Heart Ferroportin Protein Content Is Regulated by Heart Iron Concentration and Systemic Hepcidin Expression
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Progress G26, Cooperatio
Charles University
PubMed
35682577
PubMed Central
PMC9180074
DOI
10.3390/ijms23115899
PII: ijms23115899
Knihovny.cz E-zdroje
- Klíčová slova
- ferroportin, hemojuvelin, hepcidin, iron metabolism, myocardium,
- MeSH
- ferroportin MeSH
- hepcidiny * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potkani Wistar MeSH
- proteiny přenášející kationty MeSH
- železo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ferroportin MeSH
- hepcidiny * MeSH
- proteiny přenášející kationty MeSH
- železo * MeSH
The purpose of the study was to investigate the expression of ferroportin protein following treatments that affect systemic hepcidin. Administration of erythropoietin to C57BL/6J mice decreased systemic hepcidin expression; it also increased heart ferroportin protein content, determined by immunoblot in the membrane fraction, to approximately 200% of control values. This increase in heart ferroportin protein is very probably caused by a decrease in systemic hepcidin expression, in accordance with the classical regulation of ferroportin by hepcidin. However, the control of heart ferroportin protein by systemic hepcidin could apparently be overridden by changes in heart non-heme iron content since injection of ferric carboxymaltose to mice at 300 mg Fe/kg resulted in an increase in liver hepcidin expression, heart non-heme iron content, and also a threefold increase in heart ferroportin protein content. In a separate experiment, feeding an iron-deficient diet to young Wistar rats dramatically decreased liver hepcidin expression, while heart non-heme iron content and heart ferroportin protein content decreased to 50% of controls. It is, therefore, suggested that heart ferroportin protein is regulated primarily by the iron regulatory protein/iron-responsive element system and that the regulation of heart ferroportin by the hepcidin-ferroportin axis plays a secondary role.
Institute of Pathophysiology 1st Faculty of Medicine Charles University 128 53 Prague Czech Republic
Zobrazit více v PubMed
Andrews N.C. Forging a field: The golden age of iron biology. Blood. 2008;112:219–230. doi: 10.1182/blood-2007-12-077388. PubMed DOI PMC
Griffiths W.J.H., Besser M., Bowden D.J., Kelly D.A. Juvenile haemochromatosis. Lancet Child Adolesc. Health. 2021;5:524–530. doi: 10.1016/S2352-4642(20)30392-8. PubMed DOI
Borgna-Pignatti C., Marsella M. Iron Chelation in Thalassemia Major. Clin. Ther. 2015;37:2866–2877. doi: 10.1016/j.clinthera.2015.10.001. PubMed DOI
Katsarou A., Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis. Mol. Asp. Med. 2020;75:100866. doi: 10.1016/j.mam.2020.100866. PubMed DOI
Xu W., Barrientos T., Mao L., Rockman H.A., Sauve A.A., Andrews N.C. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015;13:533–545. doi: 10.1016/j.celrep.2015.09.023. PubMed DOI PMC
Ke Y., Chen Y.Y., Chang Y.Z., Duan X.L., Ho K.P., Jiang D.H., Wang K., Qian Z.M. Post-transcriptional expression of DMT1 in the heart of rat. J. Cell. Physiol. 2003;196:124–130. doi: 10.1002/jcp.10284. PubMed DOI
Oudit G.Y., Sun H., Trivieri M.G., Koch S.E., Dawood F., Ackerley C., Yazdanpanah M., Wilson G.J., Schwartz A., Liu P.P., et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 2003;9:1187–1194. doi: 10.1038/nm920. PubMed DOI
Paterek A., Mackiewicz U., Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J. Cell. Physiol. 2019;234:21613–21629. doi: 10.1002/jcp.28820. PubMed DOI
Abboud S., Haile D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 2000;275:19906–19912. doi: 10.1074/jbc.M000713200. PubMed DOI
McKie A.T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T.J., Farzaneh F., et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 2000;5:299–309. doi: 10.1016/S1097-2765(00)80425-6. PubMed DOI
Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S.J., Moynihan J., Paw B.H., Drejer A., Barut B., Zapata A., et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403:776–781. doi: 10.1038/35001596. PubMed DOI
Roth M.P., Meynard D., Coppin H. Regulators of hepcidin expression. Vitam. Horm. 2019;110:101–129. doi: 10.1016/bs.vh.2019.01.005. PubMed DOI
Nemeth E., Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021;22:6493. doi: 10.3390/ijms22126493. PubMed DOI PMC
Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A., Ward D.M., Ganz T., Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–2093. doi: 10.1126/science.1104742. PubMed DOI
Colucci S., Marques O., Altamura S. 20 years of Hepcidin: How far we have come. Semin. Hematol. 2021;58:132–144. doi: 10.1053/j.seminhematol.2021.05.001. PubMed DOI
