Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35678824
PubMed Central
PMC9729329
DOI
10.1007/s00122-022-04122-y
PII: 10.1007/s00122-022-04122-y
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- epigenomika * MeSH
- zemědělství * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Department of Life Sciences Ben Gurion University Beersheba 84105 Israel
Institute of Evolution University of Haifa Abba Khoushy Ave 199 3498838 Haifa Israel
Institute of Field and Vegetable Crops Maksima Gorkog 30 21000 Novi Sad Serbia
Sequentia Biotech SL Carrer de València 08009 Barcelona Spain
Zobrazit více v PubMed
Aaronsohn A. Agricultural and botanical exploration in Palestine. Bull Plant Ind. 1910;180:1–63.
Ahmad A, Zhang Y, Cao XF. Decoding the epigenetic language of plant development. Mol Plant. 2010;3(4):719–728. doi: 10.1093/mp/ssq026. PubMed DOI PMC
Andjelkovic V, Cvejic S, Jocic S, Kondic-Spika A, Marjanovic Jeromela A, Mikic S, Prodanovic S, Radanovic A, Savic Ivanov M, Trkulja D, Miladinovic D. Use of plant genetic resources in crop improvement–example of Serbia. Genet Resour Crop Evol. 2020 doi: 10.1007/s10722-020-01029-9. DOI
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. doi: 10.1126/science.aar7191. PubMed DOI
Aravanopoulos FA. Conservation and monitoring of tree genetic resources in temperate forests. Curr for Rep. 2016;2:119–129. doi: 10.1007/s40725-016-0038-8. DOI
Avni R, Nave M, Barad O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;97:93–97. doi: 10.1126/science.aan0032. PubMed DOI
Avramidou EV, Ganopoulos IV, Doulis AG, et al. Beyond population genetics: natural epigenetic variation in wild cherry (Prunus avium) Tree Genet Genomes. 2015;11:95. doi: 10.1007/s11295-015-0921-7. DOI
Avramidou EV, Doulis AG, Aravanopoulos FA. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene. 2015;562:180–187. doi: 10.1016/j.gene.2015.02.068. PubMed DOI
Avramova Z. Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J. 2015;83(1):149–159. doi: 10.1111/tpj.12832. PubMed DOI
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–159. doi: 10.1146/annurev-arplant-050312-120043. PubMed DOI
Baduel P, Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Phil Trans R Soc. 2021 doi: 10.1098/rstb.2020.0123. PubMed DOI PMC
Banks JA, Masson P, Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 1988;2(11):1364–80. doi: 10.1101/gad.2.11.1364. PubMed DOI
Baroux C, Raissig MT, Grossniklaus U. Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev. 2011;21(2):124–133. doi: 10.1016/j.gde.2011.01.017. PubMed DOI
Baulcombe DC, Dean C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol. 2014;6(9):a019471. doi: 10.1101/cshperspect.a019471. PubMed DOI PMC
Becker C, Hagmann J, Müller J, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480:245–249. doi: 10.1038/nature10555. PubMed DOI
Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J. 2015;83(1):133–148. doi: 10.1111/tpj.12869. PubMed DOI PMC
Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop improvement. Nature. 2017;543(7645):346–354. doi: 10.1038/nature22011. PubMed DOI
Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Curr Opin Plant Biol. 2017;36:103–110. doi: 10.1016/j.pbi.2016.12.007. PubMed DOI PMC
Bewick AJ, Niederhuth CE, Ji L, Rohr NA, Griffin PT, Leebens-Mack J, Schmitz RJ. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 2017;18(1):1–13. doi: 10.1186/s13059-017-1195-1. PubMed DOI PMC
Bonduriansky R, Crean AJ, Day T. The implications of nongenetic inheritance for evolution in changing environments. Evol Appl. 2012;5:192–201. doi: 10.1111/j.1752-4571.2011.00213.x. PubMed DOI PMC
Borges F, Donoghue MTA, LeBlanc C, et al. Loss of Small-RNA-Directed DNA Methylation in the plant cell cycle promotes germline reprogramming and somaclonal variation. Curr Biol. 2021;31(3):591–600.e4. doi: 10.1016/j.cub.2020.10.098. PubMed DOI PMC
Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE. High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008;132(2):311–322. doi: 10.1016/j.cell.2007.12.014. PubMed DOI PMC
