Role of Nano-miRNAs in Diagnostics and Therapeutics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35743278
PubMed Central
PMC9223810
DOI
10.3390/ijms23126836
PII: ijms23126836
Knihovny.cz E-zdroje
- Klíčová slova
- nanotechnology biomarker, nano–microRNA, target therapy,
- MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- nádory * diagnóza genetika terapie MeSH
- nanomedicína MeSH
- nanotechnologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA * MeSH
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Department of Biomedical Sciences University of Sassari 07100 Sassari Italy
Department of Chemistry and Pharmacy University of Sassari 07100 Sassari Italy
Zobrazit více v PubMed
Revythis A., Shah S., Kutka M., Moschetta M., Ozturk M.A., Pappas-Gogos G., Ioannidou E., Sheriff M., Rassy E., Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics. 2021;11:1341. doi: 10.3390/diagnostics11081341. PubMed DOI PMC
De Planell-Saguer M., Rodicio M.C. Analytical aspects of microRNA in diagnostics: A review. Anal. Chim. Acta. 2011;699:134–152. doi: 10.1016/j.aca.2011.05.025. PubMed DOI
Li Y., Kowdley K.V. MicroRNAs in common human diseases. Genom. Proteom. Bioinform. 2012;10:246–253. doi: 10.1016/j.gpb.2012.07.005. PubMed DOI PMC
Wark A.W., Lee H.J., Corn R.M. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Ed. Engl. 2008;47:644–652. doi: 10.1002/anie.200702450. PubMed DOI PMC
Hunt E.A., Broyles D., Head T., Deo S.K. MicroRNA Detection: Current Technology and Research Strategies. Annu. Rev. Anal. Chem. 2015;8:217–237. doi: 10.1146/annurev-anchem-071114-040343. PubMed DOI
Fiammengo R. Can nanotechnology improve cancer diagnosis through miRNA detection? Biomark. Med. 2017;11:69–86. doi: 10.2217/bmm-2016-0195. PubMed DOI
Bellassai N., Spoto G. Biosensors for liquid biopsy: Circulating nucleic acids to diagnose and treat cancer. Anal. Bioanal. Chem. 2016;408:7255–7264. doi: 10.1007/s00216-016-9806-3. PubMed DOI
Mariani S., Minunni M. Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem. 2014;406:2303–2323. doi: 10.1007/s00216-014-7647-5. PubMed DOI PMC
Chaudhary V., Jangra S., Yadav N.R. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J. Nanobiotechnol. 2018;16:40. doi: 10.1186/s12951-018-0368-8. PubMed DOI PMC
Degliangeli F., Pompa P.P., Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry. 2014;20:9476–9492. doi: 10.1002/chem.201402649. PubMed DOI
Ghose A., Gullapalli S.V.N., Chohan N., Bolina A., Moschetta M., Rassy E., Boussios S. Applications of Proteomics in Ovarian Cancer: Dawn of a New Era. Proteomes. 2022;10:16. doi: 10.3390/proteomes10020016. PubMed DOI PMC
Mollasalehi H., Shajari E. A colorimetric nano-biosensor for simultaneous detection of prevalent cancers using unamplified cell-free ribonucleic acid biomarkers. Bioorg. Chem. 2021;107:104605. doi: 10.1016/j.bioorg.2020.104605. PubMed DOI
Ghose A., Moschetta M., Pappas-Gogos G., Sheriff M., Boussios S. Genetic Aberrations of DNA Repair Pathways in Prostate Cancer: Translation to the Clinic. Int. J. Mol. Sci. 2021;22:9783. doi: 10.3390/ijms22189783. PubMed DOI PMC
Coradduzza D., Cruciani S., Arru C., Garroni G., Pashchenko A., Jedea M., Zappavigna S., Caraglia M., Amler E., Carru C., et al. Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. Int. J. Mol. Sci. 2022;23:1626. doi: 10.3390/ijms23031626. PubMed DOI PMC
Rawla P. Epidemiology of Prostate Cancer. World J. Oncol. 2019;10:63–89. doi: 10.14740/wjon1191. PubMed DOI PMC
