Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations

. 2022 Jun 02 ; 11 (6) : . [epub] 20220602

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35740007

Grantová podpora
RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
P18-RT-2413 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
B-BIO-84-UGR20 ERDF/ Counseling of Economic transformation, Industry, Knowledge and Universities
PID2019-103901GB-I00 MCIN/AEI/10.13039/501100011033
E35_20R Government of Aragón-FEDER
MTR/2019/000392 the Science and Engineering Research Board (SERB, India)
82383 Horizon 2020 EPIC-XS
CZ.1.05/1.1.00/02.0109 EU/MEYS projects BioCeV
CIISB LM2018127 EU/MEYS projects BioCeV

Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural-functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.

Zobrazit více v PubMed

Naganathan A.N. Modulation of Allosteric Coupling by Mutations: From Protein Dynamics and Packing to Altered Native Ensembles and Function. Curr. Opin. Struct. Biol. 2019;54:1–9. doi: 10.1016/j.sbi.2018.09.004. PubMed DOI PMC

Pacheco-Garcia J.L., Anoz-Carbonell E., Vankova P., Kannan A., Palomino-Morales R., Mesa-Torres N., Salido E., Man P., Medina M., Naganathan A.N., et al. Structural Basis of the Pleiotropic and Specific Phenotypic Consequences of Missense Mutations in the Multifunctional NAD(P)H: Quinone Oxidoreductase 1 and Their Pharmacological Rescue. Redox Biol. 2021;46:102112. doi: 10.1016/j.redox.2021.102112. PubMed DOI PMC

Rajasekaran N., Suresh S., Gopi S., Raman K., Naganathan A.N. A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochemistry. 2017;56:294–305. doi: 10.1021/acs.biochem.6b00798. PubMed DOI

Rajasekaran N., Sekhar A., Naganathan A.N. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations. J. Phys. Chem. Lett. 2017;8:4779–4784. doi: 10.1021/acs.jpclett.7b02021. PubMed DOI

Beaver S.K., Mesa-Torres N., Pey A.L., Timson D.J. NQO1: A Target for the Treatment of Cancer and Neurological Diseases, and a Model to Understand Loss of Function Disease Mechanisms. Biochim. Biophys. Acta—Proteins Proteom. 2019;1867:663–676. doi: 10.1016/j.bbapap.2019.05.002. PubMed DOI

Vankova P., Salido E., Timson D.J., Man P., Pey A.L. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Biomolecules. 2019;9:728. doi: 10.3390/biom9110728. PubMed DOI PMC

Megarity C.F., Abdel-Aal Bettley H., Caraher M.C., Scott K.A., Whitehead R.C., Jowitt T.A., Gutierrez A., Bryce R.A., Nolan K.A., Stratford I.J., et al. Negative Cooperativity in NAD(P)H Quinone Oxidoreductase 1 (NQO1) ChemBioChem. 2019;20:2841–2849. doi: 10.1002/cbic.201900313. PubMed DOI

Pey A.L., Megarity C.F., Timson D.J. NAD(P)H Quinone Oxidoreductase (NQO1): An Enzyme Which Needs Just Enough Mobility, in Just the Right Places. Biosci. Rep. 2019;39:BSR20180459. doi: 10.1042/BSR20180459. PubMed DOI PMC

Ross D., Siegel D. The Diverse Functionality of NQO1 and Its Roles in Redox Control. Redox Biol. 2021;41:101950. doi: 10.1016/j.redox.2021.101950. PubMed DOI PMC

Li R., Bianchet M.A., Talalayt P., Amzel L.M. The Three-Dimensional Structure of NAD(P)H:Quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and Chemotherapy: Mechanism of the Two-Electron. Reduction (x-Ray Diffraction/Flavin) Proc. Natl. Acad. Sci. USA. 1995;92:8846–8850. doi: 10.1073/pnas.92.19.8846. PubMed DOI PMC

Lienhart W.D., Gudipati V., Uhl M.K., Binter A., Pulido S.A., Saf R., Zangger K., Gruber K., Macheroux P. Collapse of the Native Structure Caused by a Single Amino Acid Exchange in Human NAD(P)H: Quinone Oxidoreductase. FEBS J. 2014;281:4691–4704. doi: 10.1111/febs.12975. PubMed DOI PMC

Faig M., Bianchet M.A., Talalay P., Chen S., Winski S., Ross D., Amzel L.M. Structures of Recombinant Human and Mouse NAD(P)H: Quinone Oxidoreductases: Species Comparison and Structural Changes with Substrate Binding and Release. Proc. Natl. Acad. Sci. USA. 2000;97:3177–3182. doi: 10.1073/pnas.97.7.3177. PubMed DOI PMC

Medina-Carmona E., Neira J.L., Salido E., Fuchs J.E., Palomino-Morales R., Timson D.J., Pey A.L. Site-to-Site Interdomain Communication May Mediate Different Loss-of-Function Mechanisms in a Cancer-Associated NQO1 Polymorphism. Sci. Rep. 2017;7:44532. doi: 10.1038/srep44532. PubMed DOI PMC

