Decellularization of Porcine Carotid Arteries: From the Vessel to the High-Quality Scaffold in Five Hours
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35651544
PubMed Central
PMC9150822
DOI
10.3389/fbioe.2022.833244
PII: 833244
Knihovny.cz E-zdroje
- Klíčová slova
- ECM proteins, endothelial cell adhesion, mechanical properties, optimized decellularization, porcine carotid artery, scaffold quality,
- Publikační typ
- časopisecké články MeSH
The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Surgery Faculty of Medicine in Pilsen Charles University Pilsen Czechia
New Technologies for Information Society NTIS University of West Bohemia Pilsen Czechia
Zobrazit více v PubMed
Amini M., Niemi E., Hisdal J., Kalvøy H., Tronstad C., Scholz H., et al. (2020). Monitoring the Quality of Frozen-Thawed Venous Segments Using Bioimpedance Spectroscopy. Physiol. Meas. 41 (4), 044008. 10.1088/1361-6579/ab85b7 PubMed DOI
Cai W.-W., Gu Y. J., Wang X.-N., Chen C.-Z. (2009). Heparin Coating of Small-Caliber Decellularized Xenografts Reduces Macrophage Infiltration and Intimal Hyperplasia. Artif. Organs 33 (6), 448–455. 10.1111/j.1525-1594.2009.00748.x PubMed DOI
Cai Z., Gu Y., Cheng J., Li J., Xu Z., Xing Y., et al. (2019). Decellularization, Cross-Linking and Heparin Immobilization of Porcine Carotid Arteries for Tissue Engineering Vascular Grafts. Cell Tissue Bank 20 (4), 569–578. 10.1007/s10561-019-09792-5 PubMed DOI
Cai Z., Gu Y., Xiao Y., Wang C., Wang Z. (2020). Porcine Carotid Arteries Decellularized with a Suitable Concentration Combination of Triton X-100 and Sodium Dodecyl Sulfate for Tissue Engineering Vascular Grafts. Cell Tissue Bank 22, 277–286. 10.1007/s10561-020-09876-7 PubMed DOI
Carrabba M., Madeddu P. (2018). Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Front. Bioeng. Biotechnol. 6, 41. 10.3389/fbioe.2018.00041 PubMed DOI PMC
Chandra P., Atala A. (2019). Engineering Blood Vessels and Vascularized Tissues: Technology Trends and Potential Clinical Applications. Clin. Sci. 133 (9), 1115–1135. 10.1042/CS20180155 PubMed DOI
Chemla E. S., Morsy M. (2008). Randomized Clinical Trial Comparing Decellularized Bovine Ureter with Expanded Polytetrafluoroethylene for Vascular Access. Br. J. Surg. 96 (1), 34–39. 10.1002/bjs.6434 PubMed DOI
Cheng J., Wang C., Gu Y. (2019). Combination of Freeze-Thaw with Detergents: A Promising Approach to the Decellularization of Porcine Carotid Arteries. Bme 30, 191–205. 10.3233/BME-191044 PubMed DOI
Conklin B. S., Richter E. R., Kreutziger K. L., Zhong D.-S., Chen C. (2002). Development and Evaluation of a Novel Decellularized Vascular Xenograft. Med. Eng. Phys. 24 (3), 173–183. 10.1016/S1350-4533(02)00010-3 PubMed DOI
Dahan N., Zarbiv G., Sarig U., Karram T., Hoffman A., MacHluf M. (2012). Porcine Small Diameter Arterial Extracellular Matrix Supports Endothelium Formation and Media Remodeling Forming a Promising Vascular Engineered Biograft. Tissue Eng. A 18 (3–4), 411–422. 10.1089/ten.tea.2011.0173 PubMed DOI
Dahl S. L. M., Koh J., Prabhakar V., Niklason L. E. (2003). Decellularized Native and Engineered Arterial Scaffolds for Transplantation. Cel Transpl. 12 (6), 659–666. 10.3727/000000003108747136 PubMed DOI
Fayon A., Menu P., El Omar R. (2021). Cellularized Small-Caliber Tissue-Engineered Vascular Grafts: Looking for the Ultimate Gold Standard. Npj Regen. Med. 6 (1), 46. 10.1038/s41536-021-00155-x PubMed DOI PMC
Gabriela Espinosa M., Catalin Staiculescu M., Kim J., Marin E., Wagenseil J. E. (2018). Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J. Biomech. Eng. 140 (2), 0208031–02080313. 10.1115/1.4038704 PubMed DOI PMC
Gandhi N. S., Mancera R. L. (2008). The Structure of Glycosaminoglycans and Their Interactions with Proteins. Chem. Biol. Drug Des. 72 (6), 455–482. 10.1111/j.1747-0285.2008.00741.x PubMed DOI
