Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RTI2018-096246-B-I00
ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
P18-RT-2413
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
B-BIO-84-UGR20
ERDF/ Counseling of Economic transformation, Industry, Knowledge and Universities
PID2019-103901GB-I00
MCIN/AEI/10.13039/501100011033
E35_20R
Government of Aragón-FEDER
MTR/2019/000392
the Science and Engineering Research Board (SERB, India)
82383
Horizon 2020 EPIC-XS
CZ.1.05/1.1.00/02.0109
EU/MEYS projects BioCeV
CIISB LM2018127
EU/MEYS projects BioCeV
PubMed
35740007
PubMed Central
PMC9219786
DOI
10.3390/antiox11061110
PII: antiox11061110
Knihovny.cz E-zdroje
- Klíčová slova
- FAD binding, allosterism, antioxidant defense, cavity-making mutation, flavoprotein, protein core, structural perturbation,
- Publikační typ
- časopisecké články MeSH
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural-functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
Zobrazit více v PubMed
Naganathan A.N. Modulation of Allosteric Coupling by Mutations: From Protein Dynamics and Packing to Altered Native Ensembles and Function. Curr. Opin. Struct. Biol. 2019;54:1–9. doi: 10.1016/j.sbi.2018.09.004. PubMed DOI PMC
Pacheco-Garcia J.L., Anoz-Carbonell E., Vankova P., Kannan A., Palomino-Morales R., Mesa-Torres N., Salido E., Man P., Medina M., Naganathan A.N., et al. Structural Basis of the Pleiotropic and Specific Phenotypic Consequences of Missense Mutations in the Multifunctional NAD(P)H: Quinone Oxidoreductase 1 and Their Pharmacological Rescue. Redox Biol. 2021;46:102112. doi: 10.1016/j.redox.2021.102112. PubMed DOI PMC
Rajasekaran N., Suresh S., Gopi S., Raman K., Naganathan A.N. A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochemistry. 2017;56:294–305. doi: 10.1021/acs.biochem.6b00798. PubMed DOI
Rajasekaran N., Sekhar A., Naganathan A.N. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations. J. Phys. Chem. Lett. 2017;8:4779–4784. doi: 10.1021/acs.jpclett.7b02021. PubMed DOI
Beaver S.K., Mesa-Torres N., Pey A.L., Timson D.J. NQO1: A Target for the Treatment of Cancer and Neurological Diseases, and a Model to Understand Loss of Function Disease Mechanisms. Biochim. Biophys. Acta—Proteins Proteom. 2019;1867:663–676. doi: 10.1016/j.bbapap.2019.05.002. PubMed DOI
Vankova P., Salido E., Timson D.J., Man P., Pey A.L. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Biomolecules. 2019;9:728. doi: 10.3390/biom9110728. PubMed DOI PMC
Megarity C.F., Abdel-Aal Bettley H., Caraher M.C., Scott K.A., Whitehead R.C., Jowitt T.A., Gutierrez A., Bryce R.A., Nolan K.A., Stratford I.J., et al. Negative Cooperativity in NAD(P)H Quinone Oxidoreductase 1 (NQO1) ChemBioChem. 2019;20:2841–2849. doi: 10.1002/cbic.201900313. PubMed DOI
Pey A.L., Megarity C.F., Timson D.J. NAD(P)H Quinone Oxidoreductase (NQO1): An Enzyme Which Needs Just Enough Mobility, in Just the Right Places. Biosci. Rep. 2019;39:BSR20180459. doi: 10.1042/BSR20180459. PubMed DOI PMC
Ross D., Siegel D. The Diverse Functionality of NQO1 and Its Roles in Redox Control. Redox Biol. 2021;41:101950. doi: 10.1016/j.redox.2021.101950. PubMed DOI PMC
Li R., Bianchet M.A., Talalayt P., Amzel L.M. The Three-Dimensional Structure of NAD(P)H:Quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and Chemotherapy: Mechanism of the Two-Electron. Reduction (x-Ray Diffraction/Flavin) Proc. Natl. Acad. Sci. USA. 1995;92:8846–8850. doi: 10.1073/pnas.92.19.8846. PubMed DOI PMC
Lienhart W.D., Gudipati V., Uhl M.K., Binter A., Pulido S.A., Saf R., Zangger K., Gruber K., Macheroux P. Collapse of the Native Structure Caused by a Single Amino Acid Exchange in Human NAD(P)H: Quinone Oxidoreductase. FEBS J. 2014;281:4691–4704. doi: 10.1111/febs.12975. PubMed DOI PMC
Faig M., Bianchet M.A., Talalay P., Chen S., Winski S., Ross D., Amzel L.M. Structures of Recombinant Human and Mouse NAD(P)H: Quinone Oxidoreductases: Species Comparison and Structural Changes with Substrate Binding and Release. Proc. Natl. Acad. Sci. USA. 2000;97:3177–3182. doi: 10.1073/pnas.97.7.3177. PubMed DOI PMC