Brink RAA. Genetic change associated with the R Locus in maize which is directed and potentially reversible. Genetics. 1956;41:872–889. doi: 10.1093/genetics/41.6.872. PubMed DOI PMC
Brown AHD. Core collection: a practical approach to genetic resources management. Genome. 1989;31:818–824. doi: 10.1139/g89-144. DOI
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8. doi: 10.1038/nmeth.2688. PubMed DOI PMC
Catchen J, Hohenlohe PA, Bassham S, et al. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC
Charles M, Belcram H, Just J, et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086. doi: 10.1534/genetics.108.092304. PubMed DOI PMC
Chen W, Kong J, Qin C, et al. Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening. Sci Rep. 2015;5:9192. doi: 10.1038/srep09192. PubMed DOI PMC
Chen X, Bhadauria V, Ma B. ChIP-Seq: a powerful tool for studying protein-DNA interactions in plants. Curr Issues Mol Biol. 2018 doi: 10.21775/cimb.027.171. PubMed DOI
Choi H-K. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. Genes Genom. 2019;41:133–146. doi: 10.1007/s13258-018-0751-8. PubMed DOI PMC
Choi J, Lyons DB, Kim MY, Moore JD, Zilberman D. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. Mol Cell. 2020;77:310–323.e7. doi: 10.1016/j.molcel.2019.10.011. PubMed DOI
Clavijo BJ, Venturini L, Schudoma C, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC
Cocciolone SM, Chopra S, Flint-Garcia SA, McMullen MD, Peterson T. Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant J. 2001;27(5):467–478. doi: 10.1046/j.1365-313x.2001.01124.x. PubMed DOI
Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8. PubMed DOI PMC
Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999;401:157–161. doi: 10.1038/43657. PubMed DOI
Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release) Nucleic Ac Res. 2018;46:W49–W54. doi: 10.1093/nar/gky316. PubMed DOI PMC
Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science. 2017;355:962–965. doi: 10.1126/science.aai8898. PubMed DOI
Eichten SR, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25:2783–2797. doi: 10.1105/tpc.113.114793. PubMed DOI PMC
Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E. RAPD polymorphism of wild emmer wheat population, Triticum dicoccoides. Israel Theor Appl Genet. 1999;98:434–447. doi: 10.1007/s001220051089. DOI
Feng S, Jacobsen SE. Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol. 2011;14:179–186. doi: 10.1016/j.pbi.2010.12.002. PubMed DOI PMC
Forestan C, et al. Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant Cell Environ. 2020;43:55–75. doi: 10.1111/pce.13660. PubMed DOI
Friedländer MR, Mackowiak SD, Li N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. doi: 10.1093/nar/gkr688. PubMed DOI PMC
Fuchs J, Demidov D, Houben A, Schubert I. Chromosomal histone modification patterns–from conservation to diversity. Trends Plant Sci. 2006;11(4):199–208. doi: 10.1016/j.tplants.2006.02.008. PubMed DOI
Furlan-Magaril M, Rincón-Arano H, Recillas-Targa F. Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. Methods Mol Biol. 2009;543:253–266. doi: 10.1007/978-1-60327-015-1. PubMed DOI
Gahlaut V, Zinta G, Jaiswal V, Kumar S. Quantitative epigenetics: a new avenue for crop improvement. Epigenomes. 2020;4:25. doi: 10.3390/epigenomes4040025. PubMed DOI PMC
Gallusci P, Dai Z, Génard M, et al. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci. 2017;22(7):610–623. doi: 10.1016/j.tplants.2017.04.009. PubMed DOI
Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements) Methods. 2009;48(3):233–239. doi: 10.1016/j.ymeth.2009.03.003. PubMed DOI PMC
Gourcilleau D, Mousset M, Latutrie M, Marin S, Delaunay A, Maury S, Pujol B. Assessing global DNA methylation changes associated with plasticity in seven highly inbred lines of snapdragon plants (Antirrhinum majus) Genes. 2019;10:256. doi: 10.3390/genes10040256. PubMed DOI PMC
Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet. 2013;14(3):228–35. doi: 10.1016/j.tplants.2017.04.009. PubMed DOI PMC
