Strontium isotopes and concentrations in cremated bones suggest an increased salt consumption in Gallo-Roman diet
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
948913
European Research Council - International
PubMed
35660749
PubMed Central
PMC9166795
DOI
10.1038/s41598-022-12880-4
PII: 10.1038/s41598-022-12880-4
Knihovny.cz E-zdroje
- MeSH
- dieta MeSH
- izotopy stroncia * analýza MeSH
- izotopy analýza MeSH
- kosti a kostní tkáň chemie MeSH
- kremace * MeSH
- stroncium analýza MeSH
- tělesné pozůstatky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy stroncia * MeSH
- izotopy MeSH
- stroncium MeSH
The high temperatures reached during cremation lead to the destruction of organic matter preventing the use of traditional isotopic methods for dietary reconstructions. Still, strontium isotope (87Sr/86Sr) and concentration ([Sr]) analyses of cremated human remains offer a novel way to assess changing consumption patterns in past populations that practiced cremation, as evidenced by a large amount of new data obtained from Metal Ages and Gallo-Roman human remains from Destelbergen, Belgium. The Gallo-Roman results show significantly higher [Sr] and a narrower interquartile range in 87Sr/86Sr (0.7093-0.7095), close to the value of modern-day seawater (0.7092). This contrasts with the Metal Ages results, which display lower concentrations and a wider range in 87Sr/86Sr (0.7094-0.7098). This typical Sr signature is also reflected in other sites and is most likely related to an introduction of marine Sr in the form of salt as a food preservative (e.g. salt-rich preserved meat, fish and fish sauce). Paradoxically, this study highlights caution is needed when using 87Sr/86Sr for palaeomobility studies in populations with high salt consumption.
Department of Archaeology Ghent University Sint Pietersnieuwstraat 35 9000 Ghent Belgium
Flemish Heritage Agency Havenlaan 88 5 1000 Brussels Belgium
Radiocarbon Dating Lab Royal Institute for Cultural Heritage Jubelpark 1 1000 Brussels Belgium
Zobrazit více v PubMed
De Laet SJ, et al. Oudheidkundige opgravingen en vondsten in Oost-Vlaanderen V 1969. Provincie Oost-Vlaanderen; 1970.
De Laet SJ, Thoen H, Bourgeois J. Les fouilles du séminaire d’archéologie de la Rijksuniversiteit te Gent à Destelbergen Eenbeekeinde (1960–1984) et l’histoire la plus ancienne de la région de Gent (Gand). I La période préhistorique. Haarlem: De Tempel; 1986.
De Vos S. Het Gallo-romeins grafveld van destelbergen-eenbeekeinde. Een studie van 60 brandrestengraven en 4 ustrina uit de opgravingscampagne van 1998. VOBOV-Info. 2004;59:17–26.
De Logi A, Dalle S, et al. Destelbergen – Panhuisstraat archeologisch onderzoek – 2011. Ename Expertisecentrum voor Erfgoedontsluiting vzw; 2013.
Snoeck C, et al. Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rapid Commun. Mass Spectrom. 2015;29:107–114. doi: 10.1002/rcm.7078. PubMed DOI
De Reu J, De Mulder G, Van Strydonck M, Boudin M, Bourgeois J. 14C dates and spatial statistics: Modeling intrasite spatial dynamics of urnfield cemeteries in Belgium using case study of Destelbergen cemetery. Radiocarbon. 2012;54:635–648. doi: 10.1017/S0033822200047317. DOI
De Clercq W. Roman rural settlements in Flanders. Perspectives on a ‘non-villa’ landscape in extrema Galliarum. In: Roymans N, Derks T, editors. Villa Landscapes in the Roman North. Economy, culture and lifestyles. Amsterdam: Amsterdam University Press; 2011. pp. 235–258.
Sabaux C, et al. Multi-proxy analyses reveal regional cremation practices and social status at the Late Bronze Age site of Herstal, Belgium. J. Archaeol. Sci. 2021;132:105437. doi: 10.1016/j.jas.2021.105437. DOI
Richards MP, Hedges REM, Molleson TI, Vogel JC. Stable isotope analysis reveals variations in human diet at the Poundbury Camp Cemetery site. J. Archaeol. Sci. 1998;25:1247–1252. doi: 10.1006/jasc.1998.0307. DOI
Jay M, Richards MP. British iron age diet: Stable isotopes and other evidence. Proc. Prehist. Soc. 2007;73:169–190. doi: 10.1017/S0079497X0002733X. DOI
Varalli A, et al. Bronze Age innovations and impact on human diet: A multi-isotopic and multi-proxy study of western Switzerland. PLoS ONE. 2021;16:e0245726. doi: 10.1371/journal.pone.0245726. PubMed DOI PMC
Roymans N. Tribal societies in Northern Gaul. An anthropological perspective. Cingula. Amsterdam: Universiteit van Amsterdam; 1990.
