Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CC-0437-10-21-09-10
Consejo de Desarrollo Científico, Humanístico y Tecnológico (CONDES), University of Zulia
FZ-0058-2007
Fundacite-Zulia
CZ.02.1.01/0.0/0.0/16_019/0000868, IMTM #869/V19
The Ministry of Education, Youth and Sport, Czech Republic: Molecular and Cellular Clinical Approach to Healthy Ageing, ENOCH
PubMed
35745875
PubMed Central
PMC9227908
DOI
10.3390/pharmaceutics14061303
PII: pharmaceutics14061303
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrates, energy metabolism, immunotherapy, inflammation, metabolic reprogramming, neoplasms, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Zobrazit více v PubMed
Campbell P.J., Getz G., Korbel J.O., Stuart J.M., Jennings J.L., Stein L.D., Perry M.D., Nahal-Bose H.K., Ouellette B.F.F., Li C.H., et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. PubMed PMC
Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer. 2021;149:778–789. doi: 10.1002/ijc.33588. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarks of Cancer: The next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.CD-21-1059. PubMed DOI
DeBerardinis R.J., Chandel N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016;2:e1600200. doi: 10.1126/sciadv.1600200. PubMed DOI PMC
Liberti M.V., Locasale J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
da Silva-Diz V., Lorenzo-Sanz L., Bernat-Peguera A., Lopez-Cerda M., Muñoz P. Cancer Cell Plasticity: Impact on Tumor Progression and Therapy Response. Semin. Cancer Biol. 2018;53:48–58. doi: 10.1016/j.semcancer.2018.08.009. PubMed DOI
Kalyanaraman B. Teaching the Basics of Cancer Metabolism: Developing Antitumor Strategies by Exploiting the Differences between Normal and Cancer Cell Metabolism. Redox Biol. 2017;12:833–842. doi: 10.1016/j.redox.2017.04.018. PubMed DOI PMC
Liu C.-L., Hsu Y.-C., Lee J.-J., Chen M.-J., Lin C.-H., Huang S.-Y., Cheng S.-P. Targeting the Pentose Phosphate Pathway Increases Reactive Oxygen Species and Induces Apoptosis in Thyroid Cancer Cells. Mol. Cell. Endocrinol. 2020;499:110595. doi: 10.1016/j.mce.2019.110595. PubMed DOI
Sun H., Chen L., Cao S., Liang Y., Xu Y. Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name. Genom. Proteom. Bioinform. 2019;17:273–286. doi: 10.1016/j.gpb.2018.12.006. PubMed DOI PMC
Koundouros N., Poulogiannis G. Reprogramming of Fatty Acid Metabolism in Cancer. Br. J. Cancer. 2020;122:4–22. doi: 10.1038/s41416-019-0650-z. PubMed DOI PMC
Liu Y., Yang C. Oncometabolites in Cancer: Current Understanding and Challenges. Cancer Res. 2021;81:2820–2823. doi: 10.1158/0008-5472.CAN-20-3730. PubMed DOI
de la Cruz-López K.G., Castro-Muñoz L.J., Reyes-Hernández D.O., García-Carrancá A., Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front. Oncol. 2019;9:1143. doi: 10.3389/fonc.2019.01143. PubMed DOI PMC
Benny S., Mishra R., Manojkumar M.K., Aneesh T.P. From Warburg Effect to Reverse Warburg Effect; the New Horizons of Anti-Cancer Therapy. Med. Hypotheses. 2020;144:110216. doi: 10.1016/j.mehy.2020.110216. PubMed DOI
Jiang J., Srivastava S., Zhang J. Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster? Cancers. 2019;11:804. doi: 10.3390/cancers11060804. PubMed DOI PMC
Yoo H.C., Yu Y.C., Sung Y., Han J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020;52:1496–1516. doi: 10.1038/s12276-020-00504-8. PubMed DOI PMC
Fernández L.P., Gómez de Cedrón M., Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front. Oncol. 2020;10:577420. doi: 10.3389/fonc.2020.577420. PubMed DOI PMC
