Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35735955
PubMed Central
PMC9224620
DOI
10.3390/jimaging8060156
PII: jimaging8060156
Knihovny.cz E-zdroje
- Klíčová slova
- LAR reduction, Mumford–Shah formalism, denoising, nonparametric methods,
- Publikační typ
- časopisecké články MeSH
We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford−Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford−Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index >90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.
Department of Mathematics VSB Ostrava Ludvika Podeste 1875 17 708 33 Ostrava Czech Republic
Faculty of Mathematics Technical University of Kaiserslautern 67663 Kaiserslautern Germany
Institute of Occupational Medicine Faculty of Medicine GU Frankfurt 60590 Frankfurt am Main Germany
Zobrazit více v PubMed
Communicating Radiation Risks in Paediatric Imaging: Information to Support Health Care Discussions about Benefit and Risk. World Health Organization; Geneva, Switzerland: 2016. 88p
Ai T., Yang Z., Hou H., Zhan C., Chen C., Lv W., Tao Q., Sun Z., Xia L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;296:E32–E40. doi: 10.1148/radiol.2020200642. PubMed DOI PMC
Bernheim A., Mei X., Huang M., Yang Y., Fayad Z.A., Zhang N., Diao K., Lin B., Zhu X., Li K., et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295:200463. doi: 10.1148/radiol.2020200463. PubMed DOI PMC
Brenner D.J., Doll R., Goodhead D.T., Hall E.J., Land C.E., Little J.B., Lubin J.H., Preston D.L., Preston R.J., Puskin J.S., et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc. Natl. Acad. Sci. USA. 2003;100:13761–13766. doi: 10.1073/pnas.2235592100. PubMed DOI PMC
Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academies Press; Washington, DC, USA: 2006. Radiation, committee and research, board and studies, division and council, national; pp. 1–406. DOI
Brenner D.J., Hall E.J. Computed Tomography—An Increasing Source of Radiation Exposure. N. Engl. J. Med. 2007;357:2277–2284. doi: 10.1056/NEJMra072149. PubMed DOI
Gillespie D.T. A diffusional bimolecular propensity function. J. Chem. Phys. 2009;131:164109. doi: 10.1063/1.3253798. PubMed DOI PMC
Siegel J.A., Greenspan B.S., Maurer A.H., Taylor A.T., Phillips W.T., Van Nostrand D., Sacks B., Silberstein E.B. The BEIR VII Estimates of Low-Dose Radiation Health Risks Are Based on Faulty Assumptions and Data Analyses: A Call for Reassessment. J. Nucl. Med. 2018;59:1017–1019. doi: 10.2967/jnumed.117.206219. PubMed DOI
de González A.B., Mahesh M., Kim K.P., Bhargavan M., Lewis R., Mettler F., Land C. Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Arch. Intern. Med. 2009;169:2071–2077. doi: 10.1001/archinternmed.2009.440. PubMed DOI PMC
Miglioretti D.L., Johnson E., Williams A., Greenlee R.T., Weinmann S., Solberg L.I., Feigelson H.S., Roblin D., Flynn M.J., Vanneman N., et al. The Use of Computed Tomography in Pediatrics and the Associated Radiation Exposure and Estimated Cancer Risk. JAMA Pediatr. 2013;167:700–707. doi: 10.1001/jamapediatrics.2013.311. PubMed DOI PMC
Duncan J.R., Lieber M.R., Adachi N., Wahl R.L. Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear No-Threshold Model of Low-Dose Radiation Health Risks. J. Nucl. Med. 2018;59:1014–1016. doi: 10.2967/jnumed.118.210252. PubMed DOI
Huang R., Liu X., He L., Zhou P.K. Radiation Exposure Associated With Computed Tomography in Childhood and the Subsequent Risk of Cancer: A Meta-Analysis of Cohort Studies. Dose-Response Publ. Int. Hormesis Soc. 2020;18:1559325820923828. doi: 10.1177/1559325820923828. PubMed DOI PMC
Choy G., Khalilzadeh O., Michalski M., Do S., Samir A.E., Pianykh O.S., Geis J.R., Pandharipande P.V., Brink J.A., Dreyer K.J. Current Applications and Future Impact of Machine Learning in Radiology. Radiology. 2018;288:318–328. doi: 10.1148/radiol.2018171820. PubMed DOI PMC
Koziol P., Raczkowska M.K., Skibinska J., Urbaniak-Wasik S., Paluszkiewicz C., Kwiatek W., Wrobel T.P. Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data. Sci. Rep. 2018;8:14351. doi: 10.1038/s41598-018-32713-7. PubMed DOI PMC
Roels J., Vernaillen F., Kremer A., Gonçalves A., Aelterman J., Luong H.Q., Goossens B., Philips W., Lippens S., Saeys Y. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat. Commun. 2020;11:771. doi: 10.1038/s41467-020-14529-0. PubMed DOI PMC
Wirjadi O., Breuel T. Approximate separable 3D anisotropic Gauss filter; Proceedings of the IEEE International Conference on Image Processing 2005; Genova, Italy. 14 September 2005; pp. 11–149. DOI
Tomasi C., Manduchi R. Bilateral Filtering for Gray and Color Images; Proceedings of the Sixth International Conference on Computer Vision; Bombay, India. 7 January 1998; Washington, DC, USA: IEEE Computer Society; 1998. p. 839.