Ferdière A. Histoire de l’agriculture en Gaule. 500 a. J.-C/ - 1000 apr. J.-C. Paris: Editions Errance; 2006.
Dobney K, Ervynyck A. To fish or not to fish? evidence for the possible avoidance of fish consumption during the iron age around the North Sea. In: Haselgrove C, Moore T, editors. The Later Iron Age in Britain and Beyond. Oxford: Oxbow Books; 2007. pp. 403–418.
Van Limbergen D. What Romans ate and how much they ate of it. Old and new research on eating habits and dietary proportions in classical antiquity. Rev. Belge Philol. d’hist. 2018;96:1049–1092. doi: 10.3406/rbph.2018.9188. DOI
Lepetz S, Matterne V. Élevage et agriculture dans le Nord de la Gaule durant l’époque gallo-romaine: Une confrontation des données archéologiques et carpologiques. Rev. Archéol Picardie. 2003;1:23–35. doi: 10.3406/pica.2003.2354. DOI
Van Beurden L, Verbruggen F. Archeobotanisch onderzoek aan Romeinse en vroegmiddeleeuwse waterputten in Destelbergen (B) BIAX Consult; 2013.
Kooistra LI. Borderland Farming: Possibilities and Limitations of Farming in the Roman Period and Early Middle Ages Between the Rhine and Meuse. Assen: Van Gorcum; 1996.
van der Veen M, Livarda A, Hill A. New plant foods in roman britain — dispersal and social access. Environ. Archaeol. 2008;13:11–36. doi: 10.1179/174963108X279193. DOI
Zazzo A, Saliège J-F, Lebon M, Lepetz S, Moreau C. Radiocarbon dating of calcined bones: Insights from combustion experiments under natural conditions. Radiocarbon. 2012;54:855–866. doi: 10.1017/S0033822200047500. DOI
Hüls CM, Erlenkeuser H, Nadeau MJ, Grootes PM, Andersen N. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon. 2010;52:587–599. doi: 10.1017/S0033822200045628. DOI
Snoeck C. A Burning Question: Structural and Isotopic Analysis of Cremated Bone in Archaeological Contexts. Oxford: University of Oxford; 2014.
Müldner G. Stable isotopes and diet: Their contribution to Romano-British research. Antiquity. 2013;87:137–149. doi: 10.1017/S0003598X00048675. DOI
Redfern RC, Hamlin C, Athfield NB. Temporal changes in diet: A stable isotope analysis of late Iron Age and Roman Dorset, Britain. J. Archaeol. Sci. 2010;37:1149–1160. doi: 10.1016/j.jas.2009.10.022. DOI
Molleson T. The anthropological evidence for change through Romanisation of the Poundbury population. Antropol. Anz. 1992;50:179–189. doi: 10.1127/anthranz/50/1992/179. PubMed DOI
Cummings C. Meat consumption in roman Britain: The evidence from stable isotopes. Theor. Rom. Archaeol. J. 2009 doi: 10.16995/TRAC2008_73_83. DOI
Van Neer W, Lentacker A. New archaeozoological evidence for the consumption of locally-produced fish sauce in the Northern Provinces of the Roman Empire. Archaeofauna. 1994;3:53–62.
Van Neer W, Ervynck A, Monsieur P. Fish bones and amphorae: Evidence for the production and consumption of salted fish products outside the Mediterranean region. J. Rom. Archaeol. 2010;23:161–195. doi: 10.1017/S104775940000235X. DOI
Monsieur P. Roman amphorae in the Civitas Nerviorum: from the late La Tène period to the Flavians. Rei Cr. Romana Fautorum Acta. 2003;38:353–356.
Kinory J. Salt Production, Distribution and Use in the British Iron Age. Oxford: University of Oxford; 2011. Salt production, distribution and use in the British Iron Age.
Maltby, M. Salt and animal products: Linking production and use in iron age Britain. In Integrating zooarchaeology. In Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, August 2002 (ed. Maltby, M.) 117–122 (Oxbow Books, 2006).