Castelli S., De Falco P., Ciccarone F., Desideri E., Ciriolo M.R. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers. 2021;13:5484. doi: 10.3390/cancers13215484. PubMed DOI PMC
Lue H., Podolak J., Kolahi K., Cheng L., Rao S., Garg D., Xue C.-H., Rantala J.K., Tyner J.W., Thornburg K.L., et al. Metabolic Reprogramming Ensures Cancer Cell Survival despite Oncogenic Signaling Blockade. Genes Dev. 2017;31:2067–2084. doi: 10.1101/gad.305292.117. PubMed DOI PMC
Sun L., Suo C., Li S.-T., Zhang H., Gao P. Metabolic Reprogramming for Cancer Cells and Their Microenvironment: Beyond the Warburg Effect. Biochim. Biophys. Acta Rev. Cancer. 2018;1870:51–66. doi: 10.1016/j.bbcan.2018.06.005. PubMed DOI
Xia L., Oyang L., Lin J., Tan S., Han Y., Wu N., Yi P., Tang L., Pan Q., Rao S., et al. The Cancer Metabolic Reprogramming and Immune Response. Mol. Cancer. 2021;20:28. doi: 10.1186/s12943-021-01316-8. PubMed DOI PMC
Li T., Tan X., Yang R., Miao Y., Zhang M., Xi Y., Guo R., Zheng M., Li B. Discovery of Novel Glyceraldehyde-3-Phosphate Dehydrogenase Inhibitor via Docking-Based Virtual Screening. Bioorg. Chem. 2020;96:103620. doi: 10.1016/j.bioorg.2020.103620. PubMed DOI
Ghanbari Movahed Z., Rastegari-Pouyani M., Mohammadi M.H., Mansouri K. Cancer Cells Change Their Glucose Metabolism to Overcome Increased ROS: One Step from Cancer Cell to Cancer Stem Cell? Biomed. Pharmacother. 2019;112:108690. doi: 10.1016/j.biopha.2019.108690. PubMed DOI
Pavlova N.N., Thompson C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006. PubMed DOI PMC
Sun R.C., Dukhande V.V., Zhou Z., Young L.E.A., Emanuelle S., Brainson C.F., Gentry M.S. Nuclear Glycogenolysis Modulates Histone Acetylation in Human Non-Small Cell Lung Cancers. Cell Metab. 2019;30:903–916. doi: 10.1016/j.cmet.2019.08.014. PubMed DOI PMC
Grasmann G., Smolle E., Olschewski H., Leithner K. Gluconeogenesis in Cancer Cells—Repurposing of a Starvation-Induced Metabolic Pathway? Biochim. Biophys. Acta BBA Rev. Cancer. 2019;1872:24–36. doi: 10.1016/j.bbcan.2019.05.006. PubMed DOI PMC
Vincent E.E., Sergushichev A., Griss T., Gingras M.-C., Samborska B., Ntimbane T., Coelho P.P., Blagih J., Raissi T.C., Choinière L., et al. Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth. Mol. Cell. 2015;60:195–207. doi: 10.1016/j.molcel.2015.08.013. PubMed DOI
Zhou L., Luo M., Cheng L.-J., Li R.-N., Liu B., Linghu H. Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) Promotes the EMT of Serous Ovarian Cancer by Activating the Hexosamine Biosynthetic Pathway to Increase the Nuclear Location of β-Catenin. Pathol. Res. Pract. 2019;215:152681. doi: 10.1016/j.prp.2019.152681. PubMed DOI
Bu P., Chen K.Y., Xiang K., Johnson C., Crown S.B., Rakhilin N., Ai Y., Wang L., Xi R., Astapova I., et al. Aldolase B-Mediated Fructose Metabolism Drives Metabolic Reprogramming of Colon Cancer Liver Metastasis. Cell Metab. 2018;27:1249–1262. doi: 10.1016/j.cmet.2018.04.003. PubMed DOI PMC
Hammond G.R.V., Burke J.E. Novel Roles of Phosphoinositides in Signaling, Lipid Transport, and Disease. Curr. Opin. Cell Biol. 2020;63:57–67. doi: 10.1016/j.ceb.2019.12.007. PubMed DOI PMC
Wang J., Li Y. CD36 Tango in Cancer: Signaling Pathways and Functions. Theranostics. 2019;9:4893–4908. doi: 10.7150/thno.36037. PubMed DOI PMC
Tanase C., Enciu A.M., Codrici E., Popescu I.D., Dudau M., Dobri A.M., Pop S., Mihai S., Gheorghișan-Gălățeanu A.-A., Hinescu M.E. Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately? Int. J. Mol. Sci. 2022;23:604. doi: 10.3390/ijms23020604. PubMed DOI PMC
Hu J., Zhang L., Chen W., Shen L., Jiang J., Sun S., Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front. Pharmacol. 2021;12:730751. doi: 10.3389/fphar.2021.730751. PubMed DOI PMC
