Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N-terminal domain hydrophobic core

. 2022 Oct 13 ; 12 (1) : 17200. [epub] 20221013

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36229482
Odkazy

PubMed 36229482
PubMed Central PMC9561527
DOI 10.1038/s41598-022-22088-1
PII: 10.1038/s41598-022-22088-1
Knihovny.cz E-zdroje

Phosphoglycerate kinase has been a model for the stability, folding cooperativity and catalysis of a two-domain protein. The human isoform 1 (hPGK1) is associated with cancer development and rare genetic diseases that affect several of its features. To investigate how mutations affect hPGK1 folding landscape and interaction networks, we have introduced mutations at a buried site in the N-terminal domain (F25 mutants) that either created cavities (F25L, F25V, F25A), enhanced conformational entropy (F25G) or introduced structural strain (F25W) and evaluated their effects using biophysical experimental and theoretical methods. All F25 mutants folded well, but showed reduced unfolding cooperativity, kinetic stability and altered activation energetics according to the results from thermal and chemical denaturation analyses. These alterations correlated well with the structural perturbation caused by mutations in the N-terminal domain and the destabilization caused in the interdomain interface as revealed by H/D exchange under native conditions. Importantly, experimental and theoretical analyses showed that these effects are significant even when the perturbation is mild and local. Our approach will be useful to establish the molecular basis of hPGK1 genotype-phenotype correlations due to phosphorylation events and single amino acid substitutions associated with disease.

Zobrazit více v PubMed

Rojas-Pirela M, et al. Phosphoglycerate kinase: Structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol. 2020;10:200302. doi: 10.1098/rsob.200302. PubMed DOI PMC

Chiarelli LR, et al. Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS ONE. 2012;7:e32065. doi: 10.1371/journal.pone.0032065. PubMed DOI PMC

Valentini G, Maggi M, Pey A.L. Protein stability, folding and misfolding in human PGK1 deficiency. Biomolecules. 2013;3:1030–1052. doi: 10.3390/biom3041030. PubMed DOI PMC

Vas M, Varga A, Gráczer E. Insight into the mechanism of domain movements and their role in enzyme function: Example of 3-phosphoglycerate kinase. Curr. Protein Pept. Sci. 2010;11:118–147. doi: 10.2174/138920310790848403. PubMed DOI

Szilágyi AN, Ghosh M, Garman E, Vas M. A 1.8 Å resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: New insight into the role of the nucleotide in domain closure. J. Mol. Biol. 2001;306:499–511. doi: 10.1006/jmbi.2000.4294. PubMed DOI

Marston JP, et al. Structural tightening and interdomain communication in the catalytic cycle of phosphoglycerate kinase. J. Mol. Biol. 2010;396:345–360. doi: 10.1016/j.jmb.2009.11.052. PubMed DOI

Freire E, Murphy KP, Sanchez-Ruiz JM, Galisteo ML, Privalov PL. The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Biochemistry. 1992;31:250–256. doi: 10.1021/bi00116a034. PubMed DOI

Young TA, Skordalakes E, Marqusee S. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: Modulation of conformational ensembles without altering structure or stability. J. Mol. Biol. 2007;368:1438–1447. doi: 10.1016/j.jmb.2007.02.077. PubMed DOI

Feng R, Gruebele M, Davis CM. Quantifying protein dynamics and stability in a living organism. Nat. Commun. 2019;10:1179. doi: 10.1038/s41467-019-09088-y. PubMed DOI PMC

Wirth AJ, Platkov M, Gruebele M. Temporal variation of a protein folding energy landscape in the cell. J. Am. Chem. Soc. 2013;135:19215–19221. doi: 10.1021/ja4087165. PubMed DOI

Rajasekaran N, Naganathan AN. A self-consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins. Biochem. J. 2017;474:2379–2388. doi: 10.1042/BCJ20170304. PubMed DOI

Rajasekaran N, Sekhar A, Naganathan AN. A universal pattern in the percolation and dissipation of protein structural perturbations. J. Phys. Chem. Lett. 2017;8:4779–4784. doi: 10.1021/acs.jpclett.7b02021. PubMed DOI

Pacheco-Garcia JL, et al. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol. 2021;46:102112. doi: 10.1016/j.redox.2021.102112. PubMed DOI PMC

Zerrad L, et al. A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J. Biol. Chem. 2011;286:14040–14048. doi: 10.1074/jbc.M110.206813. PubMed DOI PMC

Qian X, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol. Cell. 2017;65:917–931.e6. doi: 10.1016/j.molcel.2017.01.027. PubMed DOI PMC

Ogino T, et al. Involvement of a cellular glycolytic enzyme, phosphoglycerate kinase, in Sendai virus transcription. J. Biol. Chem. 1999;274:35999–36008. doi: 10.1074/jbc.274.50.35999. PubMed DOI