Fang X., Wang H., An P., Min J., Wang F. Cardiomyocyte-specific deletion of ferroportin using MCK-Cre has no apparent effect on cardiac iron homeostasis. Int. J. Cardiol. 2015;201:90–92. doi: 10.1016/j.ijcard.2015.07.089. PubMed DOI
Lakhal-Littleton S., Wolna M., Carr C.A., Miller J.J., Christian H.C., Ball V., Santos A., Diaz R., Biggs D., Stillion R., et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc. Natl. Acad. Sci. USA. 2015;112:3164–3169. doi: 10.1073/pnas.1422373112. PubMed DOI PMC
Lakhal-Littleton S., Wolna M., Chung Y.J., Christian H.C., Heather L.C., Brescia M., Ball V., Diaz R., Santos A., Biggs D., et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5:e19804. doi: 10.7554/eLife.19804. PubMed DOI PMC
Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic. Biol. Med. 2019;133:234–237. doi: 10.1016/j.freeradbiomed.2018.08.010. PubMed DOI PMC
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022;24:4–131. doi: 10.1002/ejhf.2333. PubMed DOI
Zhang D.L., Hughes R.M., Ollivierre-Wilson H., Ghosh M.C., Rouault T.A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9:461–473. doi: 10.1016/j.cmet.2009.03.006. PubMed DOI PMC
Theurl I., Ludwiczek S., Eller P., Seifert M., Artner E., Brunner P., Weiss G. Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J. Hepatol. 2005;43:711–719. doi: 10.1016/j.jhep.2005.03.030. PubMed DOI
Garza K.R., Clarke S.L., Ho Y.H., Bruss M.D., Vasanthakumar A., Anderson S.A., Eisenstein R.S. Differential translational control of 5’ IRE-containing mRNA in response to dietary iron deficiency and acute iron overload. Metallomics. 2020;12:2186–2198. doi: 10.1039/d0mt00192a. PubMed DOI PMC
Delaby C., Pilard N., Puy H., Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: Early mRNA induction by haem, followed by iron-dependent protein expression. Biochem. J. 2008;411:123–131. doi: 10.1042/BJ20071474. PubMed DOI
Canonne-Hergaux F., Donovan A., Delaby C., Wang H.J., Gros P. Comparative studies of duodenal and macrophage ferroportin proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G156–G163. doi: 10.1152/ajpgi.00227.2005. PubMed DOI
Zhang A.S., Anderson S.A., Meyers K.R., Hernandez C., Eisenstein R.S., Enns C.A. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J. Biol. Chem. 2007;282:12547–12556. doi: 10.1074/jbc.M608788200. PubMed DOI
Niederkofler V., Salie R., Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J. Clin. Investig. 2005;115:2180–2186. doi: 10.1172/JCI25683. PubMed DOI PMC
Katsarou A., Gkouvatsos K., Fillebeen C., Pantopoulos K. Tissue-Specific Regulation of Ferroportin in Wild-Type and Hjv-/- Mice Following Dietary Iron Manipulations. Hepatol. Commun. 2021;5:2139–2150. doi: 10.1002/hep4.1780. PubMed DOI PMC
Nicolas G., Viatte L., Bennoun M., Beaumont C., Kahn A., Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis. 2002;29:327–335. doi: 10.1006/bcmd.2002.0573. PubMed DOI
Vokurka M., Krijt J., Sulc K., Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 2006;55:667–674. doi: 10.33549/physiolres.930841. PubMed DOI
Pak M., Lopez M.A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735. doi: 10.1182/blood-2006-06-028787. PubMed DOI PMC
Petrak J., Havlenova T., Krijt M., Behounek M., Franekova J., Cervenka L., Pluhacek T., Vyoral D., Melenovsky V. Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim. Biophys. Acta Gen. Subj. 2019;1863:703–713. doi: 10.1016/j.bbagen.2019.01.010. PubMed DOI
Drakesmith H., Nemeth E., Ganz T. Ironing out Ferroportin. Cell Metab. 2015;22:777–787. doi: 10.1016/j.cmet.2015.09.006. PubMed DOI PMC
Haddad S., Wang Y., Galy B., Korf-Klingebiel M., Hirsch V., Baru A.M., Rostami F., Reboll M.R., Heineke J., Flögel U., et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur. Heart J. 2017;38:362–372. doi: 10.1093/eurheartj/ehw333. PubMed DOI
Canonne-Hergaux F., Gruenheid S., Ponka P., Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999;93:4406–4417. doi: 10.1182/blood.V93.12.4406. PubMed DOI
Fujikura Y., Krijt J., Povýšil C., Mělková Z., Přikryl P., Vokurka M., Nečas E. Iron Overload Causes Alterations of E-Cadherin in the Liver. Folia Biol. 2016;62:95–102. PubMed
Frýdlová J., Rychtarčíková Z., Gurieva I., Vokurka M., Truksa J., Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS ONE. 2017;12:e0186844. doi: 10.1371/journal.pone.0186844. PubMed DOI PMC
Tsuji Y. Transmembrane protein western blotting: Impact of sample preparation on detection of SLC11A2 (DMT1) and SLC40A1 (ferroportin) PLoS ONE. 2020;15:e0235563. doi: 10.1371/journal.pone.0235563. PubMed DOI PMC
Torrance J.D., Bothwell T.H. Tissue Iron Stores. In: Cook J.D., editor. Methods in Hematology. Churchill Livingstone; New York, NY, USA: 1980. pp. 90–115.