Gilpin A., Yang Y. (20172017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed. Res. Int. 2017, 1–13. 10.1155/2017/9831534 PubMed DOI PMC
Gilpin S. E., Guyette J. P., Gonzalez G., Ren X., Asara J. M., Mathisen D. J., et al. (2014). Perfusion Decellularization of Human and Porcine Lungs: Bringing the Matrix to Clinical Scale. J. Heart Lung Transplant. 33 (3), 298–308. 10.1016/j.healun.2013.10.030 PubMed DOI
Grandi C., Baiguera S., Martorina F., Lora S., Amistà P., Dalzoppo D., et al. (2011). Decellularized Bovine Reinforced Vessels for Small-Diameter Tissue-Engineered Vascular Grafts. Int. J. Mol. Med. 28 (3), 315–325. 10.3892/ijmm.2011.720 PubMed DOI
Gu Y., Wang F., Wang R., Li J., Wang C., Li L., et al. (2018). Preparation and Evaluation of Decellularized Porcine Carotid Arteries Cross-Linked by Genipin: The Preliminary Results. Cell Tissue Bank 19 (3), 311–321. 10.1007/s10561-017-9675-9 PubMed DOI
Holzapfel G. A., Gasser T. C., Ogden R. W. (2000). A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. J. Elasticity 61 (1–3), 1–48. 10.1023/A:1010835316564 DOI
Holzapfel G. A., Sommer G., Gasser C. T., Regitnig P. (2005). Determination of Layer-specific Mechanical Properties of Human Coronary Arteries with Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling. Am. J. Physiology-Heart Circulatory Physiol. 289 (5 58-5), H2048–H2058. 10.1152/ajpheart.00934.2004 PubMed DOI
Ilanlou S., Khakbiz M., Amoabediny G., Mohammadi J., Rabbani H. (2019). Carboxymethyl Kappa Carrageenan‐modified Decellularized Small‐diameter Vascular Grafts Improving Thromboresistance Properties. J. Biomed. Mater. Res. 107 (8), 1690–1701. 10.1002/jbm.a.36684 PubMed DOI
Junqueira L. C. U., Bignolas G., Brentani R. R. (1979). Picrosirius Staining Plus Polarization Microscopy, a Specific Method for Collagen Detection in Tissue Sections. Histochem. J. 11 (4), 447–455. 10.1007/BF01002772 PubMed DOI
Kajbafzadeh A.-M., Khorramirouz R., Kameli S. M., Hashemi J., Bagheri A., Amin B. (2017). Decellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation. BioResearch Open Access 6 (1), 74–84. 10.1089/biores.2016.0040 PubMed DOI PMC
Kochová P., Cimrman R., Jansová M., Michalová K., Kalis V., Kubíková T., et al. (2019). The Histological Microstructure and In Vitro Mechanical Properties of the Human Female Postmenopausal Perineal Body. Menopause 26 (1), 66–77. 10.1097/GME.0000000000001166 PubMed DOI
Kochová P., Kuncová J., Švíglerová J., Cimrman R., Miklíková M., Liška V., et al. (2012). The Contribution of Vascular Smooth Muscle, Elastin and Collagen on the Passive Mechanics of Porcine Carotid Arteries. Physiol. Meas. 33 (8), 1335–1351. 10.1088/0967-3334/33/8/1335 PubMed DOI
Kocová J. (1970). Overall Staining of Connective Tissue and the Muscular Layer of Vessels. Folia Morphologica 18 (3), 293–295. PubMed
Kubíková T., Kochová P., Brázdil J., Špatenka J., Burkert J., Králíčková M., et al. (2017). The Composition and Biomechanical Properties of Human Cryopreserved Aortas, Pulmonary Trunks, and Aortic and Pulmonary Cusps. Ann. Anat. - Anatomischer Anzeiger 212, 17–26. 10.1016/j.aanat.2017.03.004 PubMed DOI
Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., et al. (2014). Picrosirius Red Staining. J. Histochem. Cytochem. 62 (10), 751–758. 10.1369/0022155414545787 PubMed DOI
Lepedda A. J., Nieddu G., Formato M., Baker M. B., Fernández-Pérez J., Moroni L. (2021). Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front. Chem. 9 (May), 1–21. 10.3389/fchem.2021.680836 PubMed DOI PMC
Li D., Xin Z., Wan J., Ma X., Xin Y., Gong D., et al. (2016). Decellularized Sheep Internal Carotid Arteries as a Tissue-Engineered Small-Diameter Vascular Scaffold. Int. J. Clin. Exp. Med. 9 (6), 9983–9991.
