Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-08-00062
Ministry of Health of the Czech Republic
MH CZ-DRO, General University Hospital in Prague - VFN, 00064165
Ministry of Health of the Czech Republic
Cooperatio, Medical Diagnostics and Basic Medical Sciences
Charles University in Prague
n/A
Roche company
PubMed
35741175
PubMed Central
PMC9221788
DOI
10.3390/diagnostics12061365
PII: diagnostics12061365
Knihovny.cz E-zdroje
- Klíčová slova
- cerebrospinal fluid, magnetic resonance imaging, multiple sclerosis, neutrophil gelatinase-associated lipocalin, oxidative stress, peroxiredoxin,
- Publikační typ
- časopisecké články MeSH
Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.
Zobrazit více v PubMed
Zhang S.-Y., Gui L.-N., Liu Y.-Y., Shi S., Cheng Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020;14:823. doi: 10.3389/fnins.2020.00823. PubMed DOI PMC
Haider L., Fischer M.T., Frischer J.M., Bauer J., Höftberger R., Botond G., Esterbauer H., Binder C.J., Witztum J.L., Lassmann H. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134:1914–1924. doi: 10.1093/brain/awr128. PubMed DOI PMC
Siotto M., Filippi M.M., Simonelli I., Landi D., Ghazaryan A., Vollaro S., Ventriglia M., Pasqualetti P., Rongioletti M.C.A., Squitti R., et al. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients with Low Disability. Front. Neurosci. 2019;13:86. doi: 10.3389/fnins.2019.00086. PubMed DOI PMC
Voigt D., Scheidt U., Derfuss T., Landi D., Ghazaryan A., Vollaro S., Ventriglia M., Pasqualetti P., Rongioletti M.C.A., Squitti R., et al. Expression of the Antioxidative Enzyme Peroxiredoxin 2 in Multiple Sclerosis Lesions in Relation to Inflammation. Int. J. Mol. Sci. 2017;18:760. doi: 10.3390/ijms18040760. PubMed DOI PMC
Mir F., Lee D., Ray H., Sadiq S.A. CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol.-Neuroimmunol. Neuroinflamm. 2014;1:e21. doi: 10.1212/NXI.0000000000000021. PubMed DOI PMC
Khajenobar N.B., Mahboob S., Nourazarian A., Shademan B., Laghousi D., Moayed Z.B., Hassanpour M., Nikanfar M. Comparison between cerebrospinal fluid and serum levels of myelin-associated glycoprotein, total antioxidant capacity, and 8-hydroxy-2′-deoxyguanosine in patients with multiple sclerosis. Clin. Neurol. Neurosurg. 2021;200:106377. doi: 10.1016/j.clineuro.2020.106377. PubMed DOI
Long J.D., Matson W.R., Juhl A.R., Leavitt B.R., Paulsen J.S., Wassink T., Cross S., Doucette N., Kimble M., Ryan P., et al. 8OHdG as a marker for Huntington disease progression. Neurobiol. Dis. 2012;46:625–634. doi: 10.1016/j.nbd.2012.02.012. PubMed DOI PMC
Nimer F.A., Elliott C., Bergman J., Khademi M., Dring A.M., Aeinehband S., Bergenheim T., Christensen J.R., Sellebjerg F., Svenningsson A., et al. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol.-Neuroimmunol. Neuroinflamm. 2016;3:e191. doi: 10.1212/NXI.0000000000000191. PubMed DOI PMC
Hänninen K., Viitala M., Paavilainen T., Karhu J.O., Rinne J., Koikkalainen J., Lötjönen J., Soilu-Hänninen M. Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Front. Neurol. 2020;11:606. doi: 10.3389/fneur.2020.00606. PubMed DOI PMC
Khalil M., Langkammer C., Pichler A., Pinter D., Gattringer T., Bachmaier G., Ropele S., Fuchs S., Enzinger C., Fazekas F., et al. Dynamics of brain iron levels in multiple sclerosis: A longitudinal 3T MRI study. Neurology. 2015;84:2396–2402. doi: 10.1212/WNL.0000000000001679. PubMed DOI
Langkammer C., Schweser F., Krebs N., Deistung A., Goessler W., Scheurer E., Sommer K., Reishofer G., Yen K., Fazekas F., et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage. 2012;62:1593–1599. doi: 10.1016/j.neuroimage.2012.05.049. PubMed DOI PMC
Rudko D.A., Solovey I., Gati J.S., Kremenchutzky M., Menon R.S. Multiple sclerosis: Improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology. 2014;272:851–864. doi: 10.1148/radiol.14132475. PubMed DOI
Conrad M., Angeli J.P.F., Vandenabeele P., Stockwell B.R. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2016;15:348–366. doi: 10.1038/nrd.2015.6. PubMed DOI PMC
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Burgetova R., Dusek P., Burgetova A., Pudlac A., Vaneckova M., Horakova D., Krasensky J., Varga Z., Lambert L. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis. Quant. Imaging Med. Surg. 2021;11:3906. doi: 10.21037/qims-21-87. PubMed DOI PMC