Park Y., Lee C.Y., Kang S., Kim H., Park K.S., Park H.G. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. Nanotechnology. 2018;29:085501. doi: 10.1088/1361-6528/aaa3a3. PubMed DOI
Cheung A., Shah S., Parker J., Soor P., Limbu A., Sheriff M., Boussios S. Non-Epithelial Ovarian Cancers: How Much Do We Really Know? Int. J. Environ. Res. Public Health. 2022;19:1106. doi: 10.3390/ijerph19031106. PubMed DOI PMC
Ye C., Wang M.Q., Luo H.Q., Li N.B. Label-Free Photoelectrochemical “Off-On” Platform Coupled with G-Wire-Enhanced Strategy for Highly Sensitive MicroRNA Sensing in Cancer Cells. Anal. Chem. 2017;89:11697–11702. doi: 10.1021/acs.analchem.7b03150. PubMed DOI
Cai J., Ding L., Gong P., Huang J. A colorimetric detection of microRNA-148a in gastric cancer by gold nanoparticle–RNA conjugates. Nanotechnology. 2019;31:095501. doi: 10.1088/1361-6528/ab55b7. PubMed DOI
Hearty S., Leonard P., Ma H., O’Kennedy R. Antibody Engineering. Springer; Berlin/Heidelberg, Germany: 2018. Measuring antibody-antigen binding kinetics using surface plasmon resonance; pp. 421–455. PubMed
Carroll J., Raum M., Forsten-Williams K., Tauber U.C. Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis. Phys. Biol. 2016;13:066010. doi: 10.1088/1478-3975/13/6/066010. PubMed DOI
Teran M., Nugent M.A. Characterization of receptor binding kinetics for vascular endothelial growth factor-A using SPR. Anal. Biochem. 2019;564:21–31. doi: 10.1016/j.ab.2018.10.001. PubMed DOI PMC
Bhandari D., Chen F.C., Hamal S., Bridgman R.C. Kinetic Analysis and Epitope Mapping of Monoclonal Antibodies to Salmonella Typhimurium Flagellin Using a Surface Plasmon Resonance Biosensor. Antibodies. 2019;8:22. doi: 10.3390/antib8010022. PubMed DOI PMC
Wang Q., Li Q., Yang X., Wang K., Du S., Zhang H., Nie Y. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens. Bioelectron. 2016;77:1001–1007. doi: 10.1016/j.bios.2015.10.091. PubMed DOI
Li Q., Wang Q., Yang X., Wang K., Zhang H., Nie W. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Talanta. 2017;174:521–526. doi: 10.1016/j.talanta.2017.06.048. PubMed DOI
Li J., Lei P., Ding S., Zhang Y., Yang J., Cheng Q., Yan Y. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens. Bioelectron. 2016;77:435–441. doi: 10.1016/j.bios.2015.09.069. PubMed DOI
Liu R.J., Wang Q., Li Q., Yang X.H., Wang K.M., Nie W.Y. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron. 2017;87:433–438. doi: 10.1016/j.bios.2016.08.090. PubMed DOI
Nie W., Wang Q., Yang X., Zhang H., Li Z., Gao L., Zheng Y., Liu X., Wang K. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Anal. Chim. Acta. 2017;993:55–62. doi: 10.1016/j.aca.2017.09.015. PubMed DOI
Nie W., Wang Q., Zou L., Zheng Y., Liu X., Yang X., Wang K. Low-Fouling Surface Plasmon Resonance Sensor for Highly Sensitive Detection of MicroRNA in a Complex Matrix Based on the DNA Tetrahedron. Anal. Chem. 2018;90:12584–12591. doi: 10.1021/acs.analchem.8b02686. PubMed DOI
Portela A., Calvo-Lozano O., Estevez M.C., Escuela A.M., Lechuga L.M. Optical nanogap antennas as plasmonic biosensors for the detection of miRNA biomarkers. J. Mater. Chem. B. 2020;8:4310–4317. doi: 10.1039/D0TB00307G. PubMed DOI
Li J., Koo K.M., Wang Y., Trau M. Native MicroRNA Targets Trigger Self-Assembly of Nanozyme-Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonic-Activated Cancer Detection. Small. 2019;15:e1904689. doi: 10.1002/smll.201904689. PubMed DOI