Guigon I, Legrand S, Berthelot JF, Bini S, Lanselle D, Benmounah M, Touzet H. miRkwood: a tool for the reliable identification of microRNAs in plant genomes. BMC Genomics. 2019;20(1):532. doi: 10.1186/s12864-019-5913-9.31253093. PubMed DOI PMC
Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011;39:W132–W138. doi: 10.1093/nar/gkr247. PubMed DOI PMC
He Y, Li Z. Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet. 2018;34(11):856–866. doi: 10.1016/j.tig.2018.07.006. PubMed DOI
He L, Wu W, Zinta G, Yang L, Wang D, Liu R, Zhang H, Zheng Z, Huang H, Zhang Q, Zhu JK. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat Commun. 2018;9(1):460. doi: 10.1038/s41467-018-02839-3. PubMed DOI PMC
Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–589. doi: 10.1016/j.molcel.2010.05.004. PubMed DOI PMC
Hernández-de-Diego R, Tarazona S, Martínez-Mira C, et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018;46:W503–W509. doi: 10.1093/nar/gky466. PubMed DOI PMC
Heywood V (2011) Introductory and Background Material. Crop Wild Relatives. In Hunter D, Heywood V, Earthscan (Eds): A Manual of in situ Conservation. Biodiversity International, London Washington
Hiranuma N, Lundberg SM, Lee S-I. AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification. Nucleic Acids Res. 2019;47:e58–e58. doi: 10.1093/nar/gkz156. PubMed DOI PMC
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19(8):1419–1428. doi: 10.1101/gr.091678.109. PubMed DOI PMC
Huang L, Raats D, Sela H, Klymiuk V, Lidzbarsky G, Feng L, Krugman T, Fahima T. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Ann Rev Phytopathol. 2016;53:12.1–12.23. PubMed
Hübner S, Kantar MB. Tapping diversity from the wild: from sampling to implementation. Front Plant Sci. 2021;12:626565. doi: 10.3389/fpls.2021.626565. PubMed DOI PMC
Ison J, Rapacki K, Ménager H, et al. Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Res. 2016;44(D1):D38–D47. doi: 10.1093/nar/gkv1116. PubMed DOI PMC
Ito H, Gaubert H, Bucher E, et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472:115–119. doi: 10.1038/nature09861. PubMed DOI
Jamil IN, Remali J, Azizan KA, et al. Systematic multi-omics integration (MOI) approach in plant systems biology. Front Plant Sci. 2020;11:944. doi: 10.3389/fpls.2020.00944. PubMed DOI PMC
Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 2014;24:1821–1829. doi: 10.1101/gr.177659.114. PubMed DOI PMC
Johannes F, Schmitz RJ. Spontaneous epimutations in plants. New Phytol. 2019;221(3):1253–1259. doi: 10.1111/nph.15434. PubMed DOI
Johannes F, Porcher E, Teixeira FK, et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5:e1000530. doi: 10.1371/journal.pgen.1000530. PubMed DOI PMC
Johnson NR, Yeoh JM, Coruh C, Axtell MJ. Improved placement of multi-mapping small RNAs. G3. 2016;6:2103–2111. doi: 10.1534/g3.116.030452. PubMed DOI PMC
Jones H, Gosman N, Horsnell R, et al. Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theor Appl Genet. 2013;126:1796–1808. doi: 10.1007/s00122-013-2093-x. PubMed DOI
Jordan WT, Schmitz RJ. The shocking consequences of hybrid epigenomes. Genome Biol. 2016;17:85. doi: 10.1186/s13059-016-0967-3. PubMed DOI PMC
Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc. 2020;15(10):3264–3283. doi: 10.1038/s41596-020-0373-x. PubMed DOI PMC
Kitavi M, Cashell R, Ferguson M, et al. Heritable epigenetic diversity for conservation and utilization of epigenetic germplasm resources of clonal East African Highland banana (EAHB) accessions. Theor Appl Genet. 2020;133:2605–2625. doi: 10.1007/s00122-020-03620-1. PubMed DOI PMC
Klein DC, Hainer SJ. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res. 2020;28(1):69–85. doi: 10.1007/s10577-019-09619-9. PubMed DOI PMC
Klymiuk V, Fatiukha A, Kis-Papo T, Huang L, Saranga Y, Krugman T, Fahima T. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing; 2019. Durum wheat as a bridge between wild emmer wheat genetic resources and bread wheat; pp. 201–230.
