Diagnosis of Ischemic Stroke: As Simple as Possible
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35741262
PubMed Central
PMC9221735
DOI
10.3390/diagnostics12061452
PII: diagnostics12061452
Knihovny.cz E-zdroje
- Klíčová slova
- CT, MRI, large vessel occlusion, thrombectomy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The absolute majority of strokes in high-income countries, roughly 91%, are of ischemic origin. This review is focused on acute ischemic stroke (AIS) with large vessel occlusion (LVO) in the anterior circulation, which is considered the most devastating subtype of AIS. Moreover, stroke survivors impose substantial direct and indirect costs of care as well as costs due to productivity loss. We review of diagnostic possibilities of individual imaging methods such as computed tomography and magnetic resonance imaging, and discuss their pros and cons in the imaging of AIS. The goals of non-invasive imaging in AIS are as follows: (a) to rule out intracranial hemorrhage and to quickly exclude hemorrhagic stroke and contraindications for intravenous thrombolysis; (b) to identify potential LVO and its localization and to quickly provide guidance for endovascular treatment; (c) to assess/estimate the volume or size of the ischemic core. We suggest fast diagnostic management, which is able to quickly satisfy the above-mentioned diagnostic goals in AIS with LVO.
Zobrazit více v PubMed
OECD . Health at a Glance 2021: OECD Indicators. OECD Publishing; Paris, France: 2021. pp. 166–167.
Li L., Scott C.A., Rothwell P.M., Oxford Vascular Study Trends in Stroke Incidence in High-Income Countries in the 21st Century: Population-Based Study and Systematic Review. Stroke. 2020;51:1372–1380. doi: 10.1161/STROKEAHA.119.028484. PubMed DOI PMC
GBD 2016 Stroke Collaborators Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1. PubMed DOI PMC
Timmis A., Townsend N., Gale C., Grobbee R., Maniadakis N., Flather M., Wilkins E., Wright L., Vos R., Bax J., et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 2018;39:508–579. doi: 10.1093/eurheartj/ehx628. PubMed DOI
O’Donnell M.J., Xavier D., Liu L., Zhang H., Chin S.L., Rao-Melacini P., Rangarajan S., Islam S., Pais P., McQueen M.J., et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet. 2010;376:112–123. doi: 10.1016/S0140-6736(10)60834-3. PubMed DOI
Radu R.A., Terecoasa E.O., Bajenaru O.A., Tiu C. Etiologic classification of ischemic stroke: Where do we stand? Clin. Neurol. Neurosurg. 2017;159:93–106. doi: 10.1016/j.clineuro.2017.05.019. PubMed DOI
Malikova H., Kremenova K., Budera P., Herman D., Weichet J., Lukavsky J., Osmancik P. Silent strokes after thoracoscopic epicardial ablation and catheter ablation for atrial fibrillation: Not all lesions are permanent on follow-up magnetic resonance imaging. Quant. Imaging Med. Surg. 2021;11:3219–3233. doi: 10.21037/qims-21-35. PubMed DOI PMC
Osmancik P., Herman D., Kacer P., Rizov V., Vesela J., Rakova R., Karch J., Susankova M., Znojilova L., Fojt R., et al. The Efficacy and Safety of Hybrid Ablations for Atrial Fibrillation. JACC Clin. Electrophysiol. 2021;7:1519–1529. doi: 10.1016/j.jacep.2021.04.013. PubMed DOI
Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O.M., Bambakidis N.C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B., et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–e418. PubMed
Albers G.W., Lansberg M.G., Kemp S., Tsai J.P., Lavori P., Christensen S., Mlynash M., Kim S., Hamilton S., Yeatts S.D., et al. A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3) Int. J. Stroke. 2017;12:896–905. doi: 10.1177/1747493017701147. PubMed DOI PMC
Jovin T.G., Ribo M., Pereira V., Furlan A., Bonafe A., Baxter B., Gupta R., Lopes D., Jansen O., Smith W., et al. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. Int. J. Stroke. 2017;12:641–652. doi: 10.1177/1747493017710341. PubMed DOI
Saver J.L. Time is brain-quantified. Stroke. 2006;37:263–266. doi: 10.1161/01.STR.0000196957.55928.ab. PubMed DOI