Bai Y., Xu T., Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines. 2020;11:60. doi: 10.3390/mi11010060. PubMed DOI PMC
Treerattrakoon K., Jiemsakul T., Tansarawiput C., Pinpradup P., Iempridee T., Luksirikul P., Khoothiam K., Dharakul T., Japrung D. Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs. Anal. Biochem. 2019;577:89–97. doi: 10.1016/j.ab.2019.04.016. PubMed DOI
Kim S., Park S., Cho Y.S., Kim Y., Tae J.H., No T.I., Shim J.S., Jeong Y., Kang S.H., Lee K.H. Electrical Cartridge Sensor Enables Reliable and Direct Identification of MicroRNAs in Urine of Patients. ACS Sens. 2021;6:833–841. doi: 10.1021/acssensors.0c01870. PubMed DOI
Semeniuk M., Yi Z., Poursorkhabi V., Tjong J., Jaffer S., Lu Z.H., Sain M. Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano. 2019;13:6224–6255. doi: 10.1021/acsnano.9b00688. PubMed DOI
Lim E.K., Kim T., Paik S., Haam S., Huh Y.M., Lee K. Nanomaterials for theranostics: Recent advances and future challenges. Chem. Rev. 2015;115:327–394. doi: 10.1021/cr300213b. PubMed DOI
Mohammadi S., Salimi A. Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair. Microchim. Acta. 2018;185:372. doi: 10.1007/s00604-018-2868-5. PubMed DOI
Mahani M., Mousapour Z., Divsar F., Nomani A., Ju H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Mikrochim. Acta. 2019;186:132. doi: 10.1007/s00604-019-3233-z. PubMed DOI
Mohammadi S., Mohammadi S., Salimi A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta. 2021;224:121895. doi: 10.1016/j.talanta.2020.121895. PubMed DOI
Kuntip N., Japrung D., Pongprayoon P. What Happens When a Complementary DNA Meets miR-29a Cancer Biomarker in Complex with a Graphene Quantum Dot. ACS Appl. Bio Mater. 2021;4:8368–8376. doi: 10.1021/acsabm.1c00943. PubMed DOI
Wang Z., Zong S., Liu Y., Qian Z., Zhu K., Yang Z., Wang Z., Cui Y. Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification. Nanotechnology. 2020;32:085504. doi: 10.1088/1361-6528/abc7d4. PubMed DOI
Kim J., Ahn S.Y., Um S.H. Bead-Immobilized Multimodal Molecular Beacon-Equipped DNA Machinery for Specific RNA Target Detection: A Prototypical Molecular Nanobiosensor. Nanomaterials. 2021;11:1617. doi: 10.3390/nano11061617. PubMed DOI PMC
Azimzadeh M., Rahaie M., Nasirizadeh N., Ashtari K., Naderi-Manesh H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens. Bioelectron. 2016;77:99–106. doi: 10.1016/j.bios.2015.09.020. PubMed DOI
Ebrahimi A., Nikokar I., Zokaei M., Bozorgzadeh E. Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in Triple Negative Breast Cancer. Talanta. 2018;189:592–598. doi: 10.1016/j.talanta.2018.07.016. PubMed DOI
Yang B., Zhang S., Fang X., Kong J. Double signal amplification strategy for ultrasensitive electrochemical biosensor based on nuclease and quantum dot-DNA nanocomposites in the detection of breast cancer 1 gene mutation. Biosens. Bioelectron. 2019;142:111544. doi: 10.1016/j.bios.2019.111544. PubMed DOI
Zhou L., Wang T., Bai Y., Li Y., Qiu J., Yu W., Zhang S. Dual-amplified strategy for ultrasensitive electrochemical biosensor based on click chemistry-mediated enzyme-assisted target recycling and functionalized fullerene nanoparticles in the detection of microRNA-141. Biosens. Bioelectron. 2020;150:111964. doi: 10.1016/j.bios.2019.111964. PubMed DOI
Hakimian F., Ghourchian H. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal. Chim. Acta. 2020;1136:1–8. doi: 10.1016/j.aca.2020.08.039. PubMed DOI