Mori S., Wu D., Ceritoglu C., Li Y., Kolasny A., Vaillant M.A., Faria A.V., Oishi K., Miller M.I. MRICloud: Delivering High-Throughput MRI Neuroinformatics as Cloud-Based Software as a Service. Comput. Sci. Eng. 2016;18:21–35. doi: 10.1109/MCSE.2016.93. DOI
Schmidt P., Gaser C., Arsic M., Buck D., Förschler A., Berthele A., Hoshi M., Ilg R., Schmid V.J., Zimmer C., et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage. 2012;59:3774–3783. doi: 10.1016/j.neuroimage.2011.11.032. PubMed DOI
Tanaka M., Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines. 2020;8:406. doi: 10.3390/biomedicines8100406. PubMed DOI PMC
Adamczyk B., Adamczyk-Sowa M. New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxidative Med. Cell. Longev. 2016;2016:1973834. doi: 10.1155/2016/1973834. PubMed DOI PMC
Knoops B., Argyropoulou V., Becker S., Ferté L., Kuznetsova O. Multiple Roles of Peroxiredoxins in Inflammation. Mol. Cells. 2016;39:60–64. PubMed PMC
Massaad C.A., Klann E. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxid. Redox Signal. 2011;14:2013–2054. doi: 10.1089/ars.2010.3208. PubMed DOI PMC
Uzawa A., Mori M., Masuda H., Ohtani R., Uchida T., Aoki R., Kuwabara S. Peroxiredoxins are involved in the pathogenesis of multiple sclerosis and neuromyelitis optica spectrum disorder. Clin. Exp. Immunol. 2020;202:239–248. doi: 10.1111/cei.13487. PubMed DOI PMC
Solomon A.J., Watts R., Dewey B.E., Reich D.S. MRI evaluation of thalamic volume differentiates MS from common mimics. Neurol.-Neuroimmunol. Neuroinflamm. 2017;4:e387. doi: 10.1212/NXI.0000000000000387. PubMed DOI PMC
Gmitterová K., Heinemann U., Gawinecka J., Varges D., Ciesielczyk B., Valkovic P., Benetin J., Zerr I. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener. Dis. 2009;6:263–269. doi: 10.1159/000237221. PubMed DOI
Tasset I., Agüera E., Sánchez-López F., Feijóo M., Giraldo A.I., Cruz A.H., Gascón F., Túnez I. Peripheral oxidative stress in relapsing–remitting multiple sclerosis. Clin. Biochem. 2012;45:440–444. doi: 10.1016/j.clinbiochem.2012.01.023. PubMed DOI
Miller E., Morel A., Saso L., Feijóo M., Giraldo A.I., Cruz A.H., Gascón F., Túnez I. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2014;2014:e572491. doi: 10.1155/2014/572491. PubMed DOI PMC
Lam M.A., Maghzal G.J., Khademi M., Piehl F., Ratzer R., Christensen J.R., Sellebjerg F.T., Olsson T., Stocker R. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol.-Neuroimmunol. Neuroinflamm. 2016;3:e256. doi: 10.1212/NXI.0000000000000256. PubMed DOI PMC
Meyerhoff N., Rohn K., Carlson R., Tipold A. Measurement of Neutrophil Gelatinase-Associated Lipocalin Concentration in Canine Cerebrospinal Fluid and Serum and Its Involvement in Neuroinflammation. Front. Vet. Sci. 2019:315. doi: 10.3389/fvets.2019.00315. PubMed DOI PMC
Khalil M., Renner A., Langkammer C., Enzinger C., Ropele S., Stojakovic T., Scharnagl H., Bachmaier G., Pichler A., Archelos J., et al. Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis. Mult. Scler. J. 2016;22:1560–1568. doi: 10.1177/1352458515624560. PubMed DOI
Burgetova A., Dusek P., Vaneckova M., Horakova D., Langkammer C., Krasensky J., Sobisek L., Matras P., Masek M., Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. Am. J. Neuroradiol. 2017;38:1079–1086. doi: 10.3174/ajnr.A5166. PubMed DOI PMC
Burgetova A., Seidl Z., Krasensky J., Horakova D., Vaneckova M. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: Quantitative assessment of brain iron using MRI t(2) relaxometry. Eur. Neurol. 2010;63:136–143. doi: 10.1159/000279305. PubMed DOI
Burgetova A., Dusek P., Pudlac A., Nytrova P., Vaneckova M., Horakova D., Krasensky J., Lambert L. Deep grey matter iron content in neuromyelitis optica and multiple sclerosis. BioMed Res. Int. 2020;2020:6492786. PubMed PMC
Ayala A., Muñoz M.F., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC
Maciejczyk M., Żebrowska E., Zalewska A., Chabowski A. Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance. Oxidative Med. Cell. Longev. 2018;2018:6940515. doi: 10.1155/2018/6940515. PubMed DOI PMC
Andravizou A., Dardiotis E., Artemiadis A., Sokratous M., Siokas V., Tsouris Z., Aloizou A.-M., Nikolaidis I., Bakirtzis C., Tsivgoulis G., et al. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Autoimmun. Highlights. 2019;10:7. doi: 10.1186/s13317-019-0117-5. PubMed DOI PMC