Fhu C.W., Ali A. Fatty Acid Synthase: An Emerging Target in Cancer. Molecules. 2020;25:3935. doi: 10.3390/molecules25173935. PubMed DOI PMC
Bartolacci C., Andreani C., El-Gammal Y., Scaglioni P.P. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front. Mol. Biosci. 2021;8:706650. doi: 10.3389/fmolb.2021.706650. PubMed DOI PMC
Casals N., Zammit V., Herrero L., Fadó R., Rodríguez-Rodríguez R., Serra D. Carnitine Palmitoyltransferase 1C: From Cognition to Cancer. Prog. Lipid Res. 2016;61:134–148. doi: 10.1016/j.plipres.2015.11.004. PubMed DOI
Parrales A., Iwakuma T. P53 as a Regulator of Lipid Metabolism in Cancer. Int. J. Mol. Sci. 2016;17:2074. doi: 10.3390/ijms17122074. PubMed DOI PMC
Bott A.J., Shen J., Tonelli C., Zhan L., Sivaram N., Jiang Y.-P., Yu X., Bhatt V., Chiles E., Zhong H., et al. Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Rep. 2019;29:1287–1298. doi: 10.1016/j.celrep.2019.09.056. PubMed DOI PMC
Vettore L., Westbrook R.L., Tennant D.A. New Aspects of Amino Acid Metabolism in Cancer. Br. J. Cancer. 2020;122:150–156. doi: 10.1038/s41416-019-0620-5. PubMed DOI PMC
Hosios A.M., Hecht V.C., Danai L.V., Johnson M.O., Rathmell J.C., Steinhauser M.L., Manalis S.R., Vander Heiden M.G. Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev. Cell. 2016;36:540–549. doi: 10.1016/j.devcel.2016.02.012. PubMed DOI PMC
Kurbegovic A., Trudel M. The Master Regulators Myc and P53 Cellular Signaling and Functions in Polycystic Kidney Disease. Cell. Signal. 2020;71:109594. doi: 10.1016/j.cellsig.2020.109594. PubMed DOI
Spinelli J.B., Yoon H., Ringel A.E., Jeanfavre S., Clish C.B., Haigis M.C. Metabolic Recycling of Ammonia via Glutamate Dehydrogenase Supports Breast Cancer Biomass. Science. 2017;358:941–946. doi: 10.1126/science.aam9305. PubMed DOI PMC
Lukey M.J., Katt W.P., Cerione R.A. Targeting Amino Acid Metabolism for Cancer Therapy. Drug Discov. Today. 2017;22:796–804. doi: 10.1016/j.drudis.2016.12.003. PubMed DOI PMC
Corchado-Cobos R., García-Sancha N., Mendiburu-Eliçabe M., Gómez-Vecino A., Jiménez-Navas A., Pérez-Baena M.J., Holgado-Madruga M., Mao J.-H., Cañueto J., Castillo-Lluva S., et al. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers. 2022;14:322. doi: 10.3390/cancers14020322. PubMed DOI PMC
Durgan J., Florey O. Cancer Cell Cannibalism: Multiple Triggers Emerge for Entosis. Biochim. Biophys. Acta Mol. Cell Res. 2018;1865:831–841. doi: 10.1016/j.bbamcr.2018.03.004. PubMed DOI
Zhang Y., Yang H., Zhao J., Wan P., Hu Y., Lv K., Hu Y., Yang X., Ma M. Activation of MAT2A-RIP1 Signaling Axis Reprograms Monocytes in Gastric Cancer. J. Immunother. Cancer. 2021;9:e001364. doi: 10.1136/jitc-2020-001364. PubMed DOI PMC
Zhang H.-F., Klein Geltink R.I., Parker S.J., Sorensen P.H. Transsulfuration, Minor Player or Crucial for Cysteine Homeostasis in Cancer. Trends Cell Biol. 2022:S0962-8924(22)000605. doi: 10.1016/j.tcb.2022.02.009. PubMed DOI PMC
Tyrakis P.A., Yurkovich M.E., Sciacovelli M., Papachristou E.K., Bridges H.R., Gaude E., Schreiner A., D’Santos C., Hirst J., Hernandez-Fernaud J., et al. Fumarate Hydratase Loss Causes Combined Respiratory Chain Defects. Cell Rep. 2017;21:1036–1047. doi: 10.1016/j.celrep.2017.09.092. PubMed DOI PMC
Gonçalves E., Sciacovelli M., Costa A.S.H., Tran M.G.B., Johnson T.I., Machado D., Frezza C., Saez-Rodriguez J. Post-Translational Regulation of Metabolism in Fumarate Hydratase Deficient Cancer Cells. Metab. Eng. 2018;45:149–157. doi: 10.1016/j.ymben.2017.11.011. PubMed DOI PMC