Yazdanparast S., Benvidi A., Azimzadeh M., Tezerjani M.D., Ghaani M.R. Experimental and theoretical study for miR-155 detection through resveratrol interaction with nucleic acids using magnetic core-shell nanoparticles. Microchim. Acta. 2020;187:479. doi: 10.1007/s00604-020-04447-9. PubMed DOI
Pothipor C., Aroonyadet N., Bamrungsap S., Jakmunee J., Ounnunkad K. A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst. 2021;146:2679–2688. doi: 10.1039/D1AN00116G. PubMed DOI
Pothipor C., Jakmunee J., Bamrungsap S., Ounnunkad K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst. 2021;146:4000–4009. doi: 10.1039/D1AN00436K. PubMed DOI
Pothipor C., Bamrungsap S., Jakmunee J., Ounnunkad K. A gold nanoparticle-dye/poly (3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces. 2022;210:112260. doi: 10.1016/j.colsurfb.2021.112260. PubMed DOI
Hussain S.A., Dey D., Chakraborty S., Saha J., Roy A.D., Chakraborty S., Debnath P., Bhattacharjee D. Fluorescence resonance energy transfer (FRET) sensor. arXiv. 20141408.6559
Li J., Wang A., Yang X., Wang K., Huang J. Orderly Assembled, Self-Powered FRET Flares for MicroRNA Imaging in Live Cells. Anal. Chem. 2021;93:6270–6277. doi: 10.1021/acs.analchem.1c00873. PubMed DOI
Wang Y., Howes P.D., Kim E., Spicer C.D., Thomas M.R., Lin Y., Crowder S.W., Pence I.J., Stevens M.M. Duplex-specific nuclease-amplified detection of MicroRNA using compact quantum dot–DNA conjugates. ACS Appl. Mater. Interfaces. 2018;10:28290–28300. doi: 10.1021/acsami.8b07250. PubMed DOI PMC
Li J., Huang J., Yang X., Yang Y., Quan K., Xie N., Wu Y., Ma C., Wang K. Two-Color-Based Nanoflares for Multiplexed MicroRNAs Imaging in Live Cells. Nanotheranostics. 2018;2:96–105. doi: 10.7150/ntno.22960. PubMed DOI PMC
Zhao J., Liu C., Li Y., Ma Y., Deng J., Li L., Sun J. Thermophoretic Detection of Exosomal microRNAs by Nanoflares. J. Am. Chem. Soc. 2020;142:4996–5001. doi: 10.1021/jacs.9b13960. PubMed DOI
Qing Z., Luo G., Xing S., Zou Z., Lei Y., Liu J., Yang R. Pt–S Bond-Mediated Nanoflares for High-Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angew. Chem. Int. Ed. 2020;59:14044–14048. doi: 10.1002/anie.202003964. PubMed DOI
Saha K., Agasti S.S., Kim C., Li X., Rotello V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012;112:2739–2779. doi: 10.1021/cr2001178. PubMed DOI PMC
Abdulbari H.A., Basheer E.A.M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. Chembioeng. Rev. 2017;4:92–105. doi: 10.1002/cben.201600009. DOI
Zeng S., Baillargeat D., Ho H.P., Yong K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014;43:3426–3452. doi: 10.1039/c3cs60479a. PubMed DOI
Liz-Marzán L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41. doi: 10.1021/la0513353. PubMed DOI
Kawasaki E.S., Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine. 2005;1:101–109. doi: 10.1016/j.nano.2005.03.002. PubMed DOI
Esmaeili-Bandboni A., Amini S.M., Faridi-Majidi R., Bagheri J., Mohammadnejad J., Sadroddiny E. Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of miR-155. IET Nanobiotechnol. 2018;12:453–458. doi: 10.1049/iet-nbt.2017.0174. PubMed DOI PMC
Yu S., Wang Y., Jiang L.P., Bi S., Zhu J.J. Cascade Amplification-Mediated In Situ Hot-Spot Assembly for MicroRNA Detection and Molecular Logic Gate Operations. Anal. Chem. 2018;90:4544–4551. doi: 10.1021/acs.analchem.7b04930. PubMed DOI
Huang J., Shangguan J., Guo Q., Ma W., Wang H., Jia R., Ye Z., He X., Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst. 2019;144:4917–4924. doi: 10.1039/C9AN01013K. PubMed DOI
