Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy

. 2022 Jun 01 ; 12 (6) : . [epub] 20220601

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35741175

Grantová podpora
NV18-08-00062 Ministry of Health of the Czech Republic
MH CZ-DRO, General University Hospital in Prague - VFN, 00064165 Ministry of Health of the Czech Republic
Cooperatio, Medical Diagnostics and Basic Medical Sciences Charles University in Prague
n/A Roche company

Odkazy

PubMed 35741175
PubMed Central PMC9221788
DOI 10.3390/diagnostics12061365
PII: diagnostics12061365
Knihovny.cz E-zdroje

Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.

Zobrazit více v PubMed

Zhang S.-Y., Gui L.-N., Liu Y.-Y., Shi S., Cheng Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020;14:823. doi: 10.3389/fnins.2020.00823. PubMed DOI PMC

Haider L., Fischer M.T., Frischer J.M., Bauer J., Höftberger R., Botond G., Esterbauer H., Binder C.J., Witztum J.L., Lassmann H. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134:1914–1924. doi: 10.1093/brain/awr128. PubMed DOI PMC

Siotto M., Filippi M.M., Simonelli I., Landi D., Ghazaryan A., Vollaro S., Ventriglia M., Pasqualetti P., Rongioletti M.C.A., Squitti R., et al. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients with Low Disability. Front. Neurosci. 2019;13:86. doi: 10.3389/fnins.2019.00086. PubMed DOI PMC

Voigt D., Scheidt U., Derfuss T., Landi D., Ghazaryan A., Vollaro S., Ventriglia M., Pasqualetti P., Rongioletti M.C.A., Squitti R., et al. Expression of the Antioxidative Enzyme Peroxiredoxin 2 in Multiple Sclerosis Lesions in Relation to Inflammation. Int. J. Mol. Sci. 2017;18:760. doi: 10.3390/ijms18040760. PubMed DOI PMC

Mir F., Lee D., Ray H., Sadiq S.A. CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol.-Neuroimmunol. Neuroinflamm. 2014;1:e21. doi: 10.1212/NXI.0000000000000021. PubMed DOI PMC

Khajenobar N.B., Mahboob S., Nourazarian A., Shademan B., Laghousi D., Moayed Z.B., Hassanpour M., Nikanfar M. Comparison between cerebrospinal fluid and serum levels of myelin-associated glycoprotein, total antioxidant capacity, and 8-hydroxy-2′-deoxyguanosine in patients with multiple sclerosis. Clin. Neurol. Neurosurg. 2021;200:106377. doi: 10.1016/j.clineuro.2020.106377. PubMed DOI

Long J.D., Matson W.R., Juhl A.R., Leavitt B.R., Paulsen J.S., Wassink T., Cross S., Doucette N., Kimble M., Ryan P., et al. 8OHdG as a marker for Huntington disease progression. Neurobiol. Dis. 2012;46:625–634. doi: 10.1016/j.nbd.2012.02.012. PubMed DOI PMC

Nimer F.A., Elliott C., Bergman J., Khademi M., Dring A.M., Aeinehband S., Bergenheim T., Christensen J.R., Sellebjerg F., Svenningsson A., et al. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol.-Neuroimmunol. Neuroinflamm. 2016;3:e191. doi: 10.1212/NXI.0000000000000191. PubMed DOI PMC

Hänninen K., Viitala M., Paavilainen T., Karhu J.O., Rinne J., Koikkalainen J., Lötjönen J., Soilu-Hänninen M. Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Front. Neurol. 2020;11:606. doi: 10.3389/fneur.2020.00606. PubMed DOI PMC

Khalil M., Langkammer C., Pichler A., Pinter D., Gattringer T., Bachmaier G., Ropele S., Fuchs S., Enzinger C., Fazekas F., et al. Dynamics of brain iron levels in multiple sclerosis: A longitudinal 3T MRI study. Neurology. 2015;84:2396–2402. doi: 10.1212/WNL.0000000000001679. PubMed DOI

Langkammer C., Schweser F., Krebs N., Deistung A., Goessler W., Scheurer E., Sommer K., Reishofer G., Yen K., Fazekas F., et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage. 2012;62:1593–1599. doi: 10.1016/j.neuroimage.2012.05.049. PubMed DOI PMC

Rudko D.A., Solovey I., Gati J.S., Kremenchutzky M., Menon R.S. Multiple sclerosis: Improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology. 2014;272:851–864. doi: 10.1148/radiol.14132475. PubMed DOI

Conrad M., Angeli J.P.F., Vandenabeele P., Stockwell B.R. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2016;15:348–366. doi: 10.1038/nrd.2015.6. PubMed DOI PMC

Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI

Burgetova R., Dusek P., Burgetova A., Pudlac A., Vaneckova M., Horakova D., Krasensky J., Varga Z., Lambert L. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis. Quant. Imaging Med. Surg. 2021;11:3906. doi: 10.21037/qims-21-87. PubMed DOI PMC

