Heart Ferroportin Protein Content Is Regulated by Heart Iron Concentration and Systemic Hepcidin Expression

. 2022 May 24 ; 23 (11) : . [epub] 20220524

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35682577

Grantová podpora
Progress G26, Cooperatio Charles University

The purpose of the study was to investigate the expression of ferroportin protein following treatments that affect systemic hepcidin. Administration of erythropoietin to C57BL/6J mice decreased systemic hepcidin expression; it also increased heart ferroportin protein content, determined by immunoblot in the membrane fraction, to approximately 200% of control values. This increase in heart ferroportin protein is very probably caused by a decrease in systemic hepcidin expression, in accordance with the classical regulation of ferroportin by hepcidin. However, the control of heart ferroportin protein by systemic hepcidin could apparently be overridden by changes in heart non-heme iron content since injection of ferric carboxymaltose to mice at 300 mg Fe/kg resulted in an increase in liver hepcidin expression, heart non-heme iron content, and also a threefold increase in heart ferroportin protein content. In a separate experiment, feeding an iron-deficient diet to young Wistar rats dramatically decreased liver hepcidin expression, while heart non-heme iron content and heart ferroportin protein content decreased to 50% of controls. It is, therefore, suggested that heart ferroportin protein is regulated primarily by the iron regulatory protein/iron-responsive element system and that the regulation of heart ferroportin by the hepcidin-ferroportin axis plays a secondary role.

Zobrazit více v PubMed

Andrews N.C. Forging a field: The golden age of iron biology. Blood. 2008;112:219–230. doi: 10.1182/blood-2007-12-077388. PubMed DOI PMC

Griffiths W.J.H., Besser M., Bowden D.J., Kelly D.A. Juvenile haemochromatosis. Lancet Child Adolesc. Health. 2021;5:524–530. doi: 10.1016/S2352-4642(20)30392-8. PubMed DOI

Borgna-Pignatti C., Marsella M. Iron Chelation in Thalassemia Major. Clin. Ther. 2015;37:2866–2877. doi: 10.1016/j.clinthera.2015.10.001. PubMed DOI

Katsarou A., Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis. Mol. Asp. Med. 2020;75:100866. doi: 10.1016/j.mam.2020.100866. PubMed DOI

Xu W., Barrientos T., Mao L., Rockman H.A., Sauve A.A., Andrews N.C. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015;13:533–545. doi: 10.1016/j.celrep.2015.09.023. PubMed DOI PMC

Ke Y., Chen Y.Y., Chang Y.Z., Duan X.L., Ho K.P., Jiang D.H., Wang K., Qian Z.M. Post-transcriptional expression of DMT1 in the heart of rat. J. Cell. Physiol. 2003;196:124–130. doi: 10.1002/jcp.10284. PubMed DOI

Oudit G.Y., Sun H., Trivieri M.G., Koch S.E., Dawood F., Ackerley C., Yazdanpanah M., Wilson G.J., Schwartz A., Liu P.P., et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 2003;9:1187–1194. doi: 10.1038/nm920. PubMed DOI

Paterek A., Mackiewicz U., Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J. Cell. Physiol. 2019;234:21613–21629. doi: 10.1002/jcp.28820. PubMed DOI

Abboud S., Haile D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 2000;275:19906–19912. doi: 10.1074/jbc.M000713200. PubMed DOI

McKie A.T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T.J., Farzaneh F., et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 2000;5:299–309. doi: 10.1016/S1097-2765(00)80425-6. PubMed DOI

Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S.J., Moynihan J., Paw B.H., Drejer A., Barut B., Zapata A., et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403:776–781. doi: 10.1038/35001596. PubMed DOI

Roth M.P., Meynard D., Coppin H. Regulators of hepcidin expression. Vitam. Horm. 2019;110:101–129. doi: 10.1016/bs.vh.2019.01.005. PubMed DOI

Nemeth E., Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021;22:6493. doi: 10.3390/ijms22126493. PubMed DOI PMC

Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A., Ward D.M., Ganz T., Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–2093. doi: 10.1126/science.1104742. PubMed DOI

Colucci S., Marques O., Altamura S. 20 years of Hepcidin: How far we have come. Semin. Hematol. 2021;58:132–144. doi: 10.1053/j.seminhematol.2021.05.001. PubMed DOI

Fang X., Wang H., An P., Min J., Wang F. Cardiomyocyte-specific deletion of ferroportin using MCK-Cre has no apparent effect on cardiac iron homeostasis. Int. J. Cardiol. 2015;201:90–92. doi: 10.1016/j.ijcard.2015.07.089. PubMed DOI

Lakhal-Littleton S., Wolna M., Carr C.A., Miller J.J., Christian H.C., Ball V., Santos A., Diaz R., Biggs D., Stillion R., et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc. Natl. Acad. Sci. USA. 2015;112:3164–3169. doi: 10.1073/pnas.1422373112. PubMed DOI PMC