Hwu S., Blickenstorfer Y., Tiefenauer R.F., Gonnelli C., Schmidheini L., Luchtefeld I., Hoogenberg B.J., Gisiger A.B., Voros J. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles. ACS Sens. 2019;4:1950–1956. doi: 10.1021/acssensors.9b00946. PubMed DOI
Wang W.J., Nie A.X., Lu Z.C., Li J.J., Shu M.B., Han H. Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles. Microchim. Acta. 2019;186:661. doi: 10.1007/s00604-019-3743-8. PubMed DOI
Qu A., Sun M., Xu L., Hao C., Wu X., Xu C., Kotov N.A., Kuang H. Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc. Natl. Acad. Sci. USA. 2019;116:3391–3400. doi: 10.1073/pnas.1810764116. PubMed DOI PMC
Canady T.D., Li N., Smith L.D., Lu Y., Kohli M., Smith A.M., Cunningham B.T. Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc. Natl. Acad. Sci. USA. 2019;116:19362–19367. doi: 10.1073/pnas.1904770116. PubMed DOI PMC
Che C.Y., Xue R.Y., Li N.T., Gupta P., Wang X.J., Zhao B., Singamaneni S., Nie S.M., Cunningham B.T. Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy. ACS Nano. 2022;16:2345–2354. doi: 10.1021/acsnano.1c08569. PubMed DOI
Wang X., Yuan W., Xu Y., Yuan H., Li F. Sensitive multiplex detection of MicroRNAs based on liquid suspension nano-chip. Anal. Chim. Acta. 2020;1112:24–33. doi: 10.1016/j.aca.2020.03.026. PubMed DOI
Boussios S., Ozturk M.A., Moschetta M., Karathanasi A., Zakynthinakis-Kyriakou N., Katsanos K.H., Christodoulou D.K., Pavlidis N. The Developing Story of Predictive Biomarkers in Colorectal Cancer. J. Pers. Med. 2019;9:12. doi: 10.3390/jpm9010012. PubMed DOI PMC
Islam M.N., Masud M.K., Nguyen N.T., Gopalan V., Alamri H.R., Alothman Z.A., Al Hossain M.S., Yamauchi Y., Lam A.K., Shiddiky M.J.A. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosens. Bioelectron. 2018;101:275–281. doi: 10.1016/j.bios.2017.09.027. PubMed DOI
Dong J., Dong H., Dai W., Meng X., Zhang K., Cao Y., Yang F., Zhang X. Functional DNA hexahedron for real-time detection of multiple microRNAs in living cells. Anal. Chim. Acta. 2019;1078:176–181. doi: 10.1016/j.aca.2019.06.034. PubMed DOI
Zhu W.F., Cheng L.X., Li M., Zuo D., Zhang N., Zhuang H.J., Xie D., Zeng Q.D., Hutchison J.A., Zhao Y.L. Frequency Shift Raman-Based Sensing of Serum MicroRNAs for Early Diagnosis and Discrimination of Primary Liver Cancers. Anal. Chem. 2018;90:10144–10151. doi: 10.1021/acs.analchem.8b01798. PubMed DOI
Bose R.J.C., Uday Kumar S., Zeng Y., Afjei R., Robinson E., Lau K., Bermudez A., Habte F., Pitteri S.J., Sinclair R. Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano. 2018;12:10817–10832. doi: 10.1021/acsnano.8b02587. PubMed DOI PMC
Fernandez-Piñeiro I., Badiola I., Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol. Adv. 2017;35:350–360. doi: 10.1016/j.biotechadv.2017.03.002. PubMed DOI
Talluri S.V., Kuppusamy G., Karri V.V.S.R., Tummala S., Madhunapantula S.V. Lipid-based nanocarriers for breast cancer treatment—Comprehensive review. Drug Deliv. 2016;23:1291–1305. doi: 10.3109/10717544.2015.1092183. PubMed DOI
Gallego L., Cena V. Nanoparticle-mediated therapeutic compounds delivery to glioblastoma. Expert Opin. Drug Deliv. 2020;17:1541–1554. doi: 10.1080/17425247.2020.1810015. PubMed DOI
Pottoo F.H., Barkat M.A., Ansari M.A., Javed M.N., Jamal Q.M.S., Kamal M.A. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin. Cancer Biol. 2021;69:100–108. doi: 10.1016/j.semcancer.2019.09.017. PubMed DOI
Tiram G., Segal E., Krivitsky A., Shreberk-Hassidim R., Ferber S., Ofek P., Udagawa T., Edry L., Shomron N., Roniger M., et al. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano. 2016;10:2028–2045. doi: 10.1021/acsnano.5b06189. PubMed DOI