Schmidt S., Gay D., Uthe F.W., Denk S., Paauwe M., Matthes N., Diefenbacher M.E., Bryson S., Warrander F.C., Erhard F., et al. A MYC–GCN2–EIF2α Negative Feedback Loop Limits Protein Synthesis to Prevent MYC-Dependent Apoptosis in Colorectal Cancer. Nat. Cell Biol. 2019;21:1413–1424. doi: 10.1038/s41556-019-0408-0. PubMed DOI PMC
Masui K., Onizuka H., Cavenee W.K., Mischel P.S., Shibata N. Metabolic Reprogramming in the Pathogenesis of Glioma: Update. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2019;39:3–13. doi: 10.1111/neup.12535. PubMed DOI
Gelman S.J., Naser F., Mahieu N.G., McKenzie L.D., Dunn G.P., Chheda M.G., Patti G.J. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress. Cell Rep. 2018;22:512–522. doi: 10.1016/j.celrep.2017.12.050. PubMed DOI PMC
Izquierdo-Garcia J.L., Viswanath P., Eriksson P., Cai L., Radoul M., Chaumeil M.M., Blough M., Luchman H.A., Weiss S., Cairncross J.G., et al. IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism. Cancer Res. 2015;75:2999–3009. doi: 10.1158/0008-5472.CAN-15-0840. PubMed DOI PMC
Fitzpatrick S.F., Lambden S., Macias D., Puthucheary Z., Pietsch S., Mendil L., McPhail M.J.W., Johnson R.S. 2-Hydroxyglutarate Metabolism Is Altered in an In Vivo Model of LPS Induced Endotoxemia. Front. Physiol. 2020;11:1–8. doi: 10.3389/fphys.2020.00147. PubMed DOI PMC
Masisi B.K., El Ansari R., Alfarsi L., Rakha E.A., Green A.R., Craze M.L. The Role of Glutaminase in Cancer. Histopathology. 2020;76:498–508. doi: 10.1111/his.14014. PubMed DOI
Katt W.P., Lukey M.J., Cerione R.A. A Tale of Two Glutaminases: Homologous Enzymes with Distinct Roles in Tumorigenesis. Future Med. Chem. 2017;9:223–243. doi: 10.4155/fmc-2016-0190. PubMed DOI PMC
Matés J.M., Campos-Sandoval J.A., Márquez J. Glutaminase Isoenzymes in the Metabolic Therapy of Cancer. Biochim. Biophys. Acta BBA Rev. Cancer. 2018;1870:158–164. doi: 10.1016/j.bbcan.2018.07.007. PubMed DOI
Gouirand V., Guillaumond F., Vasseur S. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming. Front. Oncol. 2018;8:117. doi: 10.3389/fonc.2018.00117. PubMed DOI PMC
Robey R.B., Weisz J., Kuemmerle N., Salzberg A.C., Berg A., Brown D.G., Kubik L., Palorini R., Al-Mulla F., Al-Temaimi R., et al. Metabolic Reprogramming and Dysregulated Metabolism: Cause, Consequence and/or Enabler of Environmental Carcinogenesis? Carcinogenesis. 2015;36:S203–S231. doi: 10.1093/carcin/bgv037. PubMed DOI PMC
Anderson N.M., Simon M.C. The Tumor Microenvironment. Curr. Biol. CB. 2020;30:R921–R925. doi: 10.1016/j.cub.2020.06.081. PubMed DOI PMC
Lamouille S., Derynck R. Cell Size and Invasion in TGF-β–Induced Epithelial to Mesenchymal Transition Is Regulated by Activation of the MTOR Pathway. J. Cell Biol. 2007;178:437–451. doi: 10.1083/jcb.200611146. PubMed DOI PMC
Samarelli A.V., Masciale V., Aramini B., Coló G.P., Tonelli R., Marchioni A., Bruzzi G., Gozzi F., Andrisani D., Castaniere I., et al. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int. J. Mol. Sci. 2021;22:12179. doi: 10.3390/ijms222212179. PubMed DOI PMC
Silva V.R., Santos L.d.S., Dias R.B., Quadros C.A., Bezerra D.P. Emerging Agents That Target Signaling Pathways to Eradicate Colorectal Cancer Stem Cells. Cancer Commun. 2021;41:1275–1313. doi: 10.1002/cac2.12235. PubMed DOI PMC
Pedersen S.F., Flinck M., Pardo L.A. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int. J. Mol. Sci. 2021;22:5209. doi: 10.3390/ijms22105209. PubMed DOI PMC
Su Q., Fan M., Wang J., Ullah A., Ghauri M.A., Dai B., Zhan Y., Zhang D., Zhang Y. Sanguinarine Inhibits Epithelial-Mesenchymal Transition via Targeting HIF-1α/TGF-β Feed-Forward Loop in Hepatocellular Carcinoma. Cell Death Dis. 2019;10:939. doi: 10.1038/s41419-019-2173-1. PubMed DOI PMC