Medina-Carmona E., Neira J.L., Salido E., Fuchs J.E., Palomino-Morales R., Timson D.J., Pey A.L. Site-to-Site Interdomain Communication May Mediate Different Loss-of-Function Mechanisms in a Cancer-Associated NQO1 Polymorphism. Sci. Rep. 2017;7:44532. doi: 10.1038/srep44532. PubMed DOI PMC
Encarnación M.C., Palomino-Morales R.J., Fuchs J.E., Esperanza P.G., Noel M.T., Salido E., Timson D.J., Pey A.L. Conformational Dynamics Is Key to Understanding Loss-of-Function of NQO1 Cancer-Associated Polymorphisms and Its Correction by Pharmacological Ligands. Sci. Rep. 2016;6:20331. doi: 10.1038/srep20331. PubMed DOI PMC
Anoz-Carbonell E., Timson D.J., Pey A.L., Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants. 2020;9:772. doi: 10.3390/antiox9090772. PubMed DOI PMC
Xue M., Wakamoto T., Kejlberg C., Yoshimura Y., Nielsen T.A., Risør M.W., Sanggaard K.W., Kitahara R., Mulder F.A.A. How Internal Cavities Destabilize a Protein. Proc. Natl. Acad. Sci USA. 2019;116:21031–21036. doi: 10.1073/pnas.1911181116. PubMed DOI PMC
Medina-Carmona E., Fuchs J.E., Gavira J.A., Mesa-Torres N., Neira J.L., Salido E., Palomino-Morales R., Burgos M., Timson D.J., Pey A.L. Enhanced Vulnerability of Human Proteins towards Disease-Associated Inactivation through Divergent Evolution. Hum. Mol. Genet. 2017;26:3531–3544. doi: 10.1093/hmg/ddx238. PubMed DOI
Pey A.L., Megarity C.F., Timson D.J. FAD Binding Overcomes Defects in Activity and Stability Displayed by Cancer-Associated Variants of Human NQO1. Biochim. Biophys. Acta—Mol. Basis Dis. 2014;1842:2163–2173. doi: 10.1016/j.bbadis.2014.08.011. PubMed DOI
Pacheco-García J.L., Cano-Muñoz M., Sánchez-Ramos I., Salido E., Pey A.L. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. J. Pers. Med. 2020;10:207. doi: 10.3390/jpm10040207. PubMed DOI PMC
Sánchez-Azqueta A., Catalano-Dupuy D.L., López-Rivero A., Tondo M.L., Orellano E.G., Ceccarelli E.A., Medina M. Dynamics of the Active Site Architecture in Plant-Type Ferredoxin-NADP + Reductases Catalytic Complexes. Biochim. Biophys. Acta—Bioenerg. 2014;1837:1730–1738. doi: 10.1016/j.bbabio.2014.06.003. PubMed DOI
Trcka F., Durech M., Man P., Hernychova L., Muller P., Vojtesek B. The Assembly and Intermolecular Properties of the Hsp70-Tomm34-Hsp90 Molecular Chaperone Complex. J. Biol. Chem. 2014;289:9887–9901. doi: 10.1074/jbc.M113.526046. PubMed DOI PMC
Zhang Z., Smith D.L. Determination of Amide Hydrogen Exchange by Mass Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993;2:522–531. doi: 10.1002/pro.5560020404. PubMed DOI PMC
Naganathan A.N., Dani R., Gopi S., Aranganathan A., Narayan A. Folding Intermediates, Heterogeneous Native Ensembles and Protein Function. J. Mol. Biol. 2021;433:167325. doi: 10.1016/j.jmb.2021.167325. PubMed DOI
Gopi S., Aranganathan A., Naganathan A.N. Thermodynamics and Folding Landscapes of Large Proteins from a Statistical Mechanical Model. Curr. Res. Struct. Biol. 2019;1:6–12. doi: 10.1016/j.crstbi.2019.10.002. PubMed DOI PMC
Asher G., Dym O., Tsvetkov P., Adler J., Shaul Y. The Crystal Structure of NAD(P)H Quinone Oxidoreductase 1 in Complex with Its Potent Inhibitor Dicoumarol. Biochemistry. 2006;45:6372–6378. doi: 10.1021/bi0600087. PubMed DOI
Naganathan A.N., Kannan A. A Hierarchy of Coupling Free Energies Underlie the Thermodynamic and Functional Architecture of Protein Structures. Curr. Res. Struct. Biol. 2021;3:257–267. doi: 10.1016/j.crstbi.2021.09.003. PubMed DOI PMC
DeLano W.L. The PyMOL Molecular Graphics System. Schrodinger LLC; New York, NY, USA: 2002.
Pey A.L. Biophysical and Functional Perturbation Analyses at Cancer-Associated P187 and K240 Sites of the Multifunctional NADP(H): Quinone Oxidoreductase 1. Int. J. Biol. Macromol. 2018;118:1912–1923. doi: 10.1016/j.ijbiomac.2018.07.051. PubMed DOI
Nagel Z.D., Klinman J.P. Update 1 of: Tunneling and Dynamics in Enzymatic Hydride Transfer. Chem. Rev. 2010;110:PR41–PR67. doi: 10.1021/cr1001035. PubMed DOI PMC