Decellularization of Porcine Carotid Arteries: From the Vessel to the High-Quality Scaffold in Five Hours

. 2022 ; 10 () : 833244. [epub] 20220516

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35651544

The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.

Zobrazit více v PubMed

Amini M., Niemi E., Hisdal J., Kalvøy H., Tronstad C., Scholz H., et al. (2020). Monitoring the Quality of Frozen-Thawed Venous Segments Using Bioimpedance Spectroscopy. Physiol. Meas. 41 (4), 044008. 10.1088/1361-6579/ab85b7 PubMed DOI

Cai W.-W., Gu Y. J., Wang X.-N., Chen C.-Z. (2009). Heparin Coating of Small-Caliber Decellularized Xenografts Reduces Macrophage Infiltration and Intimal Hyperplasia. Artif. Organs 33 (6), 448–455. 10.1111/j.1525-1594.2009.00748.x PubMed DOI

Cai Z., Gu Y., Cheng J., Li J., Xu Z., Xing Y., et al. (2019). Decellularization, Cross-Linking and Heparin Immobilization of Porcine Carotid Arteries for Tissue Engineering Vascular Grafts. Cell Tissue Bank 20 (4), 569–578. 10.1007/s10561-019-09792-5 PubMed DOI

Cai Z., Gu Y., Xiao Y., Wang C., Wang Z. (2020). Porcine Carotid Arteries Decellularized with a Suitable Concentration Combination of Triton X-100 and Sodium Dodecyl Sulfate for Tissue Engineering Vascular Grafts. Cell Tissue Bank 22, 277–286. 10.1007/s10561-020-09876-7 PubMed DOI

Carrabba M., Madeddu P. (2018). Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Front. Bioeng. Biotechnol. 6, 41. 10.3389/fbioe.2018.00041 PubMed DOI PMC

Chandra P., Atala A. (2019). Engineering Blood Vessels and Vascularized Tissues: Technology Trends and Potential Clinical Applications. Clin. Sci. 133 (9), 1115–1135. 10.1042/CS20180155 PubMed DOI

Chemla E. S., Morsy M. (2008). Randomized Clinical Trial Comparing Decellularized Bovine Ureter with Expanded Polytetrafluoroethylene for Vascular Access. Br. J. Surg. 96 (1), 34–39. 10.1002/bjs.6434 PubMed DOI

Cheng J., Wang C., Gu Y. (2019). Combination of Freeze-Thaw with Detergents: A Promising Approach to the Decellularization of Porcine Carotid Arteries. Bme 30, 191–205. 10.3233/BME-191044 PubMed DOI

Conklin B. S., Richter E. R., Kreutziger K. L., Zhong D.-S., Chen C. (2002). Development and Evaluation of a Novel Decellularized Vascular Xenograft. Med. Eng. Phys. 24 (3), 173–183. 10.1016/S1350-4533(02)00010-3 PubMed DOI

Dahan N., Zarbiv G., Sarig U., Karram T., Hoffman A., MacHluf M. (2012). Porcine Small Diameter Arterial Extracellular Matrix Supports Endothelium Formation and Media Remodeling Forming a Promising Vascular Engineered Biograft. Tissue Eng. A 18 (3–4), 411–422. 10.1089/ten.tea.2011.0173 PubMed DOI

Dahl S. L. M., Koh J., Prabhakar V., Niklason L. E. (2003). Decellularized Native and Engineered Arterial Scaffolds for Transplantation. Cel Transpl. 12 (6), 659–666. 10.3727/000000003108747136 PubMed DOI

Fayon A., Menu P., El Omar R. (2021). Cellularized Small-Caliber Tissue-Engineered Vascular Grafts: Looking for the Ultimate Gold Standard. Npj Regen. Med. 6 (1), 46. 10.1038/s41536-021-00155-x PubMed DOI PMC

Gabriela Espinosa M., Catalin Staiculescu M., Kim J., Marin E., Wagenseil J. E. (2018). Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J. Biomech. Eng. 140 (2), 0208031–02080313. 10.1115/1.4038704 PubMed DOI PMC

Gandhi N. S., Mancera R. L. (2008). The Structure of Glycosaminoglycans and Their Interactions with Proteins. Chem. Biol. Drug Des. 72 (6), 455–482. 10.1111/j.1747-0285.2008.00741.x PubMed DOI