Jonasch E., McCutcheon I.E., Gombos D.S., Ahrar K., Perrier N.D., Liu D., Robichaux C.C., Villarreal M.F., Weldon J.A., Woodson A.H., et al. Pazopanib in Patients with von Hippel-Lindau Disease: A Single-Arm, Single-Centre, Phase 2 Trial. Lancet Oncol. 2018;19:1351–1359. doi: 10.1016/S1470-2045(18)30487-X. PubMed DOI PMC
Zhu W., Li Y., Zhao D., Li H., Zhang W., Xu J., Hou J., Feng X., Wang H. Dihydroartemisinin Suppresses Glycolysis of LNCaP Cells by Inhibiting PI3K/AKT Pathway and Downregulating HIF-1α Expression. Life Sci. 2019;233:116730. doi: 10.1016/j.lfs.2019.116730. PubMed DOI
Hao L.-S., Liu Q., Tian C., Zhang D.-X., Wang B., Zhou D.-X., Li Z.-P., Yuan Z.-X. Correlation and Expression Analysis of Hypoxia-inducible Factor 1α, Glucose Transporter 1 and Lactate Dehydrogenase 5 in Human Gastric Cancer. Oncol. Lett. 2019;18:1431–1441. doi: 10.3892/ol.2019.10457. PubMed DOI PMC
Zhao H., Jiang H., Li Z., Zhuang Y., Liu Y., Zhou S., Xiao Y., Xie C., Zhou F., Zhou Y. 2-Methoxyestradiol Enhances Radiosensitivity in Radioresistant Melanoma MDA-MB-435R Cells by Regulating Glycolysis via HIF-1α/PDK1 Axis. Int. J. Oncol. 2017;50:1531–1540. doi: 10.3892/ijo.2017.3924. PubMed DOI PMC
Ullmann P., Qureshi-Baig K., Rodriguez F., Ginolhac A., Nonnenmacher Y., Ternes D., Weiler J., Gäbler K., Bahlawane C., Hiller K., et al. Hypoxia-Responsive MiR-210 Promotes Self-Renewal Capacity of Colon Tumor-Initiating Cells by Repressing ISCU and by Inducing Lactate Production. Oncotarget. 2016;7:65454–65470. doi: 10.18632/oncotarget.11772. PubMed DOI PMC
Gao Y., Yang F., Yang X.-A., Zhang L., Yu H., Cheng X., Xu S., Pan J., Wang K., Li P. Mitochondrial Metabolism Is Inhibited by the HIF1α-MYC-PGC-1β Axis in BRAF V600E Thyroid Cancer. FEBS J. 2019;286:1420–1436. doi: 10.1111/febs.14786. PubMed DOI
Munir R., Lisec J., Swinnen J.V., Zaidi N. Lipid Metabolism in Cancer Cells under Metabolic Stress. Br. J. Cancer. 2019;120:1090–1098. doi: 10.1038/s41416-019-0451-4. PubMed DOI PMC
van der Mijn J.C., Fu L., Khani F., Zhang T., Molina A.M., Barbieri C.E., Chen Q., Gross S.S., Gudas L.J., Nanus D.M. Combined Metabolomics and Genome-Wide Transcriptomics Analyses Show Multiple HIF1α-Induced Changes in Lipid Metabolism in Early Stage Clear Cell Renal Cell Carcinoma. Transl. Oncol. 2020;13:177–185. doi: 10.1016/j.tranon.2019.10.015. PubMed DOI PMC
Melone M.A.B., Valentino A., Margarucci S., Galderisi U., Giordano A., Peluso G. The Carnitine System and Cancer Metabolic Plasticity. Cell Death Dis. 2018;9:228. doi: 10.1038/s41419-018-0313-7. PubMed DOI PMC
Hashimoto N., Nagano H., Tanaka T. The Role of Tumor Suppressor P53 in Metabolism and Energy Regulation, and Its Implication in Cancer and Lifestyle-Related Diseases. Endocr. J. 2019;66:485–496. doi: 10.1507/endocrj.EJ18-0565. PubMed DOI
Moriyama H., Moriyama M., Ozawa T., Tsuruta D., Iguchi T., Tamada S., Nakatani T., Nakagawa K., Hayakawa T. Notch Signaling Enhances Stemness by Regulating Metabolic Pathways Through Modifying P53, NF-ΚB, and HIF-1α. Stem Cells Dev. 2018;27:935–947. doi: 10.1089/scd.2017.0260. PubMed DOI
Nakajima K., Kawashima I., Koshiisi M., Kumagai T., Suzuki M., Suzuki J., Mitsumori T., Kirito K. Glycolytic Enzyme Hexokinase II Is a Putative Therapeutic Target in B-Cell Malignant Lymphoma. Exp. Hematol. 2019;78:46–55. doi: 10.1016/j.exphem.2019.09.023. PubMed DOI
