Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 GM084176
NIGMS NIH HHS - United States
R01-GM084176
NIH HHS - United States
PubMed
35697900
PubMed Central
PMC9192712
DOI
10.1038/s41598-022-13554-x
PII: 10.1038/s41598-022-13554-x
Knihovny.cz E-zdroje
- MeSH
- buňky PC12 MeSH
- chelátory železa * farmakologie MeSH
- deferasirox farmakologie MeSH
- deferipron farmakologie MeSH
- deferoxamin farmakologie MeSH
- dopamin farmakologie MeSH
- katecholaminy farmakologie MeSH
- krysa rodu Rattus MeSH
- oxidační stres MeSH
- oxidopamin farmakologie MeSH
- přetížení železem * MeSH
- železo farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chelátory železa * MeSH
- deferasirox MeSH
- deferipron MeSH
- deferoxamin MeSH
- dopamin MeSH
- katecholaminy MeSH
- oxidopamin MeSH
- železo MeSH
Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
Zobrazit více v PubMed
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4. Oxford University Press; 2007. PubMed
Crichton, R.R., Ward, R.J. Metal-based neurodegeneration: From molecular mechanisms to therapeutic strategies. 2006.
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI
Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 1991;57(5):1609–1614. doi: 10.1111/j.1471-4159.1991.tb06358.x. PubMed DOI
Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 2001;8(7):721–738. doi: 10.2174/0929867013372922. PubMed DOI
Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med. Chem. 2009;1(9):1643–1670. doi: 10.4155/fmc.09.121. PubMed DOI PMC
Galey JB. Recent advances in the design of iron chelators against oxidative damage. Mini. Rev. Med. Chem. 2001;1(3):233–242. doi: 10.2174/1389557013406846. PubMed DOI
Kalinowski DS, Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 2005;57(4):547–583. doi: 10.1124/pr.57.4.2. PubMed DOI
Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid. Redox. Signal. 2014;21(2):195–210. doi: 10.1089/ars.2013.5593. PubMed DOI PMC
Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet. 1991;337(8753):1304–1308. doi: 10.1016/0140-6736(91)92978-B. PubMed DOI
Ben-Shachar D, Eshel G, Riederer P, Youdim MB. Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson's disease. Ann. Neurol. 1992;32(Suppl):S105–S110. doi: 10.1002/ana.410320718. PubMed DOI
Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, et al. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson's disease after peripheral administration. J. Neural Transm. (Vienna, Austria : 1996) 2011;118(2):223–231. doi: 10.1007/s00702-010-0531-3. PubMed DOI
Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J. Neural Transm. (Vienna, Austria: 1996) 1997;104(4–5):469–481. doi: 10.1007/BF01277665. PubMed DOI
Molina-Holgado F, Gaeta A, Francis PT, Williams RJ, Hider RC. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J. Neurochem. 2008;105(6):2466–2476. doi: 10.1111/j.1471-4159.2008.05332.x. PubMed DOI
Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, et al. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol. Pharm. 2013;10(12):4418–4431. doi: 10.1021/mp4002014. PubMed DOI
Wu C, Zhao W, Yu J, Li S, Lin L, Chen X. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci. Rep. 2018;8(1):574. doi: 10.1038/s41598-017-18935-1. PubMed DOI PMC
Stumpf JL. Deferasirox. Am. J. Health-Syst. Pharm. 2007;64:606–616. doi: 10.2146/ajhp060405. PubMed DOI
Piga A, et al. Deferiprone. Ann. N. Y. Acad. Sci. 2010;1202:75–78. doi: 10.1111/j.1749-6632.2010.05586.x. PubMed DOI
Walkinshaw G, Waters CM. Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience. 1994;63(4):975–987. doi: 10.1016/0306-4522(94)90566-5. PubMed DOI
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol. 2001;65(2):135–172. doi: 10.1016/S0301-0082(01)00003-X. PubMed DOI
Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, et al. Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Investig. Ophthalmol. Vis. Sci. 2009;50(3):1440–1447. doi: 10.1167/iovs.08-2545. PubMed DOI PMC
Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M, et al. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem. Res. Toxicol. 2010;23(6):1105–1114. doi: 10.1021/tx100125t. PubMed DOI
Hašková P, Kovaříková P, Koubková L, Vávrová A, Macková E, Simůnek T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic. Biol. Med. 2011;50(4):537–549. doi: 10.1016/j.freeradbiomed.2010.12.004. PubMed DOI
Jansova H, Kubes J, Reimerova P, Sterbova-Kovarikova P, Roh J, Simunek T. 2,6-Dihydroxybenzaldehyde analogues of the iron chelator salicylaldehyde isonicotinoyl hydrazone: Increased hydrolytic stability and cytoprotective activity against oxidative stress. Chem. Res. Toxicol. 2018;31(11):1151–1163. doi: 10.1021/acs.chemrestox.8b00165. PubMed DOI
Berndt C, Kurz T, Selenius M, Fernandes AP, Edgren MR, Brunk UT. Chelation of lysosomal iron protects against ionizing radiation. Biochem. J. 2010;432(2):295–301. doi: 10.1042/BJ20100996. PubMed DOI
Sterba M, Popelová O, Simůnek T, Mazurová Y, Potácová A, Adamcová M, et al. Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH) Toxicology. 2007;235(3):150–166. doi: 10.1016/j.tox.2007.03.020. PubMed DOI
Simůnek T, Sterba M, Popelová O, Kaiserová H, Adamcová M, Hroch M, et al. Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. Br. J. Pharmacol. 2008;155(1):138–148. doi: 10.1038/bjp.2008.236. PubMed DOI PMC
Charkoudian LK, Pham DM, Kwon AM, Vangeloff AD, Franz KJ. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress. Dalton Trans. 2007;43:5031–5042. doi: 10.1039/b705199a. PubMed DOI
Bureš J, Jansová H, Stariat J, Filipský T, Mladěnka P, Šimůnek T, et al. LC-UV/MS methods for the analysis of prochelator-boronyl salicylaldehyde isonicotinoyl hydrazone (BSIH) and its active chelator salicylaldehyde isonicotinoyl hydrazone (SIH) J. Pharm. Biomed. Anal. 2015;105:55–63. doi: 10.1016/j.jpba.2014.11.044. PubMed DOI PMC
Jansova H, Bures J, Machacek M, Haskova P, Jirkovska A, Roh J, et al. Characterization of cytoprotective and toxic properties of iron chelator SIH, prochelator BSIH and their degradation products. Toxicology. 2016;350–352:15–24. doi: 10.1016/j.tox.2016.03.004. PubMed DOI PMC
Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA. 1976;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. PubMed DOI PMC
Teng KK, Angelastro JM, Cunningham ME, Greene LA. Chapter 21—cultured PC12 cells: A model for neuronal function, differentiation, and survival. In: Celis JE, editor. Cell Biology. 3. Academic Press; 2006. pp. 171–176.