Gilpin A., Yang Y. (20172017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed. Res. Int. 2017, 1–13. 10.1155/2017/9831534 PubMed DOI PMC

Gilpin S. E., Guyette J. P., Gonzalez G., Ren X., Asara J. M., Mathisen D. J., et al. (2014). Perfusion Decellularization of Human and Porcine Lungs: Bringing the Matrix to Clinical Scale. J. Heart Lung Transplant. 33 (3), 298–308. 10.1016/j.healun.2013.10.030 PubMed DOI

Grandi C., Baiguera S., Martorina F., Lora S., Amistà P., Dalzoppo D., et al. (2011). Decellularized Bovine Reinforced Vessels for Small-Diameter Tissue-Engineered Vascular Grafts. Int. J. Mol. Med. 28 (3), 315–325. 10.3892/ijmm.2011.720 PubMed DOI

Gu Y., Wang F., Wang R., Li J., Wang C., Li L., et al. (2018). Preparation and Evaluation of Decellularized Porcine Carotid Arteries Cross-Linked by Genipin: The Preliminary Results. Cell Tissue Bank 19 (3), 311–321. 10.1007/s10561-017-9675-9 PubMed DOI

Holzapfel G. A., Gasser T. C., Ogden R. W. (2000). A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. J. Elasticity 61 (1–3), 1–48. 10.1023/A:1010835316564 DOI

Holzapfel G. A., Sommer G., Gasser C. T., Regitnig P. (2005). Determination of Layer-specific Mechanical Properties of Human Coronary Arteries with Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling. Am. J. Physiology-Heart Circulatory Physiol. 289 (5 58-5), H2048–H2058. 10.1152/ajpheart.00934.2004 PubMed DOI

Ilanlou S., Khakbiz M., Amoabediny G., Mohammadi J., Rabbani H. (2019). Carboxymethyl Kappa Carrageenan‐modified Decellularized Small‐diameter Vascular Grafts Improving Thromboresistance Properties. J. Biomed. Mater. Res. 107 (8), 1690–1701. 10.1002/jbm.a.36684 PubMed DOI

Junqueira L. C. U., Bignolas G., Brentani R. R. (1979). Picrosirius Staining Plus Polarization Microscopy, a Specific Method for Collagen Detection in Tissue Sections. Histochem. J. 11 (4), 447–455. 10.1007/BF01002772 PubMed DOI

Kajbafzadeh A.-M., Khorramirouz R., Kameli S. M., Hashemi J., Bagheri A., Amin B. (2017). Decellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation. BioResearch Open Access 6 (1), 74–84. 10.1089/biores.2016.0040 PubMed DOI PMC

Kochová P., Cimrman R., Jansová M., Michalová K., Kalis V., Kubíková T., et al. (2019). The Histological Microstructure and In Vitro Mechanical Properties of the Human Female Postmenopausal Perineal Body. Menopause 26 (1), 66–77. 10.1097/GME.0000000000001166 PubMed DOI

Kochová P., Kuncová J., Švíglerová J., Cimrman R., Miklíková M., Liška V., et al. (2012). The Contribution of Vascular Smooth Muscle, Elastin and Collagen on the Passive Mechanics of Porcine Carotid Arteries. Physiol. Meas. 33 (8), 1335–1351. 10.1088/0967-3334/33/8/1335 PubMed DOI

Kocová J. (1970). Overall Staining of Connective Tissue and the Muscular Layer of Vessels. Folia Morphologica 18 (3), 293–295. PubMed

Kubíková T., Kochová P., Brázdil J., Špatenka J., Burkert J., Králíčková M., et al. (2017). The Composition and Biomechanical Properties of Human Cryopreserved Aortas, Pulmonary Trunks, and Aortic and Pulmonary Cusps. Ann. Anat. - Anatomischer Anzeiger 212, 17–26. 10.1016/j.aanat.2017.03.004 PubMed DOI

Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., et al. (2014). Picrosirius Red Staining. J. Histochem. Cytochem. 62 (10), 751–758. 10.1369/0022155414545787 PubMed DOI

Lepedda A. J., Nieddu G., Formato M., Baker M. B., Fernández-Pérez J., Moroni L. (2021). Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front. Chem. 9 (May), 1–21. 10.3389/fchem.2021.680836 PubMed DOI PMC

Li D., Xin Z., Wan J., Ma X., Xin Y., Gong D., et al. (2016). Decellularized Sheep Internal Carotid Arteries as a Tissue-Engineered Small-Diameter Vascular Scaffold. Int. J. Clin. Exp. Med. 9 (6), 9983–9991.