Harms J., Wang T., Petrongolo M., Niu T., Zhu L. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization. Med. Phys. 2016;43:2676–2686. doi: 10.1118/1.4947485. PubMed DOI PMC
Donoho D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory. 1995;41:613–627. doi: 10.1109/18.382009. DOI
Arias-Castro E., Donoho D.L. Does median filtering truly preserve edges better than linear filtering? Ann. Stat. 2009;37:1172–1206. doi: 10.1214/08-AOS604. DOI
Wang Y., Che X., Ma S. Nonlinear filtering based on 3D wavelet transform for MRI denoising. EURASIP J. Adv. Signal Process. 2012;2012:40. doi: 10.1186/1687-6180-2012-40. DOI
Tang S., Tang X. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain. Med. Phys. 2012;39:5498–5512. doi: 10.1118/1.4745564. PubMed DOI PMC
Yang Q., Yan P., Zhang Y., Yu H., Shi Y., Mou X., Kalra M.K., Zhang Y., Sun L., Wang G. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans. Med. Imaging. 2018;37:1348–1357. doi: 10.1109/TMI.2018.2827462. PubMed DOI PMC
Konefal A., Tang C., Li J., Wang L., Li Z., Jiang L., Cai A., Zhang W., Liang N., Li L., et al. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Comput. Math. Methods Med. 2019;2019:8639825. doi: 10.1155/2019/8639825. PubMed DOI PMC
Zhang K., Zuo W., Chen Y., Meng D., Zhang L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. Trans. Img. Proc. 2017;26:3142–3155. doi: 10.1109/TIP.2017.2662206. PubMed DOI
Chen H., Zhang Y., Zhang W., Liao P., Li K., Zhou J., Wang G. Low-dose CT via convolutional neural network. Biomed. Opt. Express. 2017;8:679–694. doi: 10.1364/BOE.8.000679. PubMed DOI PMC
Topal E., Löffler M., Zschech E. Deep Learning-based Inaccuracy Compensation in Reconstruction of High Resolution XCT Data. Sci. Rep. 2020;10:7682. doi: 10.1038/s41598-020-64733-7. PubMed DOI PMC
Tian C., Fei L., Zheng W., Xu Y., Zuo W., Lin C.W. Deep learning on image denoising: An overview. Neural Netw. 2020;131:251–275. doi: 10.1016/j.neunet.2020.07.025. PubMed DOI
Bhadra S., Kelkar V.A., Brooks F.J., Anastasio M.A. On Hallucinations in Tomographic Image Reconstruction. IEEE Trans. Med. Imaging. 2021;40:3249–3260. doi: 10.1109/TMI.2021.3077857. PubMed DOI PMC
Kaur P., Singh G., Kaur P. A review of denoising medical images using machine learning approaches. Curr. Med. Imaging. 2018;14:675–685. doi: 10.2174/1573405613666170428154156. PubMed DOI PMC
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., Van Der Laak J.A., Van Ginneken B., Sánchez C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. PubMed DOI
Lundervold A.S., Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019;29:102–127. doi: 10.1016/j.zemedi.2018.11.002. PubMed DOI
Razzak M.I., Naz S., Zaib A. Deep learning for medical image processing: Overview, challenges and the future. Classif. Bioapps. 2018;26:323–350.
Liu S., Deng W. Very deep convolutional neural network based image classification using small training sample size; Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR); Kuala Lumpur, Malaysia. 3–6 November 2015; Piscataway, NJ, USA: IEEE; 2015. pp. 730–734.