Aygun N., Masaryk T.J. Diagnostic imaging for intracerebral hemorrhage. Neurosurg. Clin. N. Am. 2002;13:313–334. doi: 10.1016/S1042-3680(02)00009-8. PubMed DOI
Fiebach J.B., Schellinger P.D., Gass A., Kucinski T., Siebler M., Villringer A., Olkers P., Hirsch J.G., Heiland S., Wilde P., et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: A multicenter study on the validity of stroke imaging. Stroke. 2004;35:502–506. doi: 10.1161/01.STR.0000114203.75678.88. PubMed DOI
Kidwell C.S., Chalela J.A., Saver J.L., Starkman S., Hill M.D., Demchuk A.M., Butman J.A., Patronas N., Alger J.R., Latour L.L., et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292:1823–1830. doi: 10.1001/jama.292.15.1823. PubMed DOI
Ciraci S., Gumus K., Doganay S., Dundar M.S., Kaya Ozcora G.D., Gorkem S.B., Per H., Coskun A. Diagnosis of intracranial calcification and hemorrhage in pediatric patients: Comparison of quantitative susceptibility mapping and phase images of susceptibility-weighted imaging. Diagn. Interv. Imaging. 2017;98:707–714. doi: 10.1016/j.diii.2017.05.004. PubMed DOI
Haller S., Vernooij M.W., Kuijer J.P.A., Larsson E.M., Jäger H.R., Barkhof F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology. 2018;287:11–28. doi: 10.1148/radiol.2018170803. PubMed DOI
Dubosh N.M., Bellolio M.F., Rabinstein A.A., Edlow J.A. Sensitivity of Early Brain Computed Tomography to Exclude Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Stroke. 2016;47:750–755. doi: 10.1161/STROKEAHA.115.011386. PubMed DOI
Cortnum S., Sørensen P., Jørgensen J. Determining the sensitivity of computed tomography scanning in early detection of subarachnoid hemorrhage. Neurosurgery. 2010;66:900–902; discussion 903. PubMed
Shimoda M., Hoshikawa K., Shiramizu H., Oda S., Matsumae M. Problems with diagnosis by fluid-attenuated inversion recovery magnetic resonance imaging in patients with acute aneurysmal subarachnoid hemorrhage. Neurol. Med. Chir. 2010;50:530–537. doi: 10.2176/nmc.50.530. PubMed DOI
Verma R.K., Kottke R., Andereggen L., Weisstanner C., Zubler C., Gralla J., Kiefer C., Slotboom J., Wiest R., Schroth G., et al. Detecting subarachnoid hemorrhage: Comparison of combined FLAIR/SWI versus CT. Eur. J. Radiol. 2013;82:539–545. doi: 10.1016/j.ejrad.2013.03.021. PubMed DOI
Almekhlafi M.A., Kunz W.G., Menon B.K., McTaggart R.A., Jayaraman M.V., Baxter B.W., Heck D., Frei D., Derdeyn C.P., Takagi T., et al. Imaging of Patients with Suspected Large-Vessel Occlusion at Primary Stroke Centers: Available Modalities and a Suggested Approach. AJNR. 2019;40:396–400. doi: 10.3174/ajnr.A5971. PubMed DOI PMC
Bash S., Villablanca J.P., Jahan R., Duckwiler G., Tillis M., Kidwell C., Saver J., Sayre J. Intracranial vascular stenosis and occlusive disease: Evaluation with CT angiography, MR angiography, and digital subtraction angiography. Am. J. Neuroradiol. 2005;26:1012–1021. PubMed PMC
Fasen B.A.C.M., Heijboer R.J.J., Hulsmans F.H., Kwee R.M. CT Angiography in Evaluating Large-Vessel Occlusion in Acute Anterior Circulation Ischemic Stroke: Factors Associated with Diagnostic Error in Clinical Practice. Am. J. Neuroradiol. 2020;41:607–611. doi: 10.3174/ajnr.A6469. PubMed DOI PMC
Yu A.Y., Zerna C., Assis Z., Holodinsky J.K., Randhawa P.A., Najm M., Goyal M., Menon B.K., Demchuk A.M., Coutts S.B., et al. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion. Neurology. 2016;87:609–616. doi: 10.1212/WNL.0000000000002951. PubMed DOI PMC
Menon B.K., d’Esterre C.D., Qazi E.M., Almekhlafi M., Hahn L., Demchuk A.M., Goyal M. Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke. Radiology. 2015;275:510–520. doi: 10.1148/radiol.15142256. PubMed DOI
Walker B.S., Shah L.M., Osborn A.G. Calcified cerebral emboli, a “do not miss” imaging diagnosis: 22 new cases and review of the literature. AJNR. 2014;35:1515–1519. doi: 10.3174/ajnr.A3892. PubMed DOI PMC