Greene LA, Rein G. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells. Brain Res. 1977;129(2):247–263. doi: 10.1016/0006-8993(77)90005-1. PubMed DOI
Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J. Neurochem. 2000;74(4):1605–1612. doi: 10.1046/j.1471-4159.2000.0741605.x. PubMed DOI
Beal MF. Experimental models of Parkinson's disease. Nat. Rev. Neurosci. 2001;2(5):325–334. doi: 10.1038/35072550. PubMed DOI
Ponka P, Richardson D, Baker E, Schulman HM, Edward JT. Effect of pyridoxal isonicotinoyl hydrazone and other hydrazones on iron release from macrophages, reticulocytes and hepatocytes. Biochim. Biophys. Acta. 1988;967(1):122–129. doi: 10.1016/0304-4165(88)90197-3. PubMed DOI
Charkoudian LK, Pham DM, Franz KJ. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J. Am. Chem. Soc. 2006;128(38):12424–12425. doi: 10.1021/ja064806w. PubMed DOI
Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, et al. Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected] J. Biotechnol. 1992;25(3):231–243. doi: 10.1016/0168-1656(92)90158-6. PubMed DOI
Chan FK, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 2013;979:65–70. doi: 10.1007/978-1-62703-290-2_7. PubMed DOI PMC
Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods. 1983;64(3):313–320. doi: 10.1016/0022-1759(83)90438-6. PubMed DOI
Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999;27(5–6):612–616. doi: 10.1016/S0891-5849(99)00107-0. PubMed DOI
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol. 2019;56(7):4880–4893. doi: 10.1007/s12035-018-1403-3. PubMed DOI PMC
Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. alpha-Synuclein expression is modulated at the translational level by iron. NeuroReport. 2012;23(9):576–580. doi: 10.1097/WNR.0b013e328354a1f0. PubMed DOI
Unger EL, Wiesinger JA, Hao L, Beard JL. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J. Nutr. 2008;138(12):2487–2494. doi: 10.3945/jn.108.095224. PubMed DOI PMC
Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases. J. Trace Elem. Med. Biol. 2015;31:193–203. doi: 10.1016/j.jtemb.2014.05.007. PubMed DOI
Ward RJ, Dexter DT, Crichton RR. Neurodegenerative diseases and therapeutic strategies using iron chelators. J. Trace Elem. Med. Biol. 2015;31:267–273. doi: 10.1016/j.jtemb.2014.12.012. PubMed DOI
Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM. A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci. Lett. 2005;379(2):96–100. doi: 10.1016/j.neulet.2004.12.080. PubMed DOI
Chouraqui E, Leon A, Repesse Y, Prigent-Tessier A, Bouhallab S, Bougle D, et al. Deferoxamine blocks death induced by glutathione depletion in PC 12 cells. Neurotoxicology. 2013;37:221–230. doi: 10.1016/j.neuro.2013.04.013. PubMed DOI
Haleagrahara N, Siew CJ, Ponnusamy K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci. 2013;38(1):25–33. doi: 10.2131/jts.38.25. PubMed DOI
Park MJ, Lee SK, Lim MA, Chung HS, Cho SI, Jang CG, et al. Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res. 2006;1109(1):176–182. doi: 10.1016/j.brainres.2006.06.030. PubMed DOI
Shi ZH, Nie G, Duan XL, Rouault T, Wu WS, Ning B, et al. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson's disease. Antioxid. Redox Signal. 2010;13(6):783–796. doi: 10.1089/ars.2009.3018. PubMed DOI PMC
Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968;5(1):107–110. doi: 10.1016/0014-2999(68)90164-7. PubMed DOI
Han X, Zhu S, Wang B, Chen L, Li R, Yao W, et al. Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem. Int. 2014;64:18–23. doi: 10.1016/j.neuint.2013.10.018. PubMed DOI
Jansová H, Macháček M, Wang Q, Hašková P, Jirkovská A, Potůčková E, et al. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury. Free Radic. Biol. Med. 2014;74:210–221. doi: 10.1016/j.freeradbiomed.2014.06.019. PubMed DOI PMC
Haskova P, Koubkova L, Vavrova A, Mackova E, Hruskova K, Kovarikova P, et al. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology. 2011;289(2–3):122–131. doi: 10.1016/j.tox.2011.08.006. PubMed DOI