Gaonkar B., Hovda D., Martin N., Macyszyn L. Deep learning in the small sample size setting: Cascaded feed forward neural networks for medical image segmentation; Proceedings of the Medical Imaging 2016: Computer-Aided Diagnosis; San Diego, CA, USA. 27 February–3 March 2016; Bellingham, WA, USA: International Society for Optics and Photonics; 2016. p. 97852I.
Zhao W. Research on the deep learning of the small sample data based on transfer learning. AIP Conf. Proc. 2017;1864:020018.
Keshari R., Ghosh S., Chhabra S., Vatsa M., Singh R. Unravelling small sample size problems in the deep learning world; Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM); New Delhi, India. 24–26 September 2020; Piscataway, NJ, USA: IEEE; 2020. pp. 134–143.
D’souza R.N., Huang P.Y., Yeh F.C. Structural analysis and optimization of convolutional neural networks with a small sample size. Sci. Rep. 2020;10:834. doi: 10.1038/s41598-020-57866-2. PubMed DOI PMC
Dietterich T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 1995;27:326–327. doi: 10.1145/212094.212114. DOI
Zhang C., Vinyals O., Munos R., Bengio S. A study on overfitting in deep reinforcement learning. arXiv. 20181804.06893
Rice L., Wong E., Kolter Z. Overfitting in adversarially robust deep learning; Proceedings of the International Conference on Machine Learning; Virtual. 13–18 July 2020; pp. 8093–8104.
Hosseini M., Powell M., Collins J., Callahan-Flintoft C., Jones W., Bowman H., Wyble B. I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data. Neurosci. Biobehav. Rev. 2020;119:456–467. doi: 10.1016/j.neubiorev.2020.09.036. PubMed DOI
Gerber S., Pospisil L., Sys S., Hewel C., Torkamani A., Horenko I. Co-inference of data mislabeling reveals improved models in genomics and breast cancer diagnostics. Front. Artif. Intell. 2022;4:739432. doi: 10.3389/frai.2021.739432. PubMed DOI PMC
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.
Ying X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019;1168:022022. doi: 10.1088/1742-6596/1168/2/022022. DOI
Pan S.J., Yang Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009;22:1345–1359. doi: 10.1109/TKDE.2009.191. DOI
Weiss K., Khoshgoftaar T.M., Wang D. A survey of transfer learning. J. Big Data. 2016;3:9. doi: 10.1186/s40537-016-0043-6. DOI
Jang Y., Lee H., Hwang S.J., Shin J. Learning what and where to transfer; Proceedings of the International Conference on Machine Learning; Long Beach, CA, USA. 9–15 June 2019; pp. 3030–3039.
Raghu M., Zhang C., Kleinberg J., Bengio S. Transfusion: Understanding transfer learning for medical imaging. Adv. Neural Inf. Process. Syst. 2019;32:3347–3357.
Alzubaidi L., Fadhel M.A., Al-Shamma O., Zhang J., Santamaría J., Duan Y., Oleiwi S.R. Towards a better understanding of transfer learning for medical imaging: A case study. Appl. Sci. 2020;10:4523. doi: 10.3390/app10134523. DOI
Alzubaidi L., Al-Amidie M., Al-Asadi A., Humaidi A.J., Al-Shamma O., Fadhel M.A., Zhang J., Santamaría J., Duan Y. Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data. Cancers. 2021;13:1590. doi: 10.3390/cancers13071590. PubMed DOI PMC
Tartaglione E., Barbano C.A., Berzovini C., Calandri M., Grangetto M. Unveiling covid-19 from chest X-ray with deep learning: A hurdles race with small data. Int. J. Environ. Res. Public Health. 2020;17:6933. doi: 10.3390/ijerph17186933. PubMed DOI PMC
Tsymbal A. The problem of concept drift: Definitions and related work. Comput. Sci. Dep. Trinity Coll. Dublin. 2004;106:58.
Žliobaitė I. Learning under concept drift: An overview. arXiv. 20101010.4784
Gama J., Žliobaitė I., Bifet A., Pechenizkiy M., Bouchachia A. A survey on concept drift adaptation. ACM Comput. Surv. 2014;46:1–37. doi: 10.1145/2523813. DOI
Alippi C. Learning in Non-stationary Environments. In: Rosa A.C., Guervós J.J.M., Filipe J., editors. Proceedings of the ECTA 2014—Proceedings of the International Conference on Evolutionary Computation Theory and Applications, part of IJCCI 2014; Rome, Italy. 22–24 October 2014; Setúbal, Portugal: SciTePress; 2014. p. IS-11.
