rapid climatic variations, due to orogenic uplift and concomitant re-organization of the drainage processes along the western tectonic front of the Central Andes at that time.
Centro de Estudios Avanzados en Zonas Áridas Coquimbo Chile
Departamento de Geología Universidad de Chile Santiago Chile
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
Museo Regional de Aysén Coyhaique Región de Aysén
THERIUM SPA Paleontología y Patrimonio Curicó Región del Maule
Zobrazit více v PubMed
Croft DA, Gelfo JN, López GM. Splendid Innovation: The Extinct South American Native Ungulates. Annu Rev Earth Planet Sci. 2020;48: 259–290. doi: 10.1146/annurev-earth-072619-060126 DOI
Chávez Hoffmeister MF. From Gondwana to the Great American Biotic Interchange: The Birth of South American Fauna. 2020. pp. 13–32. doi: 10.1007/978-3-030-23918-3_2 DOI
Croft DA, López GM. Gondwanan Perspectives: Evolution, Biogeography, and Paleoecology of the Native Ungulates of South America. Ameghiniana. 2020;57: 71–79. doi: 10.5710/AMGH.15.04.2020.3351 DOI
Soria MF. Estudios sobre los Astrapotheria (Mammalia) del Paleoceno y Eoceno. Ameghiniana. 1987;24: 21–34. Available: http://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/1897
Ameghino F. Première contribution à la connaissance de la faune mammalogique des couches à Pyrotherium. Bol del Inst Geográfico Argentino 15. 1895; 1–60.
Ameghino F. Les mammifêres crétacés de l´Argentine: deuxiême contribution â la connaissance de la faune mammalogique des couches â Pyrotherium. Bol Inst Geogr Argentino. 1897;18: 406–521.
Lydekker R. Contributions to a knowledge of the fossil vertebrates of Argentina, 3. A study of the extinct ungulates of Argentina. Anales del Museo de La Plata 2. 1983. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
Cifelli R. The phylogeny of the native South American ungulates. NY: Spring. In: Szalay F. S., Novacek M. J. M MC, editor. Mammal Phylogeny. NY: Spring. New York; 1993. pp. 195–216.
Shockey BJ, Flynn JJ. Morphological diversity in the postcranial skeleton of Casamayoran (? middle to late eocene) Notoungulata and foot posture in notoungulates. Novitates American Museum. 2007; 1–26.
Croft DA, Lorente M. No evidence for parallel evolution of cursorial limb adaptations among Neogene South American native ungulates (SANUs). PLoS One. 2021;16: 5–10. doi: 10.1371/journal.pone.0256371 PubMed DOI PMC
Vera B, Medina-González P, Moreno K. Paleobiological inferences on middle Eocene native ungulates from South America: Functional morphological analysis of Notostylops and Notopithecus. Journal of Morphology, 2022; 283 (9): 1231–1256. doi: 10.1002/jmor.21499 PubMed DOI
Buckley M. Ancient collagen reveals evolutionary history of the endemic South American “ungulates”. Proc Biol Sci. 2015;282: 2014–2671. doi: 10.1098/rspb.2014.2671 PubMed DOI PMC
Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al.. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522: 81–84. doi: 10.1038/nature14249 PubMed DOI
Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA, Kramarz A, et al.. A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica. Nat Commun. 2017;8. doi: 10.1038/ncomms15951 PubMed DOI PMC
Ameghino F. Recherches de morphologie phylogénétique sur les molaires supérieures des ongulés. Anales del Museo Nacional de Buenos Aires. Serie 3a, Tomo III, 1–541. Buenos Aires; 1904.