Lindsey P., Echeverria A., Cheung M., Kfoury E., Bechara C. F., Lin P. H. (2018). Lower Extremity Bypass Using Bovine Carotid Artery Graft (Artegraft): An Analysis of 124 Cases with Long-Term Results. World J. Surg. 42 (1), 295–301. 10.1007/s00268-017-4161-x PubMed DOI
López-Ruiz E., Venkateswaran S., Perán M., Jiménez G., Pernagallo S., Díaz-Mochón J. J., et al. (2017). Poly(Ethylmethacrylate-Co-Diethylaminoethyl Acrylate) Coating Improves Endothelial Re-population, Bio-Mechanical and Anti-thrombogenic Properties of Decellularized Carotid Arteries for Blood Vessel Replacement. Sci. Rep. 7 (1), 1–14. 10.1038/s41598-017-00294-6 PubMed DOI PMC
Massaro M. S., Pálek R., Rosendorf J., Červenková L., Liška V., Moulisová V. (2021a). Decellularized Xenogeneic Scaffolds in Transplantation and Tissue Engineering: Immunogenicity versus Positive Cell Stimulation. Mater. Sci. Eng. C 127, 112203. 10.1016/j.msec.2021.112203 PubMed DOI
Massaro M. S., Pálek R., Rosendorf J., Malečková A., Červenková L., Singh R. K., et al. (2021b). Recellularization of Decellularized Porcine Caval Veins. Biomed. Sci. Eng. 4 (s1), 2–3. 10.4081/bse.2021.181 DOI
McFetridge P. S., Daniel J. W., Bodamyali T., Horrocks M., Chaudhuri J. B. (2004). Preparation of Porcine Carotid Arteries for Vascular Tissue Engineering Applications. J. Biomed. Mater. Res. 70A (2), 224–234. 10.1002/jbm.a.30060 PubMed DOI
Mendoza-Novelo B., Avila E. E., Cauich-Rodríguez J. V., Jorge-Herrero E., Rojo F. J., Guinea G. V., et al. (2011). Decellularization of Pericardial Tissue and its Impact on Tensile Viscoelasticity and Glycosaminoglycan Content. Acta Biomater. 7 (3), 1241–1248. 10.1016/j.actbio.2010.11.017 PubMed DOI
Moulisová V., Jiřík M., Schindler C., Červenková L., Pálek R., Rosendorf J., et al. (2020). Novel Morphological Multi-Scale Evaluation System for Quality Assessment of Decellularized Liver Scaffolds. J. Tissue Eng. 11, 204173142092112. 10.1177/2041731420921121 PubMed DOI PMC
Nagaoka Y., Yamada H., Kimura T., Kishida A., Fujisato T., Takakuda K. (2014). Reconstruction of Small Diameter Arteries Using Decellularized Vascular Scaffolds. J. Med. Dent Sci. 61 (1), 33–40. 10.11480/610105 PubMed DOI
Neff L. P., Tillman B. W., Yazdani S. K., Machingal M. A., Yoo J. J., Soker S., et al. (2011). Vascular Smooth Muscle Enhances Functionality of Tissue-Engineered Blood Vessels In Vivo . J. Vasc. Surg. 53 (2), 426–434. 10.1016/j.jvs.2010.07.054 PubMed DOI
Neil D. A. H., Lynch S. V., Hardie I. R., Effeney D. J. (2002). Cold Storage Preservation and Warm Ischaemic Injury to Isolated Arterial Segments: Endothelial Cell Injury. Am. J. Transplant. 2 (5), 400–409. 10.1034/j.1600-6143.2002.20502.x PubMed DOI
Parmaksiz M., Dogan A., Odabas S., Elçin A. E., Elçin Y. M. (2016). Clinical Applications of Decellularized Extracellular Matrices for Tissue Engineering and Regenerative Medicine. Biomed. Mater. 11 (2), 022003. 10.1088/1748-6041/11/2/022003 PubMed DOI
Porzionato A., Stocco E., Barbon S., Grandi F., Macchi V., De Caro R. (2018). Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Ijms 19 (12), 4117. 10.3390/ijms19124117 PubMed DOI PMC
Quint C., Kondo Y., Manson R. J., Lawson J. H., Dardik A., Niklason L. E. (2011). Decellularized Tissue-Engineered Blood Vessel as an Arterial Conduit. Proc. Natl. Acad. Sci. U.S.A. 108 (22), 9214–9219. 10.1073/pnas.1019506108 PubMed DOI PMC