Tsigarida I. Salt in Roman Britain. In: Brigand R, Weller O, editors. Archaeology of Salt. Approaching an Invisible Past. Leiden: Sidestone Press; 2015. pp. 211–220.
Stuart P, Bogaers JE. Nehalennia: Römische Steindenkmäler aus der Oosterschelde bei Colijnsplaat. Leiden: Rijksmuseum van Oudheden; 2001.
De Clercq W. Lokale gemeenschappen in het Imperium Romanum. Transformaties in rurale bewoningsstructuur en materiële cultuur in de landschappen van het noordelijk deel van de civitas Menapiorum. (Provincie Gallia-Belgica, ca. 100 v. Chr. – 400 n. Chr.) Ghent: Ghent University; 2009.
van den Broeke PW. Southern sea salt in the Low Countries. A reconnaissance into the land of the Morini. In: Lodewijckx M, Van Doorselaer A, editors. Archaeological and Historical Aspects of West-European Societies. Album Amicorum André Van Doorselaer, Acta Archaeologica Lovaniensia Monographiae 8. Leuven: Leuven University Press; 1994. pp. 193–205.
Dekoninck MD. Romeinse zoutproductie langs de Menapische kust: Een ingenieus technologische proces. Signa Rom. 2018;7:61–66.
van Beek BL. Salinatores and sigillata: The coastal areas of North-Holland and Flanders and their economic differences in the 1st century AD. Helinium. 1983;23:3–12.
van den Broeke PW. Iron Age sea salt trade in the Lower Rhine area. In: Hill JD, Cumberpatch CG, editors. Different Iron Ages: Studies on the Iron Age in temperate Europe. Oxford: BAR publishing; 1995. pp. 149–162.
Fenner JN, Wright LE. Revisiting the strontium contribution of sea salt in the human diet. J. Archaeol. Sci. 2014;44:99–103. doi: 10.1016/j.jas.2014.01.020. DOI
Montgomery J. Passports from the past: Investigating human dispersals using strontium isotope analysis of tooth enamel. Ann. Hum. Biol. 2010;37:325–346. doi: 10.3109/03014461003649297. PubMed DOI
Roymans, N. & Fokkens, H. Een overzicht van veertig jaar nederzettingsonderzoek in de Lage Landen. In Nederzettingen uit de bronstijd en de vroege ijzertijd in de Lage Landen (eds. Fokkens, H. & Roymans, N.) 1–19 (Rijksdienst voor het Oudheidkundig Bodemonderzoek, 1991).
Jones ME. The End of Roman Britain. New York: Cornell University Press; 1998.
Roymans, N. & Kortlang, F. P. Urnfield symbolism, ancestors and the land in the Lower Rhine Region. in Land and ancestors. Cultural dynamics in the Urnfield period and the Middle Ages in the Southern Netherlands (eds. Theuws, F. & Roymans, N.) 33–62 (1999).
De Mulder G, Bourgeois J. Shifting centres of power and changing elite symbolism in the scheldt fluvial basin during the late bronze age and the iron age. In: Moore T, Armada XL, editors. Atlantic Europe in the First Millennium BC Crossing the Divide. Oxford: Oxford University Press; 2015. pp. 302–318.
Schinkel K. Zwervende Erven: Bewoningssporen in Oss-Ussen uit Bronstijd, Ijzertijd en Romeinse tijd: Opgravingen 1976–1986. Leiden: Universiteit Leiden; 1994.
De Mulder G. Funeraire Rituelen in Het Scheldebekken Tijdens de Late Bronstijd en de Vroege Ijzertijd. De Grafvelden in Hun Maatschappelijke en Sociale Context. Ghent: Ghent University; 2011.
Groot M, Evans J, Albarella U. Mobility of cattle in the iron age and Roman Netherlands. J. Archaeol. Sci. Rep. 2020;32:102416.
Reniere S. Sourcing the Stone in Roman Northern Gaul On the Provenance, Use, and Socio-Economics of Stone Tools in a Stoneless Landscape: The Case of the Northern Civitas Menapiorum. Ghent: Universiteit Gent; 2018.