Cassini GH, Mendoza M, Vizcaíno SF, Bargo MS. Inferring habitat and feeding behaviour of early Miocene notoungulates from Patagonia. Lethaia. 2011;44: 153–165. doi: 10.1111/j.1502-3931.2010.00231.x DOI
Cassini GH. Skull geometric morphometrics and paleoecology of santacrucian (late early miocene; Patagonia) native ungulates (astrapotheria, litopterna, and notoungulata). Ameghiniana. 2013;50: 193–216. doi: 10.5710/AMGH.7.04.2013.606 DOI
Houssaye A, Fernández V, Billet G. Hyperspecialization in some south american endemic ungulates revealed by long bone microstructure. J Mamm Evol. 2015;23: 221–235. doi: 10.1007/s10914-015-9312-y DOI
Cassini GH, Flores DA, Vizcaíno SF. Postnatal ontogenetic scaling of Nesodontine (Notoungulata, Toxodontidae) cranial morphology. Acta Zool. 2012;93: 249–259. doi: 10.1111/j.1463-6395.2011.00501.x DOI
Köhler M, Herridge V, Meneses CN, Fortuny J, Solé BM, Rosso A, et al.. Palaeohistology reveals a slow pace of life for the dwarfed Sicilian elephant. Sci Rep. 2021;11: 1–17. doi: 10.1038/s41598-021-02192-4 PubMed DOI PMC
Chinsamy-Turan A. The Microstructure of Dinosaur Bone. Deciphering Biology with Fine-Scale Techniques. Baltimore and London: The Johns Hopkins University Press.; 2005. 224 p. ISBN 0 8018 8120 X.
Köhler M, Moyà-Solà S. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci. 2009;106: 20354–20358. doi: 10.1073/pnas.0813385106 PubMed DOI PMC
Köhler M, Marin-Moratalla N, Jordana X, Aanes R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature. 2012;487: 358–361. doi: 10.1038/nature11264 PubMed DOI
Padian K, Lamm E. Bone histology of fossil tetrapods. Advancing methods analysys, and interpretation. Berkeley, Los Angeles, London: Univertsity of Califronia Press; 2013.
Kolb C, Scheyer TM, Lister AM, Azorit C, De Vos J, Schlingemann MAJ, et al.. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol Biol. 2015; 1–15. doi: 10.1186/s12862-015-0295-3 PubMed DOI PMC
Marín-Moratalla N, Jordana X, García-Martínez R, Köhler M. Tracing the evolution of fitness components in fossil bovids under different selective regimes. Comptes Rendus—Palevol. 2011;10: 469–478. doi: 10.1016/j.crpv.2011.03.007 DOI
Martinez-Maza C, Alberdi MT, Nieto-Diaz M, Prado JL. Life-history traits of the miocene Hipparion concudense (Spain) inferred from bone histological structure. PLoS One. 2014;9. doi: 10.1371/journal.pone.0103708 PubMed DOI PMC
Kolb C, Scheyer TM, Veitschegger K, Forasiepi AM, Amson E, Van der Geer AAE, et al.. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ. 2015;3: e1358. doi: 10.7717/peerj.1358 PubMed DOI PMC
Orlandi-Oliveras G, Jordana X, Moncunill-Solé B, Köhler M. Bone histology of the giant fossil dormouse Hypnomys onicensis (Gliridae, Rodentia) from Balearic Islands. Comptes Rendus—Palevol. 2016;15: 247–253. doi: 10.1016/j.crpv.2015.05.001 DOI
García-Martínez R, Marín-Moratalla N, Jordana X, Köhler M. The ontogeny of bone growth in two species of dormice: Reconstructing life history traits. Comptes Rendus—Palevol. 2011;10: 489–498. doi: 10.1016/j.crpv.2011.03.011 DOI
de Ricqlès A, Taquet P, De Buffrenil V. “Rediscovery” of Paul Gervais’ paleohistological collection. Geodiversitas. 2009;31: 943–971. doi: 10.5252/g2009n4a943 DOI
Simpson G.G. 1940. The names Mesotherium and Typotherium. American Journal of Science. 238. 518–521.
Fernández-Monescillo M, Croft DA, Pujos F, Antoine PO Taxonomic history and intraspecific analysis of Mesotherium cristatum (Mammalia, Notoungulata, Mesotheriidae) from the Early-Middle Pleistocene of Buenos Aires Province, Argentina, Historical Biology, 2022. doi: 10.1080/08912963.2022.2074844 DOI
Tomassini RL, Miño-Boilini ÁR, Zurita AE, Montalvo CI, Cesaretti N. Modificaciones fosildiagenéticas en Toxodon platensis Owen, 1837 (Notoungulata, Toxodontidae) del Pleistoceno tardío de la provincia de Corrientes, Argentina. Rev Mex Ciencias Geológicas. 2015;32: 283–292.