Popanda O, Fox G, Thielmann HW. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim. Biophys. Acta. 1998;1397:102–117. doi: 10.1016/S0167-4781(97)00229-7. PubMed DOI

Myre MA, O’Day DH. Calmodulin binds to and inhibits the activity of phosphoglycerate kinase. Biochim. Biophys. Acta. 2004;1693:177–183. doi: 10.1016/j.bbamcr.2004.08.003. PubMed DOI

Guin D, Gruebele M. Chaperones Hsc70 and Hsp70 bind to the protein PGK differently inside living cells. J. Phys. Chem. B. 2020;124:3629–3635. doi: 10.1021/acs.jpcb.0c00519. PubMed DOI

Gondeau C, et al. Molecular basis for the lack of enantioselectivity of human 3-phosphoglycerate kinase. Nucleic Acids Res. 2008;36:3620–3629. doi: 10.1093/nar/gkn212. PubMed DOI PMC

Varga A, Lionne C, Roy B. Intracellular metabolism of nucleoside/nucleotide analogues: A bottleneck to reach active drugs on HIV reverse transcriptase. Curr. Drug Metab. 2016;17:237–252. doi: 10.2174/1389200217666151210141903. PubMed DOI

Varga A, et al. Nucleotide promiscuity of 3-phosphoglycerate kinase is in focus: Implications for the design of better anti-HIV analogues. Mol. Biosyst. 2011;7:1863–1873. doi: 10.1039/c1mb05051f. PubMed DOI

Varga A, et al. Interaction of human 3-phosphoglycerate kinase with L-ADP, the mirror image of D-ADP. Biochem. Biophys. Res. Commun. 2008;366:994–1000. doi: 10.1016/j.bbrc.2007.12.061. PubMed DOI

Li X, et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell. 2016;61:705–719. doi: 10.1016/j.molcel.2016.02.009. PubMed DOI PMC

Lin CY, et al. Extracellular Pgk1 enhances neurite outgrowth of motoneurons through Nogo66/NgR-independent targeting of NogoA. Elife. 2019;8:e49175. doi: 10.7554/eLife.49175. PubMed DOI PMC

Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010;11:655–667. doi: 10.1038/nrm2959. PubMed DOI

Li X, et al. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication. Mol. Cell. 2018;72:650–660.e8. doi: 10.1016/j.molcel.2018.09.007. PubMed DOI

Fiorillo A, et al. The phosphoglycerate kinase 1 variants found in carcinoma cells display different catalytic activity and conformational stability compared to the native enzyme. PLoS ONE. 2018;13:e0199191. doi: 10.1371/journal.pone.0199191. PubMed DOI PMC

Pey AL, Mesa-Torres N, Chiarelli LR, Valentini G. Structural and energetic basis of protein kinetic destabilization in human phosphoglycerate kinase 1 deficiency. Biochemistry. 2013;52:1160–1170. doi: 10.1021/bi301565m. PubMed DOI

Pey AL, Maggi M, Valentini G. Insights into human phosphoglycerate kinase 1 deficiency as a conformational disease from biochemical, biophysical, and in vitro expression analyses. J. Inherit. Metab. Dis. 2014;37:909–916. doi: 10.1007/s10545-014-9721-8. PubMed DOI

Pey AL. The interplay between protein stability and dynamics in conformational diseases: The case of hPGK1 deficiency. Biochim. Biophys. Acta Proteins Proteom. 2013;1834:2502–2511. doi: 10.1016/j.bbapap.2013.07.011. PubMed DOI

Naganathan AN. Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native ensembles and function. Curr. Opin. Struct. Biol. 2019;54:1–9. doi: 10.1016/j.sbi.2018.09.004. PubMed DOI PMC

Kellis JT, Nyberg K, Fersht AR. Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry. 1989;28:4914–4922. doi: 10.1021/bi00437a058. PubMed DOI

Kellis JT, Nyberg K, Sali D, Fersht AR. Contribution of hydrophobic interactions to protein stability. Nature. 1988;333:784–786. doi: 10.1038/333784a0. PubMed DOI

Eriksson AE, et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992;255:178–183. doi: 10.1126/science.1553543. PubMed DOI

Roche J, et al. Effect of internal cavities on folding rates and routes revealed by real-time pressure-jump NMR spectroscopy. J. Am. Chem. Soc. 2013;135:14610–14618. doi: 10.1021/ja406682e. PubMed DOI

Xue M, et al. How internal cavities destabilize a protein. Proc. Natl. Acad. Sci. U. S. A. 2019;116:21031–21036. doi: 10.1073/pnas.1911181116. PubMed DOI PMC

Yutani K, Ogasahara K, Sugino Y, Matsushiro A. Effect of a single amino acid substitution on stability of conformation of a protein. Nature. 1977;267:274–275. doi: 10.1038/267274a0. PubMed DOI