Mori S., Wu D., Ceritoglu C., Li Y., Kolasny A., Vaillant M.A., Faria A.V., Oishi K., Miller M.I. MRICloud: Delivering High-Throughput MRI Neuroinformatics as Cloud-Based Software as a Service. Comput. Sci. Eng. 2016;18:21–35. doi: 10.1109/MCSE.2016.93. DOI

Schmidt P., Gaser C., Arsic M., Buck D., Förschler A., Berthele A., Hoshi M., Ilg R., Schmid V.J., Zimmer C., et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage. 2012;59:3774–3783. doi: 10.1016/j.neuroimage.2011.11.032. PubMed DOI

Tanaka M., Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines. 2020;8:406. doi: 10.3390/biomedicines8100406. PubMed DOI PMC

Adamczyk B., Adamczyk-Sowa M. New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxidative Med. Cell. Longev. 2016;2016:1973834. doi: 10.1155/2016/1973834. PubMed DOI PMC

Knoops B., Argyropoulou V., Becker S., Ferté L., Kuznetsova O. Multiple Roles of Peroxiredoxins in Inflammation. Mol. Cells. 2016;39:60–64. PubMed PMC

Massaad C.A., Klann E. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxid. Redox Signal. 2011;14:2013–2054. doi: 10.1089/ars.2010.3208. PubMed DOI PMC

Uzawa A., Mori M., Masuda H., Ohtani R., Uchida T., Aoki R., Kuwabara S. Peroxiredoxins are involved in the pathogenesis of multiple sclerosis and neuromyelitis optica spectrum disorder. Clin. Exp. Immunol. 2020;202:239–248. doi: 10.1111/cei.13487. PubMed DOI PMC

Solomon A.J., Watts R., Dewey B.E., Reich D.S. MRI evaluation of thalamic volume differentiates MS from common mimics. Neurol.-Neuroimmunol. Neuroinflamm. 2017;4:e387. doi: 10.1212/NXI.0000000000000387. PubMed DOI PMC

Gmitterová K., Heinemann U., Gawinecka J., Varges D., Ciesielczyk B., Valkovic P., Benetin J., Zerr I. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener. Dis. 2009;6:263–269. doi: 10.1159/000237221. PubMed DOI

Tasset I., Agüera E., Sánchez-López F., Feijóo M., Giraldo A.I., Cruz A.H., Gascón F., Túnez I. Peripheral oxidative stress in relapsing–remitting multiple sclerosis. Clin. Biochem. 2012;45:440–444. doi: 10.1016/j.clinbiochem.2012.01.023. PubMed DOI

Miller E., Morel A., Saso L., Feijóo M., Giraldo A.I., Cruz A.H., Gascón F., Túnez I. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2014;2014:e572491. doi: 10.1155/2014/572491. PubMed DOI PMC

Lam M.A., Maghzal G.J., Khademi M., Piehl F., Ratzer R., Christensen J.R., Sellebjerg F.T., Olsson T., Stocker R. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol.-Neuroimmunol. Neuroinflamm. 2016;3:e256. doi: 10.1212/NXI.0000000000000256. PubMed DOI PMC

Meyerhoff N., Rohn K., Carlson R., Tipold A. Measurement of Neutrophil Gelatinase-Associated Lipocalin Concentration in Canine Cerebrospinal Fluid and Serum and Its Involvement in Neuroinflammation. Front. Vet. Sci. 2019:315. doi: 10.3389/fvets.2019.00315. PubMed DOI PMC

Khalil M., Renner A., Langkammer C., Enzinger C., Ropele S., Stojakovic T., Scharnagl H., Bachmaier G., Pichler A., Archelos J., et al. Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis. Mult. Scler. J. 2016;22:1560–1568. doi: 10.1177/1352458515624560. PubMed DOI

Burgetova A., Dusek P., Vaneckova M., Horakova D., Langkammer C., Krasensky J., Sobisek L., Matras P., Masek M., Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. Am. J. Neuroradiol. 2017;38:1079–1086. doi: 10.3174/ajnr.A5166. PubMed DOI PMC

Burgetova A., Seidl Z., Krasensky J., Horakova D., Vaneckova M. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: Quantitative assessment of brain iron using MRI t(2) relaxometry. Eur. Neurol. 2010;63:136–143. doi: 10.1159/000279305. PubMed DOI

Burgetova A., Dusek P., Pudlac A., Nytrova P., Vaneckova M., Horakova D., Krasensky J., Lambert L. Deep grey matter iron content in neuromyelitis optica and multiple sclerosis. BioMed Res. Int. 2020;2020:6492786. PubMed PMC

Ayala A., Muñoz M.F., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC

Maciejczyk M., Żebrowska E., Zalewska A., Chabowski A. Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance. Oxidative Med. Cell. Longev. 2018;2018:6940515. doi: 10.1155/2018/6940515. PubMed DOI PMC

Andravizou A., Dardiotis E., Artemiadis A., Sokratous M., Siokas V., Tsouris Z., Aloizou A.-M., Nikolaidis I., Bakirtzis C., Tsivgoulis G., et al. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Autoimmun. Highlights. 2019;10:7. doi: 10.1186/s13317-019-0117-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...