Tomassini RL, Montalvo CI, Manera T, Visconti G. Mineralogy, geochemistry and paleohistology of pliocene mammals from the Monte Hermoso Formation (Argentina). Paedotherium bonaerense (Notoungulata, Hegetotheriidae) as a Case Study. Ameghiniana. 2014;51: 385–395. doi: 10.5710/AMGH.01.07.2014.2737 DOI
Forasiepi AM, Cerdeño E, Bond M, Schmidt GI, Naipauer M, Straehl FR, et al.. New toxodontid (Notoungulata) from the Early Miocene of Mendoza, Argentina. Palaontologische Zeitschrift. 2014;89: 611–634. doi: 10.1007/s12542-014-0233-5 DOI
Carrillo JD, Asher RJ. An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina. Palaeontol Electron. 2017;20.2.34A: 1–33. palaeo-electronica.org/content/2017/1930-anatomy-and-systematics-of-thomashuxleya-externa-notoungulata
Francis JC. Los géneros de la subfamilia Mesotheriinae (Typotheria, Notoungulata) de la República Argentina. Boletin del Laboratorio de Paleontología de Vertebrados. 1965;1: 7–31.
Villarroel C. Les Mesotherines (Notoungulata, Mammalia) du Pliocene de Bolivie. Leurs Rapports Avec Ceux D’Argentine. Ann Paleontol. 1974;60: 245–281.
Billet G, De Muizon C, Mamani Quispe B. Late Oligocene mesotheriids (Mammalia, Notoungulata) from Salla and Lacayani (Bolivia): implications for basal mesotheriid phylogeny and distribution. Zool J Linn Soc. 2008;152: 153–200. doi: 10.1111/j.1096-3642.2007.00388.x DOI
Shockey BJ, Billet G, Salas-Gismondi R. A new species of Trachytherus (Notoungulata: Mesotheriidae) from the late Oligocene (Deseadan) of Southern Peru and the middle latitude diversification of early diverging mesotheriids. Zootaxa. 2016. May 18;4111(5):565–83. doi: 10.11646/zootaxa.4111.5.3 . PubMed DOI
Cerdeño E, Vera B, Combina AM. A new early Miocene Mesotheriidae (Notoungulata) from the Mariño Formation (Argentina): Taxonomic and biostratigraphic implications. J South Am Earth Sci. 2018;88: 118–131. doi: 10.1016/j.jsames.2018.06.016 DOI
Armella MA and Ercoli D. An evaluation of the dental features used to distinguish Typotheriopsis from Pseudotypotherium (Mesotheriidae, Notoungulata): reappraisals and proposals regarding their systematic value. Ameghiniana. 2018; 55: 592–599.
Cione AL, Tonni E. Bioestratigrafía basada en mamíferos del Cenozoico superior de la región pampeana. In: Geología y Recursos Minerales de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino. de Barrio R, Etcheverry RO, Caballé M, Llambías E. 2005.
Fernández-Monescillo M, Martínez G, García López D, Frechen M, Romero-Lebrón E, Krapovickas JM, et al.. The last record of the last typotherid (Notoungulata, Mesotheriidae, Mesotherium cristatum) for the middle Pleistocene of the western Pampean region, Córdoba Province, Argentina, and its biostratigraphic implications. Quat Sci Rev. 2023;301: 107925. doi: 10.1016/j.quascirev.2022.107925 DOI
Patterson B. Notas acerca del cráneo de un ejemplar juvenil de Mesotherium cristatum. Revista del Museo Municipal de Ciencias Naturales y Tradicional de Mar de Plata. 1952;1: 71–78.
Garcia GM, Gardeweg PM, Clavero RJ, Hérail G. Hoja Arica, Región de Tarapacá, Escala 1:250.000. SERNAGEOMIN. 2004. p. 150.