Yutani K, Ogasahara K, Tsujita T, Sugino Y. Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit. Proc. Natl. Acad. Sci. U. S. A. 1987;84:4441–4444. doi: 10.1073/pnas.84.13.4441. PubMed DOI PMC

Pey AL. PH-dependent relationship between thermodynamic and kinetic stability in the denaturation of human phosphoglycerate kinase 1. Biochimie. 2014;103:7–15. doi: 10.1016/j.biochi.2014.03.015. PubMed DOI

Rodriguez-Larrea D, Minning S, Borchert TV, Sanchez-Ruiz JM. Role of solvation barriers in protein kinetic stability. J. Mol. Biol. 2006;360:715–24. doi: 10.1016/j.jmb.2006.05.009. PubMed DOI

Myers JK, Pace CN, Scholtz JM. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995;4:2138–2148. doi: 10.1002/pro.5560041020. PubMed DOI PMC

Szilágyi AN, Vas M. Sequential domain refolding of pig muscle 3-phosphoglycerate kinase: Kinetic analysis of reactivation. Fold. Des. 1998;3:565–575. doi: 10.1016/S1359-0278(98)00071-6. PubMed DOI

Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr. Res. Struct. Biol. 2021;3:257–267. doi: 10.1016/j.crstbi.2021.09.003. PubMed DOI PMC

Høie MH, Cagiada M, Beck Frederiksen AH, Stein A, Lindorff-Larsen K. Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation. Cell Rep. 2022;38:110207. doi: 10.1016/j.celrep.2021.110207. PubMed DOI

Shendure J, Akey JM. The origins, determinants, and consequences of human mutations. Science. 2015;349:1478–1483. doi: 10.1126/science.aaa9119. PubMed DOI

Stein A, Fowler DM, Hartmann-Petersen R, Lindorff-Larsen K. Biophysical and mechanistic models for disease-causing protein variants. Trends Biochem. Sci. 2019;44:575–588. doi: 10.1016/j.tibs.2019.01.003. PubMed DOI PMC

Counterman AE, Clemmer DE. Volumes of individual amino acid residues in gas-phase peptide ions. J. Am. Chem. Soc. 1999;121:4031–4039. doi: 10.1021/ja984344p. DOI

Duncan L, Shay C, Teng Y. PGK1: An essential player in modulating tumor metabolism. Methods Mol. Biol. 2022;2343:57–70. doi: 10.1007/978-1-0716-1558-4_4. PubMed DOI

Akiyama T, et al. Further thermo-stabilization of thermophilic rhodopsin from Thermus thermophilus JL-18 through engineering in extramembrane regions. Proteins. 2021;89:301–310. doi: 10.1002/prot.26015. PubMed DOI PMC

Quezada AG, et al. Interplay between protein thermal flexibility and kinetic stability. Structure. 2017;25:167–179. doi: 10.1016/j.str.2016.11.018. PubMed DOI

Dong Y-W, Liao M-L, Meng X-L, Somero GN. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc. Natl. Acad. Sci. U. S. A. 2018;115:1274–1279. doi: 10.1073/pnas.1718910115. PubMed DOI PMC

Pey AL, Salido E, Sanchez-Ruiz JM. Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids. 2011;41:1233–1245. doi: 10.1007/s00726-010-0801-2. PubMed DOI

Sánchez-Ruiz JM, López-Lacomba JL, Cortijo M, Mateo PL. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988;27:1648–1652. doi: 10.1021/bi00405a039. PubMed DOI

Vankova P, Salido E, Timson DJ, Man P, Pey AL. A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomolecules. 2019;9:728. doi: 10.3390/biom9110728. PubMed DOI PMC

Zhang Z, Smith DL. Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 1993;2:522–531. doi: 10.1002/pro.5560020404. PubMed DOI PMC

Trcka F, et al. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J. Biol. Chem. 2014;289:9887–9901. doi: 10.1074/jbc.M113.526046. PubMed DOI PMC

Pacheco-Garcia JL, et al. Allosteric communication in the multifunctional and redox NQO1 protein studied by cavity-making mutations. Antioxidants. 2022;11:1110. doi: 10.3390/antiox11061110. PubMed DOI PMC

Gopi S, Aranganathan A, Naganathan AN. Thermodynamics and folding landscapes of large proteins from a statistical mechanical model. Curr. Res. Struct. Biol. 2019;1:6–12. doi: 10.1016/j.crstbi.2019.10.002. PubMed DOI PMC

Naganathan AN, Dani R, Gopi S, Aranganathan A, Narayan A. Folding intermediates, heterogeneous native ensembles and protein function. J. Mol. Biol. 2021;433:167325. doi: 10.1016/j.jmb.2021.167325. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...