Lei R., Shen J., Zhang S., Liu A., Chen X., Wang Y., Sun J., Dai S., Xu J. Inactivating the Ubiquitin Ligase Parkin Suppresses Cell Proliferation and Induces Apoptosis in Human Keloids. J. Cell. Physiol. 2019;234:16601–16608. doi: 10.1002/jcp.28332. PubMed DOI
Ramos H., Calheiros J., Almeida J., Barcherini V., Santos S., Carvalho A.T.P., Santos M.M.M., Saraiva L. SLMP53-1 Inhibits Tumor Cell Growth through Regulation of Glucose Metabolism and Angiogenesis in a P53-Dependent Manner. Int. J. Mol. Sci. 2020;21:596. doi: 10.3390/ijms21020596. PubMed DOI PMC
Kim S.H., Choi S.I., Won K.Y., Lim S.-J. Distinctive Interrelation of P53 with SCO2, COX, and TIGAR in Human Gastric Cancer. Pathol. Res. Pract. 2016;212:904–910. doi: 10.1016/j.prp.2016.07.014. PubMed DOI
Liu M., Hu Y., Lu S., Lu M., Li J., Chang H., Jia H., Zhou M., Ren F., Zhong J. IC261, a Specific Inhibitor of CK1δ/ε, Promotes Aerobic Glycolysis through P53-Dependent Mechanisms in Colon Cancer. Int. J. Biol. Sci. 2020;16:882–892. doi: 10.7150/ijbs.40960. PubMed DOI PMC
Gandhi N., Das G.M. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells. 2019;8:E89. doi: 10.3390/cells8020089. PubMed DOI PMC
He W., Xu Z., Song D., Zhang H., Li B., Gao L., Zhang Y., Feng Q., Yu D., Hu L., et al. Antitumor Effects of Rafoxanide in Diffuse Large B Cell Lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun Pathways. Life Sci. 2020;243:117249. doi: 10.1016/j.lfs.2019.117249. PubMed DOI
Zhou X., Yang X., Sun X., Xu X., Li X., Guo Y., Wang J., Li X., Yao L., Wang H., et al. Effect of PTEN Loss on Metabolic Reprogramming in Prostate Cancer Cells. Oncol. Lett. 2019;17:2856–2866. doi: 10.3892/ol.2019.9932. PubMed DOI PMC
Phadngam S., Castiglioni A., Ferraresi A., Morani F., Follo C., Isidoro C. PTEN Dephosphorylates AKT to Prevent the Expression of GLUT1 on Plasmamembrane and to Limit Glucose Consumption in Cancer Cells. Oncotarget. 2016;7:84999–85020. doi: 10.18632/oncotarget.13113. PubMed DOI PMC
Ryu M.J., Han J., Kim S.J., Lee M.J., Ju X., Lee Y.L., Son J.H., Cui J., Jang Y., Chung W., et al. PTEN/AKT Signaling Mediates Chemoresistance in Refractory Acute Myeloid Leukemia through Enhanced Glycolysis. Oncol. Rep. 2019;42:2149–2158. doi: 10.3892/or.2019.7308. PubMed DOI
Wu Q., Li Z., Liu Q. An Important Role of SREBP-1 in HBV and HCV Co-Replication Inhibition by PTEN. Virology. 2018;520:94–102. doi: 10.1016/j.virol.2018.05.011. PubMed DOI
Kachaylo E., Tschuor C., Calo N., Borgeaud N., Ungethüm U., Limani P., Piguet A.-C., Dufour J.-F., Foti M., Graf R., et al. PTEN Down-Regulation Promotes β-Oxidation to Fuel Hypertrophic Liver Growth After Hepatectomy in Mice. Hepatol. Baltim. Md. 2017;66:908–921. doi: 10.1002/hep.29226. PubMed DOI
Chen C.-Y., Chen J., He L., Stiles B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018;9:338. doi: 10.3389/fendo.2018.00338. PubMed DOI PMC
Momcilovic M., Shackelford D.B. Targeting LKB1 in Cancer—Exposing and Exploiting Vulnerabilities. Br. J. Cancer. 2015;113:574–584. doi: 10.1038/bjc.2015.261. PubMed DOI PMC
Ciccarese F., Zulato E., Indraccolo S. LKB1/AMPK Pathway and Drug Response in Cancer: A Therapeutic Perspective. Oxid. Med. Cell. Longev. 2019;2019:8730816. doi: 10.1155/2019/8730816. PubMed DOI PMC
Faubert B., Vincent E.E., Griss T., Samborska B., Izreig S., Svensson R.U., Mamer O.A., Avizonis D., Shackelford D.B., Shaw R.J., et al. Loss of the Tumor Suppressor LKB1 Promotes Metabolic Reprogramming of Cancer Cells via HIF-1α. Proc. Natl. Acad. Sci. USA. 2014;111:2554–2559. doi: 10.1073/pnas.1312570111. PubMed DOI PMC
Parker S.J., Svensson R.U., Divakaruni A.S., Lefebvre A.E., Murphy A.N., Shaw R.J., Metallo C.M. LKB1 Promotes Metabolic Flexibility in Response to Energy Stress. Metab. Eng. 2017;43:208–217. doi: 10.1016/j.ymben.2016.12.010. PubMed DOI PMC