Souza V.M.A., dos Reis D.M., Maletzke A., Batista G.E.A.P.A. Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Discov. 2020;34:1805–1858. doi: 10.1007/s10618-020-00698-5. DOI
Horenko I. On a Scalable Entropic Breaching of the Overfitting Barrier for Small Data Problems in Machine Learning. Neural Comput. 2020;32:1563–1579. doi: 10.1162/neco_a_01296. PubMed DOI
Hochreiter S., Schmidhuber J. Long Short-term Memory. Neural Comput. 1997;9:1735–1780. doi: 10.1162/neco.1997.9.8.1735. PubMed DOI
Horenko I. Finite Element Approach to Clustering of Multidimensional Time Series. SIAM J. Sci. Comput. 2010;32:62–83. doi: 10.1137/080715962. DOI
Metzner P., Putzig L., Horenko I. Analysis of persistent nonstationary time series and applications. Commun. Appl. Math. Comput. Sci. 2012;7:175–229. doi: 10.2140/camcos.2012.7.175. DOI
Gerber S., Horenko I. Improving clustering by imposing network information. Sci. Adv. 2015;1:e1500163. doi: 10.1126/sciadv.1500163. PubMed DOI PMC
Pospisil L., Gagliardini P., Sawyer W., Horenko I. On a scalable nonparametric denoising of time series signals. Commun. Appl. Math. Comput. Sci. 2018;13:107–138. doi: 10.2140/camcos.2018.13.107. DOI
Rodrigues D.R., Everschor-Sitte K., Gerber S., Horenko I. A deeper look into natural sciences with physics-based and data-driven measures. Iscience. 2021;24:102171. doi: 10.1016/j.isci.2021.102171. PubMed DOI PMC
Gerber S., Horenko I. Towards a direct and scalable identification of reduced models for categorical processes. Proc. Natl. Acad. Sci. USA. 2017;114:4863–4868. doi: 10.1073/pnas.1612619114. PubMed DOI PMC
Wackerly D., Mendenhall W., III, Scheaffer R.L. Mathematical Statistics with Applications. 6th ed. Cengage Learning; Boston, MA, USA: 2002. Duxbury Advanced Series.
Huynh-Thu Q., Ghanbari M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates. Telecommun. Syst. 2012;49:35–48. doi: 10.1007/s11235-010-9351-x. DOI
Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. Trans. Img. Proc. 2004;13:600–612. doi: 10.1109/TIP.2003.819861. PubMed DOI
Hallgrímsson B., Hall B. Variation: A Central Concept in Biology. Elsevier Science; Amsterdam, The Netherlands: 2011.
Meyer M., Ronald J., Vernuccio F., Nelson R.C., Ramirez-Giraldo J.C., Solomon J., Patel B.N., Samei E., Marin D. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology. 2019;293:583–591. doi: 10.1148/radiol.2019190928. PubMed DOI PMC
De Man B., Basu S., Chandra N., Dunham B., Edic P., Iatrou M., McOlash S., Sainath P., Shaughnessy C., Tower B., et al. CatSim: A new computer assisted tomography simulation environment; Proceedings of the Medical Imaging 2007: Physics of Medical Imaging; San Diego, CA, USA. 17–22 February 2007; Bellingham, WA, USA: International Society for Optics and Photonics; 2007. p. 65102.
Yu L., Shiung M., Jondal D., McCollough C.H. Development and validation of a practical lower-dose-simulation tool for optimizing computed tomography scan protocols. J. Comput. Assist. Tomogr. 2012;36:477–487. doi: 10.1097/RCT.0b013e318258e891. PubMed DOI
McCollough C.H., Bartley A.C., Carter R.E., Chen B., Drees T.A., Edwards P., Holmes D.R., III, Huang A.E., Khan F., Leng S., et al. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 low dose CT grand challenge. Med. Phys. 2017;44:e339–e352. doi: 10.1002/mp.12345. PubMed DOI PMC
Moen T.R., Chen B., Holmes D.R., III, Duan X., Yu Z., Yu L., Leng S., Fletcher J.G., McCollough C.H. Low-dose CT image and projection dataset. Med. Phys. 2021;48:902–911. doi: 10.1002/mp.14594. PubMed DOI PMC
Li X., Samei E. Comparison of patient size-based methods for estimating quantum noise in CT images of the lung. Med. Phys. 2009;36:541–546. doi: 10.1118/1.3058482. PubMed DOI
Solomon J., Lyu P., Marin D., Samei E. Noise and spatial resolution properties of a commercially available deep? Learning based CT reconstruction algorithm. Med. Phys. 2020;47:3961–3971. doi: 10.1002/mp.14319. PubMed DOI
Samei E., Kinahan P., Nishikawa R.M.M., Maidment A. Virtual Clinical Trials: Why and What (Special Section Guest Editorial) J. Med. Imaging. 2020;7:042801. doi: 10.1117/1.JMI.7.4.042801. PubMed DOI PMC
Anam C., Haryanto F., Widita R., Arif I., Dougherty G., McLean D. Volume computed tomography dose index (CTDIvol) and size-specific dose estimate (SSDE) for tube current modulation (TCM) in CT scanning. Int. J. Radiat. Res. 2018;16:289–297.