Sun S., Wang Y., Zhou R., Deng Z., Han Y., Han X., Tao W., Yang Z., Shi C., Hong D. Targeting and regulating of an oncogene via nanovector delivery of MicroRNA using patient-derived xenografts. Theranostics. 2017;7:677. doi: 10.7150/thno.16357. PubMed DOI PMC
Ma D., Liu H., Zhao P., Ye L., Zou H., Zhao X., Dai H., Kong X., Liu P. Programing Assembling/Releasing Multifunctional miRNA Nanomedicine to Treat Prostate Cancer. ACS Appl. Mater. Interfaces. 2020;12:9032–9040. doi: 10.1021/acsami.9b21707. PubMed DOI
Javanmardi S., Tamaddon A.M., Aghamaali M.R., Ghahramani L., Abolmaali S.S. Redox-sensitive, PEG-shielded carboxymethyl PEI nanogels silencing MicroRNA-21, sensitizes resistant ovarian cancer cells to cisplatin. Asian J. Pharm. Sci. 2020;15:69–82. doi: 10.1016/j.ajps.2018.10.006. PubMed DOI PMC
Nagachinta S., Bouzo B.L., Vazquez-Rios A.J., Lopez R., Fuente M. Sphingomyelin-Based Nanosystems (SNs) for the Development of Anticancer miRNA Therapeutics. Pharmaceutics. 2020;12:189. doi: 10.3390/pharmaceutics12020189. PubMed DOI PMC
Elfiky A.M., Mohamed R.H., Abd El-Hakam F.E., Yassin M.A., El Hefnawi M. Targeted delivery of miR-218 via decorated hyperbranched polyamidoamine for liver cancer regression. Int. J. Pharm. 2021;610:121256. doi: 10.1016/j.ijpharm.2021.121256. PubMed DOI
Nakase I., Noguchi K., Aoki A., Takatani-Nakase T., Fujii I., Futaki S. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci. Rep. 2017;7:1991. doi: 10.1038/s41598-017-02014-6. PubMed DOI PMC
Boca S., Gulei D., Zimta A.A., Onaciu A., Magdo L., Tigu A.B., Ionescu C., Irimie A., Buiga R., Berindan-Neagoe I. Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol. Life Sci. 2020;77:1059–1086. doi: 10.1007/s00018-019-03317-9. PubMed DOI PMC
Naseri Z., Oskuee R.K., Jaafari M.R., Forouzandeh Moghadam M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int. J. Nanomed. 2018;13:7727–7747. doi: 10.2147/IJN.S182384. PubMed DOI PMC
Vakhshiteh F., Rahmani S., Ostad S.N., Madjd Z., Dinarvand R., Atyabi F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: A new approach for drug delivery. Life Sci. 2021;266:118871. doi: 10.1016/j.lfs.2020.118871. PubMed DOI
Moradi-Chaleshtori M., Shojaei S., Mohammadi-Yeganeh S., Hashemi S.M. Transfer of miRNA in tumor-derived exosomes suppresses breast tumor cell invasion and migration by inducing M1 polarization in macrophages. Life Sci. 2021;282:119800. doi: 10.1016/j.lfs.2021.119800. PubMed DOI
Yang Z., Shi J., Xie J., Wang Y., Sun J., Liu T., Zhao Y., Zhao X., Wang X., Ma Y., et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2020;4:69–83. doi: 10.1038/s41551-019-0485-1. PubMed DOI PMC
Yin H., Wang H., Li Z., Shu D., Guo P. RNA micelles for the systemic delivery of anti-miRNA for cancer targeting and inhibition without ligand. ACS Nano. 2018;13:706–717. doi: 10.1021/acsnano.8b07948. PubMed DOI PMC
Xie X., Chen Y., Chen Z., Feng Y., Wang J., Li T., Li S., Qin X., Wu C., Zheng C., et al. Polymeric Hybrid Nanomicelles for Cancer Theranostics: An Efficient and Precise Anticancer Strategy for the Codelivery of Doxorubicin/miR-34a and Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces. 2019;11:43865–43878. doi: 10.1021/acsami.9b14908. PubMed DOI
Li Y., Dai Y., Zhang X.J., Chen J.H. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy. Nanotechnology. 2017;28:285101. doi: 10.1088/1361-6528/aa757f. PubMed DOI