Dobrocky T., Piechowiak E., Cianfoni A., Zibold F., Roccatagliata L., Mosimann P., Jung S., Fischer U., Mordasini P., Gralla J. Thrombectomy of calcified emboli in stroke. Does histology of thrombi influence the effectiveness of thrombectomy? J. Neurointerv. Surg. 2018;10:345–350. doi: 10.1136/neurintsurg-2017-013226. PubMed DOI
Johansson E., Gu T., Aviv R.I., Fox A.J. Carotid near-occlusion is often overlooked when CT angiography is assessed in routine practice. Eur. Radiol. 2020;30:2543–2551. doi: 10.1007/s00330-019-06636-4. PubMed DOI PMC
Riederer S.J., Stinson E.G., Weavers P.T. Technical Aspects of Contrast-enhanced MR Angiography: Current Status and New Applications. Magn. Reson. Med. Sci. 2018;17:3–12. doi: 10.2463/mrms.rev.2017-0053. PubMed DOI PMC
Dhundass S., Savatovsky J., Duron L., Fahed R., Escalard S., Obadia M., Zuber K., Metten M.A., Mejdoubi M., Blanc R., et al. Improved detection and characterization of arterial occlusion in acute ischemic stroke using contrast enhanced MRA. J. Neuroradiol. 2020;47:278–283. doi: 10.1016/j.neurad.2019.02.011. PubMed DOI
Barber P.A., Demchuk A.M., Zhang J., Buchan A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355:1670–1674. doi: 10.1016/S0140-6736(00)02237-6. PubMed DOI
Farzin B., Fahed R., Guilbert F., Poppe A.Y., Daneault N., Durocher A.P., Lanthier S., Boudjani H., Khoury N.N., Roy D., et al. Early CT changes in patients admitted for thrombectomy: Intrarater and interrater agreement. Neurology. 2016;87:249–256. doi: 10.1212/WNL.0000000000002860. PubMed DOI PMC
Nagel S., Sinha D., Day D., Reith W., Chapot R., Papanagiotou P., Warburton E.A., Guyler P., Tysoe S., Fassbender K., et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int. J. Stroke. 2017;12:615–622. doi: 10.1177/1747493016681020. PubMed DOI
Hill M.D., Buchan A.M., Canadian Alteplase for Stroke Effectiveness Study (CASES) Investigators Thrombolysis for acute ischemic stroke: Results of the Canadian Alteplase for Stroke Effectiveness Study. CMAJ. 2005;172:1307–1312. doi: 10.1503/cmaj.1041561. PubMed DOI PMC
Haussen D.C., Dehkharghani S., Rangaraju S., Rebello L.C., Bouslama M., Grossberg J.A., Anderson A., Belagaje S., Frankel M., Nogueira R.G. Automated CT Perfusion Ischemic Core Volume and Noncontrast CT ASPECTS (Alberta Stroke Program Early CT Score): Correlation and Clinical Outcome Prediction in Large Vessel Stroke. Stroke. 2016;47:2318–2322. doi: 10.1161/STROKEAHA.116.014117. PubMed DOI
Olive-Gadea M., Martins N., Boned S., Carvajal J., Moreno M.J., Muchada M., Molina C.A., Tomasello A., Ribo M., Rubiera M. Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy. J. Neuroimaging. 2019;29:198–202. doi: 10.1111/jon.12564. PubMed DOI
Nannoni S., Ricciardi F., Strambo D., Sirimarco G., Wintermark M., Dunet V., Michel P. Correlation between ASPECTS and Core Volume on CT Perfusion: Impact of Time since Stroke Onset and Presence of Large-Vessel Occlusion. Am. J. Neuroradiol. 2021;42:422–428. doi: 10.3174/ajnr.A6959. PubMed DOI PMC
Goyal M., Menon B.K., van Zwam W.H., Dippel D.W., Mitchell P.J., Demchuk A.M., Dávalos A., Majoie C.B., van der Lugt A., de Miquel M.A., et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X. PubMed DOI
Nagel S., Herweh C., Pfaff J.A.R., Schieber S., Schönenberger S., Möhlenbruch M.A., Bendszus M., Ringleb P.A. Simplified selection criteria for patients with longer or unknown time to treatment predict good outcome after mechanical thrombectomy. J. Neurointerv. Surg. 2019;11:559–562. doi: 10.1136/neurintsurg-2018-014347. PubMed DOI
Konstas A.A., Minaeian A., Ross I.B. Mechanical Thrombectomy in Wake-Up Strokes: A Case Series Using Alberta Stroke Program Early CT Score (ASPECTS) for Patient Selection. J. Stroke Cerebrovasc. Dis. 2017;26:1609–1614. doi: 10.1016/j.jstrokecerebrovasdis.2017.02.024. PubMed DOI
Shimoyama T., Kimura K., Uemura J., Saji N., Shibazaki K. Elevated glucose level adversely affects infarct volume growth and neurological deterioration in non-diabetic stroke patients, but not diabetic stroke patients. Eur. J. Neurol. 2014;21:402–410. doi: 10.1111/ene.12280. PubMed DOI