Snoeck C, Brock F, Schulting RJ. Carbon exchanges between bone apatite and fuels during cremation: Impact on radiocarbon dates. Radiocarbon. 2014;56:591–602. doi: 10.2458/56.17454. DOI
Stamataki E, et al. Is it hot enough? A multi-proxy approach shows variations in cremation conditions during the Metal Ages in Belgium. J. Archaeol. Sci. 2011;136:105509. doi: 10.1016/j.jas.2021.105509. DOI
Harbeck M, et al. Research potential and limitations of trace analyses of cremated remains. Forensic Sci. Int. 2011;204:191–200. doi: 10.1016/j.forsciint.2010.06.004. PubMed DOI
Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: A review. J. Archaeol. Method Theory. 2006;13:135–187. doi: 10.1007/s10816-006-9009-x. DOI
Databank Ondergrond Vlaanderen. https://www.dov.vlaanderen.be/portaal/?module=verkenner.
Schroeder HA, Tipton IH, Nason AP. Trace metals in man: Strontium and barium. J. Chronic Dis. 1972;25:491–517. doi: 10.1016/0021-9681(72)90150-6. PubMed DOI
Underwood EJ. Trace Elements in Human and Animal Nutrition. Amsterdam: Elsevier; 1977.
Burton JH, Douglas Price T. Evaluation of bone strontium as a measure of seafood consumption. Int. J. Osteoarchaeol. 1999;9:233–236. doi: 10.1002/(SICI)1099-1212(199907/08)9:4<233::AID-OA476>3.0.CO;2-S. DOI
Lambert JB, Weydert-Homeyer JM. The fundamental relationship between ancient diet and the organic consituents of bone as derived from feeding experiments. Archaeometry. 1993;35:279–294. doi: 10.1111/j.1475-4754.1993.tb01043.x. DOI
Lahtinen M, Arppe L, Nowell G. Source of strontium in archaeological mobility studies—marine diet contribution to the isotopic composition. Archaeol. Anthropol. Sci. 1993;13:1. doi: 10.1007/s12520-020-01240-w. DOI
Fernández-Crespo T, et al. Multi-isotope evidence for the emergence of cultural alterity in Late Neolithic Europe. Sci. Adv. 2020;6(4):eaay2169. doi: 10.1126/sciadv.aay2169. PubMed DOI PMC
Hess J, Bender ML, Schilling J-G. Evolution of the ratio of strontium-87 to strontium-86 in seawater from cretaceous to present. Science. 1986;231:979–984. doi: 10.1126/science.231.4741.979. PubMed DOI
Epova EN, et al. 87Sr/86Sr isotope ratio and multielemental signatures as indicators of origin of European cured hams: The role of salt. Food Chem. 2018;246:313–322. doi: 10.1016/j.foodchem.2017.10.143. PubMed DOI
Kuhnlein HV. The trace element content of indigenous salts compared with commercially refined substitutes. Ecol. Food Nutr. 1980;10:113–121. doi: 10.1080/03670244.1980.9990626. DOI
Aufderheide AC. Chemical analysis of skeletal remains. In: Iscan MY, Kennedy KAR, editors. Reconstruction of Life from the Skeleton. New York: Alan R. Liss Inc.; 1989. pp. 237–260.
Odum HT. Biogeochemical deposition of strontium. Publ. Inst. Mar. Sci. 1957;IV:38–114.
Sillen A, Kavanagh M. Strontium and paleodietary research: A review. Am. J. Phys. Anthropol. 1982;25:67–90. doi: 10.1002/ajpa.1330250505. DOI
Limburg KE. The biogeochemistry of strontium: A review of H.T. Odum’s contributions. Ecol. Modell. 2004;178:31–33. doi: 10.1016/j.ecolmodel.2003.12.022. DOI
Evans C, Chughtai AY, Blumsohn A, Giles M, Eastell R. The effect of dietary sodium on calcium metabolism in premenopausal and postmenopausal women. Eur. J. Clin. Nutr. 1997;51:394–399. doi: 10.1038/sj.ejcn.1600420. PubMed DOI
Teucher B, et al. Sodium and bone health: Impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J. Bone Miner. Res. 2008;23:1477–1485. doi: 10.1359/jbmr.080408. PubMed DOI
Tiyasatkulkovit W, et al. Excessive salt consumption causes systemic calcium mishandling and worsens microarchitecture and strength of long bones in rats. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-81413-2. PubMed DOI PMC
World Health Organization (WHO). Guideline: Sodium intake for adults and children. (2012). PubMed
Powles J, et al. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3:1–18. doi: 10.1136/bmjopen-2013-003733. PubMed DOI PMC
Dalle S, et al. Preliminary results in the collecting of protohistoric cremation samples for the CRUMBEL project. Lunula Archaeol. Protohist. 2019;27:9–14.