Lakhal-Littleton S., Wolna M., Chung Y.J., Christian H.C., Heather L.C., Brescia M., Ball V., Diaz R., Santos A., Biggs D., et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5:e19804. doi: 10.7554/eLife.19804. PubMed DOI PMC

Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic. Biol. Med. 2019;133:234–237. doi: 10.1016/j.freeradbiomed.2018.08.010. PubMed DOI PMC

McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022;24:4–131. doi: 10.1002/ejhf.2333. PubMed DOI

Zhang D.L., Hughes R.M., Ollivierre-Wilson H., Ghosh M.C., Rouault T.A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9:461–473. doi: 10.1016/j.cmet.2009.03.006. PubMed DOI PMC

Theurl I., Ludwiczek S., Eller P., Seifert M., Artner E., Brunner P., Weiss G. Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J. Hepatol. 2005;43:711–719. doi: 10.1016/j.jhep.2005.03.030. PubMed DOI

Garza K.R., Clarke S.L., Ho Y.H., Bruss M.D., Vasanthakumar A., Anderson S.A., Eisenstein R.S. Differential translational control of 5’ IRE-containing mRNA in response to dietary iron deficiency and acute iron overload. Metallomics. 2020;12:2186–2198. doi: 10.1039/d0mt00192a. PubMed DOI PMC

Delaby C., Pilard N., Puy H., Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: Early mRNA induction by haem, followed by iron-dependent protein expression. Biochem. J. 2008;411:123–131. doi: 10.1042/BJ20071474. PubMed DOI

Canonne-Hergaux F., Donovan A., Delaby C., Wang H.J., Gros P. Comparative studies of duodenal and macrophage ferroportin proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G156–G163. doi: 10.1152/ajpgi.00227.2005. PubMed DOI

Zhang A.S., Anderson S.A., Meyers K.R., Hernandez C., Eisenstein R.S., Enns C.A. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J. Biol. Chem. 2007;282:12547–12556. doi: 10.1074/jbc.M608788200. PubMed DOI

Niederkofler V., Salie R., Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J. Clin. Investig. 2005;115:2180–2186. doi: 10.1172/JCI25683. PubMed DOI PMC

Katsarou A., Gkouvatsos K., Fillebeen C., Pantopoulos K. Tissue-Specific Regulation of Ferroportin in Wild-Type and Hjv-/- Mice Following Dietary Iron Manipulations. Hepatol. Commun. 2021;5:2139–2150. doi: 10.1002/hep4.1780. PubMed DOI PMC

Nicolas G., Viatte L., Bennoun M., Beaumont C., Kahn A., Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis. 2002;29:327–335. doi: 10.1006/bcmd.2002.0573. PubMed DOI

Vokurka M., Krijt J., Sulc K., Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 2006;55:667–674. doi: 10.33549/physiolres.930841. PubMed DOI

Pak M., Lopez M.A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735. doi: 10.1182/blood-2006-06-028787. PubMed DOI PMC

Petrak J., Havlenova T., Krijt M., Behounek M., Franekova J., Cervenka L., Pluhacek T., Vyoral D., Melenovsky V. Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim. Biophys. Acta Gen. Subj. 2019;1863:703–713. doi: 10.1016/j.bbagen.2019.01.010. PubMed DOI

Drakesmith H., Nemeth E., Ganz T. Ironing out Ferroportin. Cell Metab. 2015;22:777–787. doi: 10.1016/j.cmet.2015.09.006. PubMed DOI PMC

Haddad S., Wang Y., Galy B., Korf-Klingebiel M., Hirsch V., Baru A.M., Rostami F., Reboll M.R., Heineke J., Flögel U., et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur. Heart J. 2017;38:362–372. doi: 10.1093/eurheartj/ehw333. PubMed DOI

Canonne-Hergaux F., Gruenheid S., Ponka P., Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999;93:4406–4417. doi: 10.1182/blood.V93.12.4406. PubMed DOI

Fujikura Y., Krijt J., Povýšil C., Mělková Z., Přikryl P., Vokurka M., Nečas E. Iron Overload Causes Alterations of E-Cadherin in the Liver. Folia Biol. 2016;62:95–102. PubMed

Frýdlová J., Rychtarčíková Z., Gurieva I., Vokurka M., Truksa J., Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS ONE. 2017;12:e0186844. doi: 10.1371/journal.pone.0186844. PubMed DOI PMC

Tsuji Y. Transmembrane protein western blotting: Impact of sample preparation on detection of SLC11A2 (DMT1) and SLC40A1 (ferroportin) PLoS ONE. 2020;15:e0235563. doi: 10.1371/journal.pone.0235563. PubMed DOI PMC

Torrance J.D., Bothwell T.H. Tissue Iron Stores. In: Cook J.D., editor. Methods in Hematology. Churchill Livingstone; New York, NY, USA: 1980. pp. 90–115.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...