Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DYPES/DU/R&D/2021/274
D.Y. Patil Education Society Institution Deemed to be University Kolhapur
PubMed
35689742
DOI
10.1007/s10895-022-02977-4
PII: 10.1007/s10895-022-02977-4
Knihovny.cz E-zdroje
- Klíčová slova
- Antiangiogenesis, Antibacterial activity, Bioimaging, Carbon quantum dots, Poly l lysine,
- MeSH
- antibakteriální látky farmakologie MeSH
- endoteliální buňky MeSH
- Escherichia coli MeSH
- kvantové tečky * chemie MeSH
- lysin MeSH
- polylysin MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- lysin MeSH
- polylysin MeSH
- uhlík MeSH
This study illustrates the synthesis of functionalized carbon quantum dots (CQDs) by the one-pot pyrolysis method. The functionalization agent used in CQD synthesis was poly l- lysine (PLL). Various physicochemical techniques were employed to confirm the successful formation of PLLCQD including High resolution transmission electron microscopy (HR-TEM), UV-Vis spectroscopy, fluorescence spectroscopy; Atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The size of PLLCQD was confirmed by HRTEM and AFM. The synthesized PLLCQD shows bright blue fluorescence and has a quantum yield of 19.35%. The highest emission band was observed at 471nm when excited to 370nm. The prepared PLLCQD exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with inhibition zone 7-20 mm. The concentrations of 0.9 to 0.1gmL-1 were studied to determine minimum inhibitory concentration (MIC) by the agar well diffusion assay method. MIC of 0.2gml -1 concentration of PLLCQD is achieved. The anti-angiogenic activity of PLLCQD was determined using (Chick Chorioallantoic Membrane) CAM assay. CAM assay is a reliable in -vivo model to study angiogenesis also; many stimulators and inhibitors have been examined by this method. This study proves higher antibacterial efficiency of PLLCQD over non functionalized CQD. PLLCQD was successfully employed in bio-imaging of the bacterial cell through fluorescence microscopy. Further, PLLCQD displayed cytotoxic effect on endothelial cells and inhibited blood vessel formation in the CAM model.
Zobrazit více v PubMed
Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2(9):747–765 DOI
Dugassa J, Shukuri N (2017) Review on antibiotic resistance and its mechanism of development. J Health Med Nurs 1(3):1–7
Yu T, Jiang G, Gao R, Chen G, Ren Y, Liu J, van der Mei HC, Busscher HJ (2020) Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opin Drug Deliv 17(8):1151–1164 DOI
Getie S, Belay A, Chandra Reddy AR, Belay Z (2017) Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomed Nanotechno S 8(004)
Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB (2014) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19(8):1320–1344 DOI
Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB (2020) The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10(8):1566 DOI
Raut AV, Satvekar RK, Rohiwal SS, Tiwari AP, Gnanamani A, Pushpavanam S, Nanaware SG, Pawar SH (2016) In vitro biocompatibility and antimicrobial activity of chitin monomer obtain from hollow fiber membrane. Des Monomers Polym 19(5):445–455 DOI
Tiwari AP, Ghosh SJ, Pawar SH (2015) Biomedical applications based on magnetic nanoparticles: DNA interactions. Anal Methods 7(24):10109–10120 DOI
Li P, Poon YF, Li W, Zhu HY, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang ET (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156 DOI
Bing W, Sun H, Yan Z, Ren J, Qu X (2016) Programmed bacteria death induced by carbon dots with different surface charge. Small 12(34):4713–4718 DOI
Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46(5):561–572 DOI
Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, Lin CH, Huang CC (2016) Synthesis of self assembled spermidine carbon quantum dots effective against multidrug resistant bacteria. Adv Healthcare Mater 5(19):2545–2554 DOI
Gagic M, Kociova S, Smerkova K, Michalkova H, Setka M, Svec P, Pribyl J, Masilko J, Balkova R, Heger Z, Richtera L (2020) One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity. J Colloid Interface Sci 15(580):30–48 DOI
Li P, Yang X, Zhang X, Pan J, Tang W, Cao W, Zhou J, Gong X, Xing X (2020) Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J Mater Sci 55(35):16744–16757 DOI
Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21(1):44–52 DOI
Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186 DOI
Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D (2019) Chitosan-based carbon quantum dots for biomedical applications: synthesis and characterization. Nanomaterials 9(2):274 DOI
Yuan T, Meng T, He P, Shi Y, Li Y, Li X, Fan L, Yang S (2019) Carbon quantum dots: an emerging material for optoelectronic applications. J Mater Chem C 7(23):6820–6835 DOI
Kandasamy G (2019) Recent advancements in doped/co-doped carbon quantum dots for multi-potential applications. C 5(2):24
Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon 1(140):77–99 DOI
Sharma N, Das GS, Yun K (2020) Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl Microbiol Biotechnol 104(16):7187–7200 DOI
Yang J, Gao G, Zhang X, Ma YH, Chen X, Wu FG (2019) One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon 1(146):827–839 DOI
Xue M, Zhan Z, Zou M, Zhang L, Zhao S (2016) Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 40(2):1698–1703 DOI
Surendran P, Lakshmanan A, Priya SS, Balakrishnan K, Rameshkumar P, Kannan K, Geetha P, Hegde TA, Vinitha G (2020) Bioinspired fluorescence carbon quantum dots extracted from natural honey: efficient material for photonic and antibacterial applications. Nano-Struct Nano-Objects 1(24):100589 DOI
Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol 1(270):181–224 DOI
Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H (2015) Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mater Sci Eng C 1(47):325–332 DOI
Venkateswarlu S, Viswanath B, Reddy AS, Yoon M (2018) Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sens Actuators B Chem 1(258):172–183 DOI
Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1):484–491 DOI