García M, Riquelme R, Farías M, Hérail G, Charrier R. Late Miocene-Holocene canyon incision in the western Altiplano, northern Chile: Tectonic or climatic forcing? J Geol Soc London. 2011;168: 1047–1060. doi: 10.1144/0016-76492010-134 DOI
Garcia M, Hérail G. Fault-related folding, drainage network evolution and valley incision during the Neogene in the Andean Precordillera of Northern Chile. Geomorphology. 2005;65: 279–300. doi: 10.1016/j.geomorph.2004.09.007 DOI
Muñoz N, Charrier R. Uplift of the western border of the Altiplano on a west-vergent thrust system, Northern Chile. J South Am Earth Sci. 1996;9: 171–181. doi: 10.1016/0895-9811(96)00004-1 DOI
Charrier R, Hérail G, Pinto L, García M, Riquelme R, Farías M, et al.. Cenozoic tectonic evolution in the Central Andes in northern Chile and west central Bolivia: Implications for paleogeographic, magmatic and mountain building evolution. Int J Earth Sci. 2013;102: 235–264. doi: 10.1007/s00531-012-0801-4 DOI
Gradstein F, Ogg JG, Schmitz MD, Ogg GM. Geologic Time Scale 2020, Elsevier, Amsterdam. 2020;2: 1390 pp.
Madella A, Delunel R, Akçar N, Schlunegger F, Christl M. 10Be-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today. Sci Rep. 2018;8: 1–10. doi: 10.1038/s41598-018-20681-x PubMed DOI PMC
Bargo MS, Reguero MA. El primer registro de un mamifero fósil en el extremo septentrional de Chile. Ameghiniana. 1989;26: 239.
Salinas P, Villarroel C, Marshall M, Sepulveda P, Muñoz. N. Typotheriopsis sp. (Notoungulata, Mesotheridae), mamífero del Mioceno Superior en las cercanias de Belen, Arica, Norte de Chile.pdf. VI Congr Geol Chil Resum Expand. 1991; 314–317.
Flynn JJ, Croft DA, Charrier R, Wyss AR, Hérail G, García M. New Mesotheriidae (Mammalia, Notoungulata, Typotheria), geochronology and tectonics of the Caragua area, northernmost Chile. J South Am Earth Sci. 2005;19: 55–74. doi: 10.1016/j.jsames.2004.06.007 DOI
Montoya-Sanhueza G, Moreno K, Bobe R, Carrano MT, García M, Corgne A. Peltephilidae and Mesotheriidae (Mammalia) from late Miocene strata of Northern Chilean Andes, Caragua. J South Am Earth Sci. 2017;75: 51–65. doi: 10.1016/j.jsames.2017.01.009 DOI
Bostelmann E, Castro N, Moreno K, Fosdick J, Campos-Medina J, Croft DA, et al. Stratigraphy and paleontology of Caragua, Arica and Parinacota regions, Chile, part 2: biostratigraphy and geochronology of the late Miocene sedimentary sequence. Actas del XV Congr Geológico Chil. 2018.
Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018.
Fernández-Monescillo M, Quispe BM, Pujos F, Antoine PO. Functional Anatomy of the Forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and Evolutionary Insights at the Family Level. J Mamm Evol. 2018;25: 197–211. doi: 10.1007/s10914-016-9372-7 DOI
Reuil S, Muzzopappa P. 3D casts from natural molds: A case study in fossil frogs. Publ Electron la Asoc Paleontol Argentina. 2019;19: 1–6. doi: 10.5710/PEAPA.14.04.2019.280 DOI
Cerdeño E, Vera B, Schmidt GI, Pujos F, Quispe BM. An almost complete skeleton of a new Mesotheriidae (Notoungulata) from the Late Miocene of Casira, Bolivia. J Syst Palaeontol. 2012;10: 341–360. doi: 10.1080/14772019.2011.569576 DOI
Chinsamy A, Raath M a. Preparation of fossil bone for histological examination. Palaeontol Africana. 1992;29: 39–44.
Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J Anat. 2020; 1–25. doi: 10.1111/joa.13381 PubMed DOI PMC
Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J Anat. 2021. doi: 10.1111/joa.13404 PubMed DOI PMC
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol. 2022;5: 1–14. doi: 10.1038/s42003-022-03480-z PubMed DOI PMC
Castanet J, Croci S, Aujard F, Perret M, Cubo J, De Margerie E. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J Zool. 2004;263: 31–39. doi: 10.1017/S0952836904004844 DOI
Montoya-Sanhueza G, Chinsamy A. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening. J Anat. 2017;230: 203–233. doi: 10.1111/joa.12547 PubMed DOI PMC
Hollund HI, Jans MME, Collins MJ, Kars H, Joosten I, Kars SM. What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. Int J Osteoarchaeol. 2012;22: 537–548. doi: 10.1002/oa.1273 DOI
Enlow DH. Principles of bone remodeling. Am Lect Ser. 1963;85: 6991–7006.
Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, et al.. Microstructure and mineralization of vertebrate skeletal tissues. 1990. pp. 175–234. doi: 10.1029/SC005p0175 DOI
de Ricqlès A, Meunier FJ, Castanet J. Comparative microstructure of bone. Bone, Volume 3 Bone Matriz and Bone Specific Products. Boca Raton: CRC Press; 1992. p. 333.
Chinsamy A, Hurum JH. Bone microstructure and growth patterns of early mammals. Acta Palaeontol Pol. 2006;51: 325–338.
Warshaw J. Comparative primate bone microstructure: Records of life history, function, and phylogeny. Vertebr Paleobiol Paleoanthropology. 2008; 385–425. doi: 10.1007/978-1-4020-6997-0_18 DOI
McFarlin SC, Terranova CJ, Zihlman AL, Bromage TG. Primary bone microanatomy records developmental aspects of life history in catarrhine primates. J Hum Evol. 2016;92: 60–79. doi: 10.1016/j.jhevol.2015.12.004 PubMed DOI
Straehl FR, Scheyer TM, Forasiepi AM, MacPhee RD, Sánchez-Villagra MR. Evolutionary patterns of bone histology and bone compactness in Xenarthran Mammal long bones. PLoS One. 2013;8. doi: 10.1371/journal.pone.0069275 PubMed DOI PMC
Heck CT, Varricchio DJ, Gaudin TJ, Woodward HN, Horner JR. Ontogenetic changes in the long bone microstructure in the nine-banded armadillo (Dasypus novemcinctus). PLoS One. 2019;14: 1–24. doi: 10.1371/journal.pone.0215655 PubMed DOI PMC
Chinsamy-Turan A. The Microstructure of bones and teeth of nonmammalian therapsids. Foreruners of Mammals. Indiana University Press; 2012. pp. 65–90.
Hurum JH, Chinsamy-Turan A. The radiation, bone histology, and biology of early mammals. Forerruners of Mammals. Indiana University Press; 2012. pp. 249–270. http://www.mediafire.com/?6b7ak67x7bc0p56
Legendre LJ, Botha-Brink J. Digging the compromise: Investigating the link between limb bone histology and fossoriality in the aardvark (Orycteropus afer). PeerJ. 2018;2018: 1–40. doi: 10.7717/peerj.5216 PubMed DOI PMC
Armella MA, Nasif NL, Cerdeño E. Small-sized mesotheriines (Mesotheriidae, Notoungulata) from Northwestern Argentina: Systematic, chronological, and paleobiogeographic implications. J South Am Earth Sci. 2018;83: 14–26. doi: 10.1016/j.jsames.2018.02.002 DOI
Cerdeño E, Schmidt GI. Milk molars or extra premolars in Mesotheriinae (Mesotheriidae, Notoungulata): New insights into an old controversy. Geobios. 2013;46: 195–202. doi: 10.1016/j.geobios.2012.10.014 DOI
Castanet J. Time recording in bone microstructures of endothermic animals; functional relationships. Comptes Rendus—Palevol. 2006;5: 629–636. doi: 10.1016/j.crpv.2005.10.006 DOI
Hamar MA. Prodanascu. Age determination in Spalax microphthalmus (Rodentia, Spalacidae). Ann Zool Fennici. 1971;8: 60–63.