Karimi D., Deman P., Ward R., Ford N. A sinogram denoising algorithm for low-dose computed tomography. BMC Med. Imaging. 2016;16:11. doi: 10.1186/s12880-016-0112-5. PubMed DOI PMC
Koyuncu H., Ceylan R. Elimination of white Gaussian noise in arterial phase CT images to bring adrenal tumours into the forefront. Comput. Med. Imaging Graph. 2018;65:46–57. doi: 10.1016/j.compmedimag.2017.05.004. PubMed DOI
Sheppard J.P., Nguyen T., Alkhalid Y., Beckett J.S., Salamon N., Yang I. Risk of Brain Tumor Induction from Pediatric Head CT Procedures: A Systematic Literature Review. Brain Tumor Res. Treat. 2018;6:1–7. doi: 10.14791/btrt.2018.6.e4. PubMed DOI PMC
Bezdek J.C., Ehrlich R., Full W. FCM: The Fuzzy c-MEANS Clustering Algorithm. Comput. Geosci. 1984;10:191–203. doi: 10.1016/0098-3004(84)90020-7. DOI
Höppner F., Klawonn F., Kruse R., Runkler T. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons; Hoboken, NJ, USA: 1999.
Jain A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010;31:651–666. doi: 10.1016/j.patrec.2009.09.011. DOI
Mumford D., Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 1989;42:577–685. doi: 10.1002/cpa.3160420503. DOI
Gerber S., Pospisil L., Navandar M., Horenko I. Low-cost scalable discretization, prediction, and feature selection for complex systems. Sci. Adv. 2020;6:eaaw0961. doi: 10.1126/sciadv.aaw0961. PubMed DOI PMC
de Wiljes J., Majda A., Horenko I. An Adaptive Markov Chain Monte Carlo Approach to Time Series Clustering of Processes with Regime Transition Behavior. SIAM Multiscale Model. Simul. 2013;11:415–441. doi: 10.1137/120881981. DOI
Rudin L.I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992;60:259–268. doi: 10.1016/0167-2789(92)90242-F. DOI
Chambolle A. Finite-differences discretizations of the mumford-shah functional. ESAIM Math. Model. Numer. Anal. 1999;33:261–288. doi: 10.1051/m2an:1999115. DOI
Lysaker O.M., Lundervold A., Tai X. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 2003;12:1579–1590. doi: 10.1109/TIP.2003.819229. PubMed DOI
Chan T.F., Shen J. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM; Philadelphia, PA, USA: 2005.
Pock T., Cremers D., Bischof H., Chambolle A. An algorithm for minimizing the Mumford-Shah functional; Proceedings of the 2009 IEEE 12th International Conference on Computer Vision; Kyoto, Japan. 29 September–2 October 2009; pp. 1133–1140. DOI
Hohm K., Storath M., Weinmann A. An algorithmic framework for Mumford–Shah regularization of inverse problems in imaging. Inverse Probl. 2015;31:115011. doi: 10.1088/0266-5611/31/11/115011. DOI
Paragios N., Duncan J., Ayache N. Handbook of Biomedical Imaging: Methodologies and Clinical Research. Springer; Berlin/Heidelberg, Germany: 2015. p. 590. DOI
Barzilai J., Borwein J.M. Two point step size gradient methods. IMA J. Numer. Anal. 1988;8:141–148.
Birgin E.G., Martínez J.M., Raydan M.M. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 2000;10:1196–1211.
Boyd L., Vandenberghe L. Convex Optimization. 1st ed. Cambridge University Press; New York, NY, USA: 2004.
Chen Y., Ye X. Projection onto a simplex. arXiv. 2011 Unpublished manuscript .101.6081
Grippo L., Lampariello F., Lucidi S. nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 1986;23:707–716.
On Entropic Learning from Noisy Time Series in the Small Data Regime