Lindsey P., Echeverria A., Cheung M., Kfoury E., Bechara C. F., Lin P. H. (2018). Lower Extremity Bypass Using Bovine Carotid Artery Graft (Artegraft): An Analysis of 124 Cases with Long-Term Results. World J. Surg. 42 (1), 295–301. 10.1007/s00268-017-4161-x PubMed DOI

López-Ruiz E., Venkateswaran S., Perán M., Jiménez G., Pernagallo S., Díaz-Mochón J. J., et al. (2017). Poly(Ethylmethacrylate-Co-Diethylaminoethyl Acrylate) Coating Improves Endothelial Re-population, Bio-Mechanical and Anti-thrombogenic Properties of Decellularized Carotid Arteries for Blood Vessel Replacement. Sci. Rep. 7 (1), 1–14. 10.1038/s41598-017-00294-6 PubMed DOI PMC

Massaro M. S., Pálek R., Rosendorf J., Červenková L., Liška V., Moulisová V. (2021a). Decellularized Xenogeneic Scaffolds in Transplantation and Tissue Engineering: Immunogenicity versus Positive Cell Stimulation. Mater. Sci. Eng. C 127, 112203. 10.1016/j.msec.2021.112203 PubMed DOI

Massaro M. S., Pálek R., Rosendorf J., Malečková A., Červenková L., Singh R. K., et al. (2021b). Recellularization of Decellularized Porcine Caval Veins. Biomed. Sci. Eng. 4 (s1), 2–3. 10.4081/bse.2021.181 DOI

McFetridge P. S., Daniel J. W., Bodamyali T., Horrocks M., Chaudhuri J. B. (2004). Preparation of Porcine Carotid Arteries for Vascular Tissue Engineering Applications. J. Biomed. Mater. Res. 70A (2), 224–234. 10.1002/jbm.a.30060 PubMed DOI

Mendoza-Novelo B., Avila E. E., Cauich-Rodríguez J. V., Jorge-Herrero E., Rojo F. J., Guinea G. V., et al. (2011). Decellularization of Pericardial Tissue and its Impact on Tensile Viscoelasticity and Glycosaminoglycan Content. Acta Biomater. 7 (3), 1241–1248. 10.1016/j.actbio.2010.11.017 PubMed DOI

Moulisová V., Jiřík M., Schindler C., Červenková L., Pálek R., Rosendorf J., et al. (2020). Novel Morphological Multi-Scale Evaluation System for Quality Assessment of Decellularized Liver Scaffolds. J. Tissue Eng. 11, 204173142092112. 10.1177/2041731420921121 PubMed DOI PMC

Nagaoka Y., Yamada H., Kimura T., Kishida A., Fujisato T., Takakuda K. (2014). Reconstruction of Small Diameter Arteries Using Decellularized Vascular Scaffolds. J. Med. Dent Sci. 61 (1), 33–40. 10.11480/610105 PubMed DOI

Neff L. P., Tillman B. W., Yazdani S. K., Machingal M. A., Yoo J. J., Soker S., et al. (2011). Vascular Smooth Muscle Enhances Functionality of Tissue-Engineered Blood Vessels In Vivo . J. Vasc. Surg. 53 (2), 426–434. 10.1016/j.jvs.2010.07.054 PubMed DOI

Neil D. A. H., Lynch S. V., Hardie I. R., Effeney D. J. (2002). Cold Storage Preservation and Warm Ischaemic Injury to Isolated Arterial Segments: Endothelial Cell Injury. Am. J. Transplant. 2 (5), 400–409. 10.1034/j.1600-6143.2002.20502.x PubMed DOI

Parmaksiz M., Dogan A., Odabas S., Elçin A. E., Elçin Y. M. (2016). Clinical Applications of Decellularized Extracellular Matrices for Tissue Engineering and Regenerative Medicine. Biomed. Mater. 11 (2), 022003. 10.1088/1748-6041/11/2/022003 PubMed DOI

Porzionato A., Stocco E., Barbon S., Grandi F., Macchi V., De Caro R. (2018). Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Ijms 19 (12), 4117. 10.3390/ijms19124117 PubMed DOI PMC