Kondić-Špika A, Denčić S, Mladenov N, et al. Polymorphism of microsatellite loci in bread wheat (Triticum aestivum L.) and related species. Matica Srpska J Nat Sci. 2016;131(2):81–89. doi: 10.2298/ZMSPN1631081K. DOI
Kooke R, Johannes F, Wardenaar R, et al. Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell. 2015;27(2):337–348. doi: 10.1105/tpc.114.133025. PubMed DOI PMC
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Krugman T, Nevo E, Beharav A, Sela H, Fahima T. The institute of evolution wild cereal gene bank at the university of Haifa. Isr J Plant Sci. 2018;65:129–146. doi: 10.1163/22238980-00001065. DOI
Lamke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18(1):124. doi: 10.1186/s13059-017-1263-6. PubMed DOI PMC
Lang Z, Wang Y, Tang K. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci U S A. 2017;114(22):E4511–E4519. doi: 10.1073/pnas.1705233114. PubMed DOI PMC
Latutrie M, Gourcilleau D, Pujol B. Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops. American J Bot. 2019;106(10):1281–1284. doi: 10.1002/ajb2.1357. PubMed DOI PMC
Li YC, Fahima T, Beiles A, Korol AB, Nevo E. Microclimatic stress and adaptive DNA differentiation in wild emmer wheat (Triticum dicoccoides) Theor Appl Genet. 1999;98:873–883. doi: 10.1007/s001220051146. DOI
Li YC, Fahima T, Korol AB, Peng JH, Röder MS, Kirzhner VM, Beiles A, Nevo E. Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. Mol Biol Evol. 2000;17:851–862. doi: 10.1093/oxfordjournals.molbev.a026365. PubMed DOI
Li A, Song WQ, Chen CB, Zhou YN, Qi LW, Wang CG. DNA methylation status is associated with the formation of heterosis in Larix kaempferi intraspecific hybrids. Mol Breed. 2013;31:463–475. doi: 10.1007/s11032-012-9803-y. DOI
Li S, Liberman LM, Mukherjee N, et al. Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data. Genome Res. 2013;23:1730–1739. doi: 10.1101/gr.149310.112. PubMed DOI PMC
Li Q, Eichten SR, Hermanson PJ, Springer NM. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines. Genetics. 2014;196:667–676. doi: 10.1534/genetics.113.158980. PubMed DOI PMC
Li Z, Jiang G, Liu X, et al. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytol. 2020;227(4):1138–1156. doi: 10.1111/nph.16590. PubMed DOI
Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19(6):959–966. doi: 10.1101/gr.083451.108. PubMed DOI PMC
Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2. 2008;133(3):523–36. doi: 10.1016/j.cell.2008.03.029. PubMed DOI PMC
Liu R, How-Kit A, Stammitti L, et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci. 2015;112(34):10804–10809. doi: 10.1073/pnas.1503362112. PubMed DOI PMC
Liu DD, Zhou LJ, Fang MJ, Dong QL, An XH, You CX, Hao YJ. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato. Sci Rep. 2016;6:31806. doi: 10.1038/srep31806. PubMed DOI PMC
Lü P, Yu S, Zhu N, et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants. 2018;4:784–791. doi: 10.1038/s41477-018-0249-z. PubMed DOI
Luan X, Liu S, Ke S, Dai H, Xie XM, Hsieh TF, Zhang XQ. Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice. Rice. 2019;12:20. doi: 10.1186/s12284-019-0282-1. PubMed DOI PMC
Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs – one place to gather all the tools for miRNA analysis. Bioinformatics. 2016;32:2722–2724. doi: 10.1093/bioinformatics/btw189. PubMed DOI PMC
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res. 2020;30(3):497–513. doi: 10.1101/gr.256750.119. PubMed DOI PMC
Mace ES, Tai S, Gilding EK, et al. Whole genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4:2320. doi: 10.1038/ncomms3320. PubMed DOI PMC
Manning K, Tör M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38:948–952. doi: 10.1038/ng1841. PubMed DOI