Rachev A., Hayashi K. (1999). Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries. Ann. Biomed. Eng. 27 (4), 459–468. 10.1114/1.191 PubMed DOI
Roy S., Silacci P., Stergiopulos N. (2005). Biomechanical Proprieties of Decellularized Porcine Common Carotid Arteries. Am. J. Physiology-Heart Circulatory Physiol. 289 (4 58-4), H1567–H1576. 10.1152/ajpheart.00564.2004 PubMed DOI
Schmidt C. E., Baier J. M. (2000). Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering. Biomaterials 21 (22), 2215–2231. 10.1016/S0142-9612(00)00148-4 PubMed DOI
Seiffert N., Tang P., Keshi E., Reutzel-Selke A., Moosburner S., Everwien H., et al. (2021). In Vitro Recellularization of Decellularized Bovine Carotid Arteries Using Human Endothelial Colony Forming Cells. J. Biol. Eng. 15 (1), 1–15. 10.1186/s13036-021-00266-5 PubMed DOI PMC
Sheridan W. S., Duffy G. P., Murphy B. P. (2012). Mechanical Characterization of a Customized Decellularized Scaffold for Vascular Tissue Engineering. J. Mech. Behav. Biomed. Mater. 8, 58–70. 10.1016/j.jmbbm.2011.12.003 PubMed DOI
Sheridan W. S., Grant O. B., Duffy G. P., Murphy B. P. (2014). The Application of a Thermoresponsive Chitosan/β-GP Gel to Enhance Cell Repopulation of Decellularized Vascular Scaffolds. J. Biomed. Mater. Res. 102 (8), 1700–1710. 10.1002/jbm.b.33138 PubMed DOI
Tenreiro M. F., Almeida H. V., Calmeiro T., Fortunato E., Ferreira L., Alves P. M., et al. (2021). Interindividual Heterogeneity Affects the Outcome of Human Cardiac Tissue Decellularization. Sci. Rep. 11 (1), 1–11. 10.1038/s41598-021-00226-5 PubMed DOI PMC
Tomášek P., Tonar Z., Grajciarová M., Kural T., Turek D., Horáková J., et al. (2020). Histological Mapping of Porcine Carotid Arteries - an Animal Model for the Assessment of Artificial Conduits Suitable for Coronary Bypass Grafting in Humans. Ann. Anat. - Anatomischer Anzeiger 228, 151434. 10.1016/j.aanat.2019.151434 PubMed DOI
Uygun B. E., Soto-Gutierrez A., Yagi H., Izamis M.-L., Guzzardi M. A., Shulman C., et al. (2010). Organ Reengineering through Development of a Transplantable Recellularized Liver Graft Using Decellularized Liver Matrix. Nat. Med. 16 (7), 814–820. 10.1038/nm.2170 PubMed DOI PMC
Wang F., Zhang J., Wang R., Gu Y., Li J., Wang C. (2017). Triton X-100 Combines with Chymotrypsin: A More Promising Protocol to Prepare Decellularized Porcine Carotid Arteries. Bme 28 (5), 531–543. 10.3233/BME-171694 PubMed DOI
Welch J., Wallace J., Lansley A. B., Roper C. (2021). Evaluation of the Toxicity of Sodium Dodecyl Sulphate (SDS) in the MucilAir Human Airway Model In Vitro . Regul. Toxicol. Pharmacol. 125 (April), 105022. 10.1016/j.yrtph.2021.105022 PubMed DOI
Zhou M., Liu Z., Wei Z., Liu C., Qiao T., Ran F., et al. (2009). Development and Validation of Small-Diameter Vascular Tissue from a Decellularized Scaffold Coated with Heparin and Vascular Endothelial Growth Factor. Artif. Organs 33 (3), 230–239. 10.1111/j.1525-1594.2009.00713.x PubMed DOI
Zvarova B., Uhl F. E., Uriarte J. J., Borg Z. D., Coffey A. L., Bonenfant N. R., et al. (2016). Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue Eng. C: Methods 22 (5), 418–428. 10.1089/ten.tec.2015.0439 PubMed DOI PMC