Ghaffari M., Kalantar S.M., Hemati M., Firoozabadi A.D., Asri A., Shams A., Ghalekohneh S.J., Haghiralsadat F. Co-delivery of miRNA-15a and miRNA-16-1 using cationic PEGylated niosomes downregulates Bcl-2 and induces apoptosis in prostate cancer cells. Biotechnol. Lett. 2021;43:981–994. doi: 10.1007/s10529-021-03085-2. PubMed DOI
Binzel D.W., Shu Y., Li H., Sun M., Zhang Q., Shu D., Guo B., Guo P. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Mol. Ther. 2016;24:1267–1277. doi: 10.1038/mt.2016.85. PubMed DOI PMC
Li Y., Chen Y., Li J., Zhang Z., Huang C., Lian G., Yang K., Chen S., Lin Y., Wang L. Co-delivery of micro RNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108:1493–1503. doi: 10.1111/cas.13267. PubMed DOI PMC
Yoo B., Kavishwar A., Wang P., Ross A., Pantazopoulos P., Dudley M., Moore A., Medarova Z. Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci. Rep. 2017;7:45060. doi: 10.1038/srep45060. PubMed DOI PMC
Tekie F.S.M., Soleimani M., Zakerian A., Dinarvand M., Amini M., Dinarvand R., Arefian E., Atyabi F. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr. Polym. 2018;201:131–140. doi: 10.1016/j.carbpol.2018.08.060. PubMed DOI
Vandghanooni S., Eskandani M., Barar J., Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine. 2018;13:2729–2758. doi: 10.2217/nnm-2018-0205. PubMed DOI
Lopez-Bertoni H., Kozielski K.L., Rui Y., Lal B., Vaughan H., Wilson D.R., Mihelson N., Eberhart C.G., Laterra J., Green J.J. Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. Nano Lett. 2018;18:4086–4094. doi: 10.1021/acs.nanolett.8b00390. PubMed DOI PMC
Panebianco F., Climent M., Malvindi M.A., Pompa P.P., Bonetti P., Nicassio F. Delivery of biologically active miR-34a in normal and cancer mammary epithelial cells by synthetic nanoparticles. Nanomedicine. 2019;19:95–105. doi: 10.1016/j.nano.2019.03.013. PubMed DOI
Sukumar U.K., Bose R.J.C., Malhotra M., Babikir H.A., Afjei R., Robinson E., Zeng Y.T., Chang E., Habte F., Sinclair R., et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019;218:119342. doi: 10.1016/j.biomaterials.2019.119342. PubMed DOI PMC
Chiang C.L., Goswami S., Frissora F.W., Xie Z., Yan P.S., Bundschuh R., Walker L.A., Huang X., Mani R., Mo X.M., et al. ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood. 2019;134:432–444. doi: 10.1182/blood.2018882290. PubMed DOI PMC
Perepelyuk M., Sacko K., Thangavel K., Shoyele S.A. Evaluation of MUC1-Aptamer Functionalized Hybrid Nanoparticles for Targeted Delivery of miRNA-29b to Nonsmall Cell Lung Cancer. Mol. Pharm. 2018;15:985–993. doi: 10.1021/acs.molpharmaceut.7b00900. PubMed DOI
Qian R.C., Lv J., Long Y.T. Controllable Aggregation-Induced Exocytosis Inhibition (CAIEI) of Plasmonic Nanoparticles in Cancer Cells Regulated by MicroRNA. Mol. Pharm. 2018;15:4031–4037. doi: 10.1021/acs.molpharmaceut.8b00465. PubMed DOI
Chen W.H., Luo G.F., Sohn Y.S., Nechushtai R., Willner I. miRNA-Specific Unlocking of Drug-Loaded Metal–Organic Framework Nanoparticles: Targeted Cytotoxicity toward Cancer Cells. Small. 2019;15:1900935. doi: 10.1002/smll.201900935. PubMed DOI
Zhang P., Ouyang Y., Sohn Y.S., Nechushtai R., Pikarsky E., Fan C.H., Willner I. pH- and miRNA-Responsive DNA-Tetrahedra/Metal-Organic Framework Conjugates: Functional Sense-and-Treat Carriers. ACS Nano. 2021;15:6645–6657. doi: 10.1021/acsnano.0c09996. PubMed DOI