Marconi G, Capomaccio S, Comino C, et al. Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes. Sci Rep. 2019;9:14864. doi: 10.1038/s41598-019-51423-2. PubMed DOI PMC
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–1138. doi: 10.1038/nature08498. PubMed DOI
Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing Plant Defense Priming. Trends Plant Sci 21(10):818–822. 10.1016/j.tplants.2016.07.009 PubMed
Matzke M, Mosher R. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI
Mehta JP. Sequencing Small RNA: Introduction and Data Analysis Fundamentals. In: Alvarez ML, Nourbakhsh M, editors. RNA Mapping: Methods and Protocols. New York, NY: Springer; 2014. pp. 93–103. PubMed
Melnikov AA, Gartenhaus RB, Levenson AS, Motchoulskaia NA, Levenson Chernokhvostov VV. MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res 8. 2005;33(10):93. doi: 10.1093/nar/gni092. PubMed DOI PMC
Minnoye L, Marinov GK, Krausgruber T, et al. Chromatin accessibility profiling methods. Nat Rev Meth Primers. 2021;1:10. doi: 10.1038/s43586-020-00008-9. PubMed DOI PMC
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol. 2011;14(3):267–74. doi: 10.1016/j.pbi.2011.03.004. PubMed DOI
Miura K, Agetsuma M, Kitano H, et al. A metastable dwarf1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci. 2009;106:11218–11223. doi: 10.1073/pnas.0901942106. PubMed DOI PMC
Miura K, Ikeda M, Matsubara A, et al. Osspl14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42:545–549. doi: 10.1038/ng.59210.1038/ng.592. PubMed DOI
Monteiro F, Frese L, Castro S, et al. Genetic and genomic tools to assist sugar beet improvement: the value of the crop wild relatives. Front Plant Sci. 2018;9:74. doi: 10.3389/fpls.2018.00074. PubMed DOI PMC
Nakato R, Sakata T. Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods. 2021;187:44–53. doi: 10.1016/j.ymeth.2020.03.005. PubMed DOI
Nass LL, Paterniani E. Pre-breeding: a link between genetic resources and maize breeding. Scientia Agric. 2000;57:581–587. doi: 10.1590/S0103-90162000000300035. DOI
Nevo E, Beiles A. Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet. 1989;77:421–455. doi: 10.1007/BF00305839. PubMed DOI
Nuthikattu S, McCue AD, Panda K, et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 2013;162(1):116–131. doi: 10.1104/pp.113.216481. PubMed DOI PMC
Oh D, Strattan JS, Hur JK, et al. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection. Sci Rep. 2020;10:7933. doi: 10.1038/s41598-020-64655-4. PubMed DOI PMC
Olsen KM, Wendel JF. Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci. 2013;4:290. doi: 10.3389/fpls.2013.00290. PubMed DOI PMC
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform. 2020;21:906–918. doi: 10.1093/bib/bbz039. PubMed DOI PMC
Ong-Abdullah M, Ordway JM, Jiang N, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525:533–537. doi: 10.1038/nature15365. PubMed DOI PMC
Ossowski S, Schneeberger K, Lucas-Lledó J, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327(5961):92–94. doi: 10.1126/science.1180677. PubMed DOI PMC
Patterson GI, Thorpe CJ, Chandler VL. Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics. 1993;135:881–894. doi: 10.1093/genetics/135.3.881. PubMed DOI PMC
Pecinka A, Dinh HQ, Baubec T, et al. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22(9):3118–3129. doi: 10.1105/tpc.110.078493. PubMed DOI PMC
Pecinka A, Abdelsamad A, Vu GT. Hidden genetic nature of epigenetic natural variation in plants. Trends Plant Sci. 2013;18(11):625–632. doi: 10.1016/j.tplants.2013.07.005. PubMed DOI
Peng H, Jiang G, Zhang J, Zhang W, Zhai W. DNA methylation polymorphism and stability in Chinese indica hybrid rice. Sci China Life Sci. 2013;56:1097–1106. doi: 10.1007/s11427-013-4576-z. PubMed DOI
Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen EA. Paramutation phenomenon is involved in the genetics of maize low phytic acid1–241 (lpa1–241) trait. Heredity. 2009;102:236–245. doi: 10.1038/hdy.2008.96. PubMed DOI
Quadrana L, Almeida J, Asís R, et al. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun. 2014;5:3027. doi: 10.1038/ncomms5027. PubMed DOI
Rauluseviciute I, Drabløs F, Rye MB. DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin Epigenet. 2019;11:193. doi: 10.1186/s13148-019-0795-x. PubMed DOI PMC
Reinders J, Wulff BB, Mirouze M, et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23(8):939–950. doi: 10.1101/gad.524609. PubMed DOI PMC
Rigal M, et al. Epigenome confrontation triggers immediate reprogramming of transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc Natl Acad Sci USA. 2016;113:E2083–E2092. doi: 10.1073/pnas.1600672113. PubMed DOI PMC
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell. 2013;25(7):2383–2399. doi: 10.1105/tpc.113.113159. PubMed DOI PMC
Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Rothbart SB. Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 1839;8:627–643. doi: 10.1016/j.bbagrm.2014.03.001. PubMed DOI PMC
Sani E, Herzyk P, Perrella G, et al. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 2013;14:59. doi: 10.1186/gb-2013-14-6-r59. PubMed DOI PMC
Schlesinger F, Smith AD, Gingeras TR, Hannon GJ, Hodges E. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res. 2013;23(10):1601–14. doi: 10.1101/gr.157271.113. PubMed DOI PMC
Schmitz RJ, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334:369–373. doi: 10.1126/science.1212959. PubMed DOI PMC
Schmitz RJ, He Y, Valdes-Lopez O, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013;23:1663–1674. doi: 10.1101/gr.152538.112. PubMed DOI PMC
Shahryary Y, Symeonidi A, Hazarika RR, et al. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. Genome Biol 6. 2020;21(1):260. doi: 10.1186/s13059-020-02161-6. PubMed DOI PMC
Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–2912. doi: 10.1093/bioinformatics/btp543. PubMed DOI PMC
Shen Y, Zhang J, Liu Y, et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 2018;19:128. doi: 10.1186/s13059-018-1516-z. PubMed DOI PMC
Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife. 2017;16(6):e21856. doi: 10.7554/eLife.21856. PubMed DOI PMC
Song Q, Zhang T, Stelly DM, Chen ZJ. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol. 2017;18(1):99. doi: 10.1186/s13059-017-1229-8. PubMed DOI PMC
Springer NM, Schmitz RJ. Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Gen. 2017;18(9):563. doi: 10.1038/nrg.2017.45. PubMed DOI
Steinhauser S, Kurzawa N, Eils R, Herrmann C. A comprehensive comparison of tools for differential ChIP-seq analysis. Brief Bioinform. 2016 doi: 10.1093/bib/bbv110. PubMed DOI PMC
Stocks MB, Moxon S, Mapleson D, et al. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28:2059–2061. doi: 10.1093/bioinformatics/bts311. PubMed DOI PMC
Taiwo O, Wilson G, Morris T, et al. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc. 2012;7:617–636. doi: 10.1038/nprot.2012.012. PubMed DOI
Taudt A, Tatche MC, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet. 2016;17:319–332. doi: 10.1038/nrg.2016.45. PubMed DOI
Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol. 1999;120(2):383–390. doi: 10.1104/pp.120.2.383. PubMed DOI PMC
Trucchi E, Mazzarella AB, Gilfillan GD, et al. Bs RAD seq: screening DNA methylation in natural populations of non-model species. Mol Ecol. 2016;25:1697–1713. doi: 10.1111/mec.13550. PubMed DOI PMC
van Gurp TP, Wagemaker NCAM, Wouters B, et al. epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods. 2016;13:322–324. doi: 10.1038/nmeth.3763. PubMed DOI