Veselka B, et al. Divergence, diet, and disease: The identification of group identity, landscape use, health, and mobility in the fifth- to sixth-century AD burial community of Echt, the Netherlands. Archaeol. Anthropol. Sci. 2021;13:97. doi: 10.1007/s12520-021-01348-7. DOI
Snoeck C, et al. Towards a biologically available strontium isotope baseline for Ireland. Sci. Total Environ. 2020;712:136248. doi: 10.1016/j.scitotenv.2019.136248. PubMed DOI
de Soto, P. Network analysis to model and analyse roman transport and mobility. Comput. Soc. Sci. Simul. Past (2019). doi:10.1007/978-3-030-04576-0_13.
Pitts M, Versluys M. Globalisation and the Roman World. New York: Cambridge University Press; 2014.
Montgomery J, Evans JA, Cooper RE. Resolving archaeological populations with Sr-isotope mixing models. Appl. Geochem. 2007;22:1502–1514. doi: 10.1016/j.apgeochem.2007.02.009. DOI
Evans JA, Chenery CA, Montgomery J. A summary of strontium and oxygen isotope variation in archaeological human tooth enamel excavated from Britain. J. Anal. At. Spectrom. 2012;27:754–764. doi: 10.1039/c2ja10362a. DOI
Evans JA, Montgomery J, Wildman G, Boulton N. Spatial variations in biosphere 87Sr/86Sr in Britain. J. Geol. Soc. Lond. 2010;167:1–4. doi: 10.1144/0016-76492009-090. DOI
Alonzi E, Pacheco-Forés SI, Gordon GW, Kuijt I, Knudson KJ. New understandings of the sea spray effect and its impact on bioavailable radiogenic strontium isotope ratios in coastal environments. J. Archaeol. Sci. Rep. 2020;33:102462.
Willmes M, et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem. 2018;90:75–86. doi: 10.1016/j.apgeochem.2017.12.025. DOI
Haalebos JK. Ein römisches Getreideschiff in Woerden. Jahrb. Römisch-Ger. Zentral. Mainz. 1996;43:475–509.
Vanhoutte S, et al. De dubbele waterput uit het laat-Romeinse castellum van Oudenburg (prov. West-Vlaanderen): Tafonomie, chronologie en interpretatie. Relicta. 2009;5:9–142. doi: 10.55465/IHDH6922. DOI
Burton JH, Wright LE. Nonlinearity in the relationship between bone Sr/Ca and diet: Paleodietary implications. Am. J. Phys. Anthropol. 1995;96:273–282. doi: 10.1002/ajpa.1330960305. PubMed DOI
Wright LE. Identifying immigrants to Tikal, Guatemala: Defining local variability in strontium isotope ratios of human tooth enamel. J. Archaeol. Sci. 2005;32:555–566. doi: 10.1016/j.jas.2004.11.011. DOI
Kropff, A. An English translation of the Edict on Maximum Prices, also known asthe Price Edict of Diocletian. (Edictum de pretiis rerum venalium). Version 2.1. https://www.academia.edu/23644199/New_English_translation_of_the_Price_Edict_of_Diocletianus (2016).
De Mulder G, Van Strydonck M, Boudin M, Deweirdt E. Een voorlopig overzicht van de 14C-resultaten op gecremeerd bot en houtskool van het urnengrafveld te Destelbergen (provincie Oost-Vlaanderen, België). Lunula. Archaeol. Protohist. 2009;17:65–71.
Weis D, et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophys. Geosystems. 2006;7:Q08006. doi: 10.1029/2006GC001283. DOI
Wojcieszak M, Van den Brande T, Ligovich G, Boudin M. Pretreatment protocols performed at the royal institute for cultural heritage (RICH) prior to AMS 14C measurements. Radiocarbon. 2020;62:e14–e24. doi: 10.1017/RDC.2020.64. DOI
Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Bronk Ramsey C. Methods for summarizing radiocarbon datasets. Radiocarbon. 2017;59:1809–1833. doi: 10.1017/RDC.2017.108. DOI
Reimer PJ, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI
Salesse K, et al. IsoArcH.eu: An open-access and collaborative isotope database for bioarchaeological samples from the Graeco-Roman world and its margins. J. Archaeol. Sci. Reports. 2018;19:1050–1055. doi: 10.1016/j.jasrep.2017.07.030. DOI