Yin H.R., Xiong G.F., Guo S.J., Xu C.C., Xu R., Guo P.X., Shu D. Delivery of Anti-miRNA for Triple-Negative Breast Cancer Therapy Using RNA Nanoparticles Targeting Stem Cell Marker CD133. Mol. Ther. 2019;27:1252–1261. doi: 10.1016/j.ymthe.2019.04.018. PubMed DOI PMC
Ahir M., Upadhyay P., Ghosh A., Sarker S., Bhattacharya S., Gupta P., Ghosh S., Chattopadhyay S., Adhikary A. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater. Sci. 2020;8:2939–2954. doi: 10.1039/D0BM00015A. PubMed DOI
Unal O., Akkoc Y., Kocak M., Nalbat E., Dogan-Ekici A.I., Yagci Acar H., Gozuacik D. Treatment of breast cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles. J. Nanobiotechnol. 2020;18:65. doi: 10.1186/s12951-020-00615-4. PubMed DOI PMC
Upadhyay P., Sarker S., Ghosh A., Gupta P., Das S., Ahir M., Bhattacharya S., Chattopadhyay S., Ghosh S., Adhikary A. Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect in non-small cell lung carcinoma via the modulation of miR-34a and miR-16. Biomater. Sci. 2019;7:4325–4344. doi: 10.1039/C9BM00912D. PubMed DOI
Shi H., Liang G.F., Li Y., Li J.H., Jing A.H., Feng W.P., Li G.D., Du J.X., Feng S.Y. Preparation and Evaluation of Upconversion Nanoparticles Based miRNA Delivery Carrier in Colon Cancer Mice Model. J. Biomed. Nanotechnol. 2019;15:2240–2250. doi: 10.1166/jbn.2019.2840. PubMed DOI
Shao L., Wang R., Sun Y., Yue Z., Sun H., Wang X., Wang P., Sun G., Hu J., Sun H., et al. Delivery of MicroRNA-let-7c-5p by Biodegradable Silica Nanoparticles Suppresses Human Cervical Carcinoma Cell Proliferation and Migration. J. Biomed. Nanotechnol. 2020;16:1600–1611. doi: 10.1166/jbn.2020.2989. PubMed DOI
Liu Y., Zheng M., Jiao M., Yan C., Xu S., Du Q., Morsch M., Yin J., Shi B. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials. 2021;276:121036. doi: 10.1016/j.biomaterials.2021.121036. PubMed DOI
Maghsoudnia N., Baradaran Eftekhari R., Naderi Sohi A., Norouzi P., Akbari H., Ghahremani M.H., Soleimani M., Amini M., Samadi H., Dorkoosh F.A. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J. Drug Target. 2020;28:818–830. doi: 10.1080/1061186X.2020.1774594. PubMed DOI
Wang H., Ellipilli S., Lee W.J., Li X., Vieweger M., Ho Y.S., Guo P. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J. Control. Release. 2021;330:173–184. doi: 10.1016/j.jconrel.2020.12.007. PubMed DOI PMC
Zhou X., You M., Wang F., Wang Z., Gao X., Jing C., Liu J., Guo M., Li J., Luo A. Multifunctional graphdiyne–cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv. Mater. 2021;33:2100556. doi: 10.1002/adma.202100556. PubMed DOI
Hwang D.W., Kim H.Y., Li F.Y., Park J.Y., Kim D., Park J.H., Han H.S., Byun J.W., Lee Y.S., Jeong J.M., et al. In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials. 2017;121:144–154. doi: 10.1016/j.biomaterials.2016.12.028. PubMed DOI
Assali A., Akhavan O., Mottaghitalab F., Adeli M., Dinarvand R., Razzazan S., Arefian E., Soleimani M., Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int. J. Nanomed. 2018;13:5865–5886. doi: 10.2147/IJN.S162647. PubMed DOI PMC
Assali A., Akhavan O., Adeli M., Razzazan S., Dinarvand R., Zanganeh S., Soleimani M., Dinarvand M., Atyabi F. Multifunctional core-shell nanoplatforms (gold@ graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomed. Nanotechnol. Biol. Med. 2018;14:1891–1903. doi: 10.1016/j.nano.2018.05.016. PubMed DOI
Luo Y., Niu G., Yi H., Li Q., Wu Z., Wang J., Yang J., Li B., Peng Y., Liang Y., et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol. 2021;42:101908. doi: 10.1016/j.redox.2021.101908. PubMed DOI PMC