Endo H., Owada S., Inagaki Y., Shida Y., Tatemichi M. Glucose Starvation Induces LKB1-AMPK-Mediated MMP-9 Expression in Cancer Cells. Sci. Rep. 2018;8:10122. doi: 10.1038/s41598-018-28074-w. PubMed DOI PMC
Cho J., Lee J., Kim J., Kim S.T., Lee S., Kim S.Y., Ha S.Y., Park C.-K., Lim H.Y. Loss of Tuberous Sclerosis Complex 2 (TSC2) as a Predictive Biomarker of Response to MTOR Inhibitor Treatment in Patients with Hepatocellular Carcinoma. Transl. Oncol. 2016;9:466–471. doi: 10.1016/j.tranon.2016.08.009. PubMed DOI PMC
Huynh H., Hao H.-X., Chan S.L., Chen D., Ong R., Soo K.C., Pochanard P., Yang D., Ruddy D., Liu M., et al. Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to MTORC1 Inhibitor Everolimus. Mol. Cancer Ther. 2015;14:1224–1235. doi: 10.1158/1535-7163.MCT-14-0768. PubMed DOI
Jan C.-I., Tsai M.-H., Chiu C.-F., Huang Y.-P., Liu C.J., Chang N.W. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer. Int. J. Biol. Sci. 2016;12:786–798. doi: 10.7150/ijbs.13851. PubMed DOI PMC
Fan C.-S., Chen W.-S., Chen L.-L., Chen C.-C., Hsu Y.-T., Chua K.V., Wang H.-D., Huang T.-S. Osteopontin–Integrin Engagement Induces HIF-1α–TCF12-Mediated Endothelial-Mesenchymal Transition to Exacerbate Colorectal Cancer. Oncotarget. 2017;9:4998–5015. doi: 10.18632/oncotarget.23578. PubMed DOI PMC
Mossmann D., Park S., Hall M.N. MTOR Signalling and Cellular Metabolism Are Mutual Determinants in Cancer. Nat. Rev. Cancer. 2018;18:744–757. doi: 10.1038/s41568-018-0074-8. PubMed DOI
Chen J.-F., Wu P., Xia R., Yang J., Huo X.-Y., Gu D.-Y., Tang C.-J., De W., Yang F. STAT3-Induced LncRNA HAGLROS Overexpression Contributes to the Malignant Progression of Gastric Cancer Cells via MTOR Signal-Mediated Inhibition of Autophagy. Mol. Cancer. 2018;17:6. doi: 10.1186/s12943-017-0756-y. PubMed DOI PMC
Mele L., la Noce M., Paino F., Regad T., Wagner S., Liccardo D., Papaccio G., Lombardi A., Caraglia M., Tirino V., et al. Glucose-6-Phosphate Dehydrogenase Blockade Potentiates Tyrosine Kinase Inhibitor Effect on Breast Cancer Cells through Autophagy Perturbation. J. Exp. Clin. Cancer Res. CR. 2019;38:160. doi: 10.1186/s13046-019-1164-5. PubMed DOI PMC
Carroll P.A., Freie B.W., Mathsyaraja H., Eisenman R.N. The MYC Transcription Factor Network: Balancing Metabolism, Proliferation and Oncogenesis. Front. Med. 2018;12:412–425. doi: 10.1007/s11684-018-0650-z. PubMed DOI PMC
Matés J.M., Di Paola F.J., Campos-Sandoval J.A., Mazurek S., Márquez J. Therapeutic Targeting of Glutaminolysis as an Essential Strategy to Combat Cancer. Semin. Cell Dev. Biol. 2020;98:34–43. doi: 10.1016/j.semcdb.2019.05.012. PubMed DOI
Katayama R., Lovly C.M., Shaw A.T. Therapeutic Targeting of Anaplastic Lymphoma Kinase in Lung Cancer: A Paradigm for Precision Cancer Medicine. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:2227–2235. doi: 10.1158/1078-0432.CCR-14-2791. PubMed DOI PMC
Gouw A.M., Margulis K., Liu N.S., Raman S.J., Mancuso A., Toal G.G., Tong L., Mosley A., Hsieh A.L., Sullivan D.K., et al. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab. 2019;30:556–572. doi: 10.1016/j.cmet.2019.07.012. PubMed DOI PMC
Robinson N.J., Schiemann W.P. Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers. 2022;14:808. doi: 10.3390/cancers14030808. PubMed DOI PMC
Koh C.M., Khattar E., Leow S.C., Liu C.Y., Muller J., Ang W.X., Li Y., Franzoso G., Li S., Guccione E., et al. Telomerase Regulates MYC-Driven Oncogenesis Independent of Its Reverse Transcriptase Activity. J. Clin. Investig. 2015;125:2109–2122. doi: 10.1172/JCI79134. PubMed DOI PMC