Quint C., Kondo Y., Manson R. J., Lawson J. H., Dardik A., Niklason L. E. (2011). Decellularized Tissue-Engineered Blood Vessel as an Arterial Conduit. Proc. Natl. Acad. Sci. U.S.A. 108 (22), 9214–9219. 10.1073/pnas.1019506108 PubMed DOI PMC

Rachev A., Hayashi K. (1999). Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries. Ann. Biomed. Eng. 27 (4), 459–468. 10.1114/1.191 PubMed DOI

Roy S., Silacci P., Stergiopulos N. (2005). Biomechanical Proprieties of Decellularized Porcine Common Carotid Arteries. Am. J. Physiology-Heart Circulatory Physiol. 289 (4 58-4), H1567–H1576. 10.1152/ajpheart.00564.2004 PubMed DOI

Schmidt C. E., Baier J. M. (2000). Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering. Biomaterials 21 (22), 2215–2231. 10.1016/S0142-9612(00)00148-4 PubMed DOI

Seiffert N., Tang P., Keshi E., Reutzel-Selke A., Moosburner S., Everwien H., et al. (2021). In Vitro Recellularization of Decellularized Bovine Carotid Arteries Using Human Endothelial Colony Forming Cells. J. Biol. Eng. 15 (1), 1–15. 10.1186/s13036-021-00266-5 PubMed DOI PMC

Sheridan W. S., Duffy G. P., Murphy B. P. (2012). Mechanical Characterization of a Customized Decellularized Scaffold for Vascular Tissue Engineering. J. Mech. Behav. Biomed. Mater. 8, 58–70. 10.1016/j.jmbbm.2011.12.003 PubMed DOI

Sheridan W. S., Grant O. B., Duffy G. P., Murphy B. P. (2014). The Application of a Thermoresponsive Chitosan/β-GP Gel to Enhance Cell Repopulation of Decellularized Vascular Scaffolds. J. Biomed. Mater. Res. 102 (8), 1700–1710. 10.1002/jbm.b.33138 PubMed DOI

Tenreiro M. F., Almeida H. V., Calmeiro T., Fortunato E., Ferreira L., Alves P. M., et al. (2021). Interindividual Heterogeneity Affects the Outcome of Human Cardiac Tissue Decellularization. Sci. Rep. 11 (1), 1–11. 10.1038/s41598-021-00226-5 PubMed DOI PMC

Tomášek P., Tonar Z., Grajciarová M., Kural T., Turek D., Horáková J., et al. (2020). Histological Mapping of Porcine Carotid Arteries - an Animal Model for the Assessment of Artificial Conduits Suitable for Coronary Bypass Grafting in Humans. Ann. Anat. - Anatomischer Anzeiger 228, 151434. 10.1016/j.aanat.2019.151434 PubMed DOI

Uygun B. E., Soto-Gutierrez A., Yagi H., Izamis M.-L., Guzzardi M. A., Shulman C., et al. (2010). Organ Reengineering through Development of a Transplantable Recellularized Liver Graft Using Decellularized Liver Matrix. Nat. Med. 16 (7), 814–820. 10.1038/nm.2170 PubMed DOI PMC

Wang F., Zhang J., Wang R., Gu Y., Li J., Wang C. (2017). Triton X-100 Combines with Chymotrypsin: A More Promising Protocol to Prepare Decellularized Porcine Carotid Arteries. Bme 28 (5), 531–543. 10.3233/BME-171694 PubMed DOI

Welch J., Wallace J., Lansley A. B., Roper C. (2021). Evaluation of the Toxicity of Sodium Dodecyl Sulphate (SDS) in the MucilAir Human Airway Model In Vitro . Regul. Toxicol. Pharmacol. 125 (April), 105022. 10.1016/j.yrtph.2021.105022 PubMed DOI

Zhou M., Liu Z., Wei Z., Liu C., Qiao T., Ran F., et al. (2009). Development and Validation of Small-Diameter Vascular Tissue from a Decellularized Scaffold Coated with Heparin and Vascular Endothelial Growth Factor. Artif. Organs 33 (3), 230–239. 10.1111/j.1525-1594.2009.00713.x PubMed DOI

Zvarova B., Uhl F. E., Uriarte J. J., Borg Z. D., Coffey A. L., Bonenfant N. R., et al. (2016). Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue Eng. C: Methods 22 (5), 418–428. 10.1089/ten.tec.2015.0439 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...