Puzachenko A. Age determination of Spalax microphthalmus (Rodentia, Spalacidae). Zool Zhurnal. 1991;70: 113–124.
Klevezal GA. Recording structures of mammals. Determination of age and reconstruction of life history. Rotterdam: Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. 1996.
Castro N, Bostelmann E, Moreno K, García M. Stratigraphy and paleontology of Caragua, Arica and Parinacota regions, Chile, part 1: lithostratigraphy and depositional environments of the late Miocene sedimentary sequence. Actas del XV Congr Geológico Chil. 2018.
Schlunegger F, Kober F, Zeilinger G, von Rotz R. Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19 and 21°S latitude, northern Chile. Int J Earth Sci. 2010;99: 123–137. doi: 10.1007/s00531-010-0572-8 DOI
Schlunegger F, Norton KP, Delunel R, Ehlers TA, Madella A. Late Miocene increase in precipitation in the Western Cordillera of the Andes between 18–19°S latitudes inferred from shifts in sedimentation patterns. Earth Planet Sci Lett. 2017;462: 157–168. doi: 10.1016/j.epsl.2017.01.002 DOI
Prámparo MB, Antoine PO, Marivaux L, Andrade Flores R, Fernández-Monescillo M, Boscaini A, et al.. Occurrence of Cyclusphaera scabrata in Achiri (late middle-early late Miocene?, Bolivian Altiplano): Paleogeographical implication. J South Am Earth Sci. 2022;119. doi: 10.1016/j.jsames.2022.103990 DOI
Evenstar LA, Mather AE, Hartley AJ. Using spatial patterns of fluvial incision to constrain continental-scale uplift in the Andes. Glob Planet Change. 2020;186: 103119. doi: 10.1016/j.gloplacha.2020.103119 DOI
Rothschild BM, Martin LD. Paleopathology: disease in the fossil record. CRC Press. 1993.
Lyras GA, Giannakopoulou A, Lillis T, van der Geer AAE. Paradise lost: Evidence for a devastating metabolic bone disease in an insular Pleistocene deer. Int J Paleopathol. 2019;24: 213–226. doi: 10.1016/j.ijpp.2018.12.003 PubMed DOI
Patterson BR, Power VA. Contributions of forage competition, harvest, and climate fluctuation to changes in population growth of northern white-tailed deer. Oecologia. 2002;130: 62–71. doi: 10.1007/s004420100783 PubMed DOI
Villarroel C. Edades y correlaciones de algunas unidades litoestratigráficas del Altiplano Boliviano y estudio de algunos representantes mesotheriinos. Rev la Acad Nac Ciencias Boliv. 1978;1: 159–170.
Oiso Y. New land mammal locality of middle Miocene (Colloncuran) age from Nazareno, southern Bolivia, p. 653–672. Suárez-Soruco, R. (ed.), Yacimientos Petrolíferos Fiscales Bolivianos, Santa Cruz. In: Suárez-Soruco R, editor. Fósiles y Facies de Bolivia. 1991. pp. 653–672.
Croft DA. Notoungulata and Litopterna of the Early Miocene Chucal Fauna, Northern Chile. Fieldiana Geol. 2004;1: 1–52. doi: 10.3158/0096-2651(2004)50[1:nalote]2.0.co;2 DOI
Croft DA. The middle Miocene (Laventan) Quebrada Honda Fauna, southern Bolivia and a description of its notoungulates. Palaeontology. 2007;50: 277–303. doi: 10.1111/j.1475-4983.2006.00610.x DOI
Townsend B, Croft D a. Middle Miocene Mesotheriine diversity at Cerdas, Bolivia and a reconsideration of Plesiotypotherium minus. Palaeontol Electron. 2010;13: 1A–36. Available: http://www.uv.es/pe/2010_1/192/192.pdf
Rodrigues HG, Cornette R, Clavel J, Cassini G, Bhullar BAS, Fernández-Monescillo M, et al.. Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates. R Soc Open Sci. 2018;5: 171816. doi: 10.1098/rsos.171816 PubMed DOI PMC