Venetsky A, Levy-Zamir A, Khasdan V, Domb K, Kashkush K. Structure and extent of DNA methylation-based epigenetic variation in wild emmer wheat (T. turgidum ssp. dicoccoides) populations. BMC Plant Biol. 2015;15:200. doi: 10.1186/s12870-015-0544-z. PubMed DOI PMC
Vergara Z, Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol. 2017;18(1):96. doi: 10.1186/s13059-017-1236-9. PubMed DOI PMC
Volis S, Song M, ZhangYH SI. Fine-scale spatial genetic structure in emmer wheat and the role of population range position. Evol Biol. 2014;41:166–173. doi: 10.1007/s11692-013-9256-1. DOI
Wei X, Song X, Wei L, Tang S, Sun J, Hu P, Cao X. An epiallele of rice AK1 affects photosynthetic capacity. J Integr Plant Biol. 2017;59:158–163. doi: 10.1111/jipb.12518. PubMed DOI
Whittaker C, Dean C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol. 2017;6(33):555–575. doi: 10.1146/annurev-cellbio-100616-060546. PubMed DOI
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramirez-Gonzalez RH, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Woo HR, Pontes O, Pikaard CS, Richards EJ. VIM1, a methylcytosine- binding protein required for centromeric heterochromatinization. Genes Dev. 2007;21:267–277. doi: 10.1101/gad.1512007. PubMed DOI PMC
Wreczycka K, Gosdschan A, Yusuf D, et al. Strategies for analyzing bisulfite sequencing data. J Biotechnol. 2017;261:105–115. doi: 10.1016/j.jbiotec.2017.08.007. PubMed DOI
Xiao J, Jin R, Wagner D. Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants. Genome Biol 10. 2017;18(1):88. doi: 10.1186/s13059-017-1228-9. PubMed DOI PMC
Xu S, Grullon S, Ge K, Peng W. Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) to Map Regions of Histone Methylation Patterns in Embryonic Stem Cells. In: Kidder BL, editor. Stem Cell Transcriptional Networks. New York: Springer; 2014. pp. 97–111. PubMed PMC
Xu J, Chen G, Hermanson PJ, et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 2019;20:243. doi: 10.1186/s13059-019-1859-0. PubMed DOI PMC
Xu G, Lyu J, Li Q, Liu H, Wang D, Zhang M, Springer NM, Ross-Ibarra J, Yang J. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat Commun 2. 2020;11(1):5539. doi: 10.1038/s41467-020-19333-4. PubMed DOI PMC
Yan F, Powell DR, Curtis DJ, Wong NC. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 2020;21:22. doi: 10.1186/s13059-020-1929-3. PubMed DOI PMC
Yu D, Meng Y, Zuo Z, et al. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes. Sci Rep. 2016;6:21666. doi: 10.1038/srep21666. PubMed DOI PMC
Zhang Y, Liu T, Meyer CA, et al. Model-based Analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Zhang L, Cheng Z, Qin R, et al. Identification and characterization of an epi-allele of fie1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell. 2012;24:4407–4421. doi: 10.1105/tpc.112.102269. PubMed DOI PMC
Zhang X, Sun J, Cao X, Song X. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol. 2015;169(3):2118–2128. doi: 10.1104/pp.15.00836. PubMed DOI PMC
Zhang L, Yu H, Ma B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commu. 2017;8:14789. doi: 10.1038/ncomms14789. PubMed DOI PMC
Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 2018;19:489–506. doi: 10.1038/s41580-018-0016-z. PubMed DOI
Zhang Y, Wendte JM, Ji L, Schmitz RJ. Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc Nat Acad Sci. 2020;117(9):4874–4884. doi: 10.1073/pnas.1918172117. PubMed DOI PMC
Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol. 2008;42:169–178. doi: 10.1016/j.plantsci.2010.08.011. PubMed DOI
Zhao T, Zhan Z, Jiang D (2019) Histone modifications and their regulatory roles in plant development and environmental memory. J Gene Genom 46(10):467–476. 10.1016/j.jgg.2019.09.005 PubMed
Zhong S, Fei Z, Chen YR, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol. 2013;31:154–159. doi: 10.1038/nbt.2462. PubMed DOI