Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine

. 2022 Jun 13 ; 12 (1) : 9765. [epub] 20220613

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid35697900

Grantová podpora
R01 GM084176 NIGMS NIH HHS - United States
R01-GM084176 NIH HHS - United States

Odkazy

PubMed 35697900
PubMed Central PMC9192712
DOI 10.1038/s41598-022-13554-x
PII: 10.1038/s41598-022-13554-x
Knihovny.cz E-zdroje

Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.

Zobrazit více v PubMed

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4. Oxford University Press; 2007. PubMed

Crichton, R.R., Ward, R.J. Metal-based neurodegeneration: From molecular mechanisms to therapeutic strategies. 2006.

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI

Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 1991;57(5):1609–1614. doi: 10.1111/j.1471-4159.1991.tb06358.x. PubMed DOI

Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 2001;8(7):721–738. doi: 10.2174/0929867013372922. PubMed DOI

Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med. Chem. 2009;1(9):1643–1670. doi: 10.4155/fmc.09.121. PubMed DOI PMC

Galey JB. Recent advances in the design of iron chelators against oxidative damage. Mini. Rev. Med. Chem. 2001;1(3):233–242. doi: 10.2174/1389557013406846. PubMed DOI

Kalinowski DS, Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 2005;57(4):547–583. doi: 10.1124/pr.57.4.2. PubMed DOI

Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid. Redox. Signal. 2014;21(2):195–210. doi: 10.1089/ars.2013.5593. PubMed DOI PMC

Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet. 1991;337(8753):1304–1308. doi: 10.1016/0140-6736(91)92978-B. PubMed DOI

Ben-Shachar D, Eshel G, Riederer P, Youdim MB. Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson's disease. Ann. Neurol. 1992;32(Suppl):S105–S110. doi: 10.1002/ana.410320718. PubMed DOI

Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, et al. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson's disease after peripheral administration. J. Neural Transm. (Vienna, Austria : 1996) 2011;118(2):223–231. doi: 10.1007/s00702-010-0531-3. PubMed DOI

Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J. Neural Transm. (Vienna, Austria: 1996) 1997;104(4–5):469–481. doi: 10.1007/BF01277665. PubMed DOI

Molina-Holgado F, Gaeta A, Francis PT, Williams RJ, Hider RC. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J. Neurochem. 2008;105(6):2466–2476. doi: 10.1111/j.1471-4159.2008.05332.x. PubMed DOI

Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, et al. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol. Pharm. 2013;10(12):4418–4431. doi: 10.1021/mp4002014. PubMed DOI

Wu C, Zhao W, Yu J, Li S, Lin L, Chen X. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci. Rep. 2018;8(1):574. doi: 10.1038/s41598-017-18935-1. PubMed DOI PMC

Stumpf JL. Deferasirox. Am. J. Health-Syst. Pharm. 2007;64:606–616. doi: 10.2146/ajhp060405. PubMed DOI

Piga A, et al. Deferiprone. Ann. N. Y. Acad. Sci. 2010;1202:75–78. doi: 10.1111/j.1749-6632.2010.05586.x. PubMed DOI

Walkinshaw G, Waters CM. Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience. 1994;63(4):975–987. doi: 10.1016/0306-4522(94)90566-5. PubMed DOI

Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol. 2001;65(2):135–172. doi: 10.1016/S0301-0082(01)00003-X. PubMed DOI

Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, et al. Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Investig. Ophthalmol. Vis. Sci. 2009;50(3):1440–1447. doi: 10.1167/iovs.08-2545. PubMed DOI PMC

Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M, et al. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem. Res. Toxicol. 2010;23(6):1105–1114. doi: 10.1021/tx100125t. PubMed DOI

Hašková P, Kovaříková P, Koubková L, Vávrová A, Macková E, Simůnek T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic. Biol. Med. 2011;50(4):537–549. doi: 10.1016/j.freeradbiomed.2010.12.004. PubMed DOI

Jansova H, Kubes J, Reimerova P, Sterbova-Kovarikova P, Roh J, Simunek T. 2,6-Dihydroxybenzaldehyde analogues of the iron chelator salicylaldehyde isonicotinoyl hydrazone: Increased hydrolytic stability and cytoprotective activity against oxidative stress. Chem. Res. Toxicol. 2018;31(11):1151–1163. doi: 10.1021/acs.chemrestox.8b00165. PubMed DOI

Berndt C, Kurz T, Selenius M, Fernandes AP, Edgren MR, Brunk UT. Chelation of lysosomal iron protects against ionizing radiation. Biochem. J. 2010;432(2):295–301. doi: 10.1042/BJ20100996. PubMed DOI

Sterba M, Popelová O, Simůnek T, Mazurová Y, Potácová A, Adamcová M, et al. Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH) Toxicology. 2007;235(3):150–166. doi: 10.1016/j.tox.2007.03.020. PubMed DOI

Simůnek T, Sterba M, Popelová O, Kaiserová H, Adamcová M, Hroch M, et al. Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. Br. J. Pharmacol. 2008;155(1):138–148. doi: 10.1038/bjp.2008.236. PubMed DOI PMC

Charkoudian LK, Pham DM, Kwon AM, Vangeloff AD, Franz KJ. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress. Dalton Trans. 2007;43:5031–5042. doi: 10.1039/b705199a. PubMed DOI