Geuskens R.R., Borst J., Lucas M., Boers A.M., Berkhemer O.A., Roos Y.B., van Walderveen M.A., Jenniskens S.F., van Zwam W.H., Dippel D.W., et al. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke. PLoS ONE. 2015;10:e0141571. doi: 10.1371/journal.pone.0141571. PubMed DOI PMC
Mazzei M.A., Preda L., Cianfoni A., Volterrani L. CT perfusion: Technical developments and current and future applications. Biomed. Res. Int. 2015;2015:397521. doi: 10.1155/2015/397521. PubMed DOI PMC
Kremenova K., Holesta M., Peisker T., Girsa D., Weichet J., Lukavsky J., Malikova H. Is limited-coverage CT perfusion helpful in treatment decision-making in patients with acute ischemic stroke? Quant. Imaging. Med. Surg. 2020;10:1908–1916. doi: 10.21037/qims-20-555. PubMed DOI PMC
Tsang A.C.O., Lenck S., Hilditch C., Nicholson P., Brinjikji W., Krings T., Pereira V.M., Silver F.L., Schaafsma J.D. Automated CT. Perfusion Imaging Versus Non-contrast CT for Ischemic Core Assessment in Large Vessel Occlusion. Clin. Neuroradiol. 2020;30:09–14. doi: 10.1007/s00062-018-0745-6. PubMed DOI
Martins N., Aires A., Mendez B., Boned S., Rubiera M., Tomasello A., Coscojuela P., Hernandez D., Muchada M., Rodríguez-Luna D., et al. Ghost Infarct Core and Admission Computed Tomography Perfusion: Redefining the Role of Neuroimaging in Acute Ischemic Stroke. Interv. Neurol. 2018;7:513–521. doi: 10.1159/000490117. PubMed DOI PMC
Boned S., Padroni M., Rubiera M., Tomasello A., Coscojuela P., Romero N., Muchada M., Rodríguez-Luna D., Flores A., Rodríguez N., et al. Admission CT perfusion may overestimate initial infarct core: The ghost infarct core concept. J. Neurointerv. Surg. 2017;9:66–69. doi: 10.1136/neurintsurg-2016-012494. PubMed DOI
Desai S.M., Rocha M., Molyneaux B.J., Starr M., Kenmuir C.L., Gross B.A., Jankowitz B.T., Jovin T.G., Jadhav A.P. Thrombectomy 6-24 hours after stroke in trial ineligible patients. J. Neurointerv. Surg. 2018;10:1033–1037. doi: 10.1136/neurintsurg-2018-013915. PubMed DOI
Alexandre A.M., Pedicelli A., Valente I., Scarcia L., Giubbolini F., D’Argento F., Lozupone E., Distefano M., Pilato F., Colosimo C. May endovascular thrombectomy without CT perfusion improve clinical outcome? Clin. Neurol. Neurosurg. 2020;198:106207. doi: 10.1016/j.clineuro.2020.106207. PubMed DOI
Schaefer P.W. Applications of DWI in clinical neurology. J. Neurol. Sci. 2001;186((Suppl. 1)):25–35. doi: 10.1016/S0022-510X(01)00488-9. PubMed DOI
Barber P.A., Hill M.D., Eliasziw M., Demchuk A.M., Pexman J.H., Hudon M.E., Tomanek A., Frayne R., Buchan A.M., ASPECTS Study Group Imaging of the brain in acute ischaemic stroke: Comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J. Neurol. Neurosurg. Psychiatry. 2005;76:1528–1533. doi: 10.1136/jnnp.2004.059261. PubMed DOI PMC
Sarraj A., Hassan A.E., Grotta J., Blackburn S., Day A., Abraham M., Sitton C., Dannenbaum M., Cai C., Pujara D., et al. Early Infarct Growth Rate Correlation with Endovascular Thrombectomy Clinical Outcomes: Analysis from the SELECT Study. Stroke. 2021;52:57–69. doi: 10.1161/STROKEAHA.120.030912. PubMed DOI
Regenhardt R.W., González R.G., He J., Lev M.H., Singhal A.B. Symmetric CTA Collaterals Identify Patients with Slow-progressing Stroke Likely to Benefit from Late Thrombectomy. Radiology. 2022;302:400–407. doi: 10.1148/radiol.2021210455. PubMed DOI PMC
Liu L., Ding J., Leng X., Pu Y., Huang L.A., Xu A., Wong K.S.L., Wang X., Wang Y. Guidelines for evaluation and management of cerebral collateral circulation in ischaemic stroke 2017. Stroke Vasc. Neurol. 2018;3:117–130. doi: 10.1136/svn-2017-000135. PubMed DOI PMC
Peisker T., Vasko P., Mikulenka P., Lauer D., Koznar B., Sulzenko J., Rohac F., Kucera D., Girsa D., Kremenova K., et al. Clinical and radiological factors predicting stroke outcome after successful mechanical intervention in anterior circulation. Eur. Heart J. 2022;24((Suppl. B)):B48–B52. doi: 10.1093/eurheartjsupp/suac010. PubMed DOI PMC