Encarnación M.C., Palomino-Morales R.J., Fuchs J.E., Esperanza P.G., Noel M.T., Salido E., Timson D.J., Pey A.L. Conformational Dynamics Is Key to Understanding Loss-of-Function of NQO1 Cancer-Associated Polymorphisms and Its Correction by Pharmacological Ligands. Sci. Rep. 2016;6:20331. doi: 10.1038/srep20331. PubMed DOI PMC

Anoz-Carbonell E., Timson D.J., Pey A.L., Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants. 2020;9:772. doi: 10.3390/antiox9090772. PubMed DOI PMC

Xue M., Wakamoto T., Kejlberg C., Yoshimura Y., Nielsen T.A., Risør M.W., Sanggaard K.W., Kitahara R., Mulder F.A.A. How Internal Cavities Destabilize a Protein. Proc. Natl. Acad. Sci USA. 2019;116:21031–21036. doi: 10.1073/pnas.1911181116. PubMed DOI PMC

Medina-Carmona E., Fuchs J.E., Gavira J.A., Mesa-Torres N., Neira J.L., Salido E., Palomino-Morales R., Burgos M., Timson D.J., Pey A.L. Enhanced Vulnerability of Human Proteins towards Disease-Associated Inactivation through Divergent Evolution. Hum. Mol. Genet. 2017;26:3531–3544. doi: 10.1093/hmg/ddx238. PubMed DOI

Pey A.L., Megarity C.F., Timson D.J. FAD Binding Overcomes Defects in Activity and Stability Displayed by Cancer-Associated Variants of Human NQO1. Biochim. Biophys. Acta—Mol. Basis Dis. 2014;1842:2163–2173. doi: 10.1016/j.bbadis.2014.08.011. PubMed DOI

Pacheco-García J.L., Cano-Muñoz M., Sánchez-Ramos I., Salido E., Pey A.L. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. J. Pers. Med. 2020;10:207. doi: 10.3390/jpm10040207. PubMed DOI PMC

Sánchez-Azqueta A., Catalano-Dupuy D.L., López-Rivero A., Tondo M.L., Orellano E.G., Ceccarelli E.A., Medina M. Dynamics of the Active Site Architecture in Plant-Type Ferredoxin-NADP + Reductases Catalytic Complexes. Biochim. Biophys. Acta—Bioenerg. 2014;1837:1730–1738. doi: 10.1016/j.bbabio.2014.06.003. PubMed DOI

Trcka F., Durech M., Man P., Hernychova L., Muller P., Vojtesek B. The Assembly and Intermolecular Properties of the Hsp70-Tomm34-Hsp90 Molecular Chaperone Complex. J. Biol. Chem. 2014;289:9887–9901. doi: 10.1074/jbc.M113.526046. PubMed DOI PMC

Zhang Z., Smith D.L. Determination of Amide Hydrogen Exchange by Mass Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993;2:522–531. doi: 10.1002/pro.5560020404. PubMed DOI PMC

Naganathan A.N., Dani R., Gopi S., Aranganathan A., Narayan A. Folding Intermediates, Heterogeneous Native Ensembles and Protein Function. J. Mol. Biol. 2021;433:167325. doi: 10.1016/j.jmb.2021.167325. PubMed DOI

Gopi S., Aranganathan A., Naganathan A.N. Thermodynamics and Folding Landscapes of Large Proteins from a Statistical Mechanical Model. Curr. Res. Struct. Biol. 2019;1:6–12. doi: 10.1016/j.crstbi.2019.10.002. PubMed DOI PMC

Asher G., Dym O., Tsvetkov P., Adler J., Shaul Y. The Crystal Structure of NAD(P)H Quinone Oxidoreductase 1 in Complex with Its Potent Inhibitor Dicoumarol. Biochemistry. 2006;45:6372–6378. doi: 10.1021/bi0600087. PubMed DOI

Naganathan A.N., Kannan A. A Hierarchy of Coupling Free Energies Underlie the Thermodynamic and Functional Architecture of Protein Structures. Curr. Res. Struct. Biol. 2021;3:257–267. doi: 10.1016/j.crstbi.2021.09.003. PubMed DOI PMC

DeLano W.L. The PyMOL Molecular Graphics System. Schrodinger LLC; New York, NY, USA: 2002.

Pey A.L. Biophysical and Functional Perturbation Analyses at Cancer-Associated P187 and K240 Sites of the Multifunctional NADP(H): Quinone Oxidoreductase 1. Int. J. Biol. Macromol. 2018;118:1912–1923. doi: 10.1016/j.ijbiomac.2018.07.051. PubMed DOI

Nagel Z.D., Klinman J.P. Update 1 of: Tunneling and Dynamics in Enzymatic Hydride Transfer. Chem. Rev. 2010;110:PR41–PR67. doi: 10.1021/cr1001035. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...