Bureš J, Jansová H, Stariat J, Filipský T, Mladěnka P, Šimůnek T, et al. LC-UV/MS methods for the analysis of prochelator-boronyl salicylaldehyde isonicotinoyl hydrazone (BSIH) and its active chelator salicylaldehyde isonicotinoyl hydrazone (SIH) J. Pharm. Biomed. Anal. 2015;105:55–63. doi: 10.1016/j.jpba.2014.11.044. PubMed DOI PMC

Jansova H, Bures J, Machacek M, Haskova P, Jirkovska A, Roh J, et al. Characterization of cytoprotective and toxic properties of iron chelator SIH, prochelator BSIH and their degradation products. Toxicology. 2016;350–352:15–24. doi: 10.1016/j.tox.2016.03.004. PubMed DOI PMC

Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA. 1976;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. PubMed DOI PMC

Teng KK, Angelastro JM, Cunningham ME, Greene LA. Chapter 21—cultured PC12 cells: A model for neuronal function, differentiation, and survival. In: Celis JE, editor. Cell Biology. 3. Academic Press; 2006. pp. 171–176.

Greene LA, Rein G. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells. Brain Res. 1977;129(2):247–263. doi: 10.1016/0006-8993(77)90005-1. PubMed DOI

Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J. Neurochem. 2000;74(4):1605–1612. doi: 10.1046/j.1471-4159.2000.0741605.x. PubMed DOI

Beal MF. Experimental models of Parkinson's disease. Nat. Rev. Neurosci. 2001;2(5):325–334. doi: 10.1038/35072550. PubMed DOI

Ponka P, Richardson D, Baker E, Schulman HM, Edward JT. Effect of pyridoxal isonicotinoyl hydrazone and other hydrazones on iron release from macrophages, reticulocytes and hepatocytes. Biochim. Biophys. Acta. 1988;967(1):122–129. doi: 10.1016/0304-4165(88)90197-3. PubMed DOI

Charkoudian LK, Pham DM, Franz KJ. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J. Am. Chem. Soc. 2006;128(38):12424–12425. doi: 10.1021/ja064806w. PubMed DOI

Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, et al. Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected] J. Biotechnol. 1992;25(3):231–243. doi: 10.1016/0168-1656(92)90158-6. PubMed DOI

Chan FK, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 2013;979:65–70. doi: 10.1007/978-1-62703-290-2_7. PubMed DOI PMC

Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods. 1983;64(3):313–320. doi: 10.1016/0022-1759(83)90438-6. PubMed DOI

Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999;27(5–6):612–616. doi: 10.1016/S0891-5849(99)00107-0. PubMed DOI

Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol. 2019;56(7):4880–4893. doi: 10.1007/s12035-018-1403-3. PubMed DOI PMC

Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. alpha-Synuclein expression is modulated at the translational level by iron. NeuroReport. 2012;23(9):576–580. doi: 10.1097/WNR.0b013e328354a1f0. PubMed DOI

Unger EL, Wiesinger JA, Hao L, Beard JL. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J. Nutr. 2008;138(12):2487–2494. doi: 10.3945/jn.108.095224. PubMed DOI PMC

Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases. J. Trace Elem. Med. Biol. 2015;31:193–203. doi: 10.1016/j.jtemb.2014.05.007. PubMed DOI

Ward RJ, Dexter DT, Crichton RR. Neurodegenerative diseases and therapeutic strategies using iron chelators. J. Trace Elem. Med. Biol. 2015;31:267–273. doi: 10.1016/j.jtemb.2014.12.012. PubMed DOI

Hamrick SE, McQuillen PS, Jiang X, Mu D, Madan A, Ferriero DM. A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci. Lett. 2005;379(2):96–100. doi: 10.1016/j.neulet.2004.12.080. PubMed DOI

Chouraqui E, Leon A, Repesse Y, Prigent-Tessier A, Bouhallab S, Bougle D, et al. Deferoxamine blocks death induced by glutathione depletion in PC 12 cells. Neurotoxicology. 2013;37:221–230. doi: 10.1016/j.neuro.2013.04.013. PubMed DOI

Haleagrahara N, Siew CJ, Ponnusamy K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci. 2013;38(1):25–33. doi: 10.2131/jts.38.25. PubMed DOI

Park MJ, Lee SK, Lim MA, Chung HS, Cho SI, Jang CG, et al. Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res. 2006;1109(1):176–182. doi: 10.1016/j.brainres.2006.06.030. PubMed DOI

Shi ZH, Nie G, Duan XL, Rouault T, Wu WS, Ning B, et al. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson's disease. Antioxid. Redox Signal. 2010;13(6):783–796. doi: 10.1089/ars.2009.3018. PubMed DOI PMC

Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968;5(1):107–110. doi: 10.1016/0014-2999(68)90164-7. PubMed DOI

Han X, Zhu S, Wang B, Chen L, Li R, Yao W, et al. Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem. Int. 2014;64:18–23. doi: 10.1016/j.neuint.2013.10.018. PubMed DOI

Jansová H, Macháček M, Wang Q, Hašková P, Jirkovská A, Potůčková E, et al. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury. Free Radic. Biol. Med. 2014;74:210–221. doi: 10.1016/j.freeradbiomed.2014.06.019. PubMed DOI PMC

Haskova P, Koubkova L, Vavrova A, Mackova E, Hruskova K, Kovarikova P, et al. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology. 2011;289(2–3):122–131. doi: 10.1016/j.tox.2011.08.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...