Pupo E., Avanzato D., Middonti E., Bussolino F., Lanzetti L. KRAS-Driven Metabolic Rewiring Reveals Novel Actionable Targets in Cancer. Front. Oncol. 2019;9:848. doi: 10.3389/fonc.2019.00848. PubMed DOI PMC
Santana-Codina N., Roeth A.A., Zhang Y., Yang A., Mashadova O., Asara J.M., Wang X., Bronson R.T., Lyssiotis C.A., Ying H., et al. Oncogenic KRAS Supports Pancreatic Cancer through Regulation of Nucleotide Synthesis. Nat. Commun. 2018;9:4945. doi: 10.1038/s41467-018-07472-8. PubMed DOI PMC
Kimmelman A.C. Metabolic Dependencies in RAS-Driven Cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:1828–1834. doi: 10.1158/1078-0432.CCR-14-2425. PubMed DOI PMC
Frontiers|Macropinocytosis: A Metabolic Adaptation to Nutrient Stress in Cancer|Endocrinology. [(accessed on 24 January 2022)]. Available online: https://www.frontiersin.org/articles/10.3389/fendo.2017.00261/full. PubMed DOI PMC
Bernfeld E., Foster D.A. Glutamine as an Essential Amino Acid for KRas-Driven Cancer Cells. Trends Endocrinol. Metab. TEM. 2019;30:357–368. doi: 10.1016/j.tem.2019.03.003. PubMed DOI
Makinoshima H., Takita M., Saruwatari K., Umemura S., Obata Y., Ishii G., Matsumoto S., Sugiyama E., Ochiai A., Abe R., et al. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (MTOR) Axis Is Responsible for Aerobic Glycolysis Mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-Mutated Lung Adenocarcinoma. J. Biol. Chem. 2015;290:17495–17504. doi: 10.1074/jbc.M115.660498. PubMed DOI PMC
Min H.-Y., Lee H.-Y. Oncogene-Driven Metabolic Alterations in Cancer. Biomol. Ther. 2018;26:45–56. doi: 10.4062/biomolther.2017.211. PubMed DOI PMC
Zhang J., Song F., Zhao X., Jiang H., Wu X., Wang B., Zhou M., Tian M., Shi B., Wang H., et al. EGFR Modulates Monounsaturated Fatty Acid Synthesis through Phosphorylation of SCD1 in Lung Cancer. Mol. Cancer. 2017;16:127. doi: 10.1186/s12943-017-0704-x. PubMed DOI PMC
Ma Y., Yu C., Mohamed E.M., Shao H., Wang L., Sundaresan G., Zweit J., Idowu M., Fang X. A Causal Link from ALK to Hexokinase II Overexpression and Hyperactive Glycolysis in EML4-ALK-Positive Lung Cancer. Oncogene. 2016;35:6132–6142. doi: 10.1038/onc.2016.150. PubMed DOI PMC
Zhu H., Blake S., Kusuma F.K., Pearson R.B., Kang J., Chan K.T. Oncogene-Induced Senescence: From Biology to Therapy. Mech. Ageing Dev. 2020;187:111229. doi: 10.1016/j.mad.2020.111229. PubMed DOI
Liu X., Ding J., Meng L. Oncogene-Induced Senescence: A Double Edged Sword in Cancer. Acta Pharmacol. Sin. 2018;39:1553–1558. doi: 10.1038/aps.2017.198. PubMed DOI PMC
DeCensi A., Puntoni M., Goodwin P., Cazzaniga M., Gennari A., Bonanni B., Gandini S. Metformin and Cancer Risk in Diabetic Patients: A Systematic Review and Meta-Analysis. Cancer Prev. Res. 2010;3:1451–1461. doi: 10.1158/1940-6207.CAPR-10-0157. PubMed DOI
Andronesi O.C., Arrillaga-Romany I.C., Ly K.I., Bogner W., Ratai E.M., Reitz K., Iafrate A.J., Dietrich J., Gerstner E.R., Chi A.S., et al. Pharmacodynamics of Mutant-IDH1 Inhibitors in Glioma Patients Probed by in Vivo 3D MRS Imaging of 2-Hydroxyglutarate. Nat. Commun. 2018;9:1474. doi: 10.1038/s41467-018-03905-6. PubMed DOI PMC
Basu B., Dean E., Puglisi M., Greystoke A., Ong M., Burke W., Cavallin M., Bigley G., Womack C., Harrington E.A., et al. First-in-Human Pharmacokinetic and Pharmacodynamic Study of the Dual m-TORC 1/2 Inhibitor AZD2014. Clin. Cancer Res. 2015;21:3412–3419. doi: 10.1158/1078-0432.CCR-14-2422. PubMed DOI PMC
Graham L., Banda K., Torres A., Carver B.S., Chen Y., Pisano K., Shelkey G., Curley T., Scher H.I., Lotan T.L., et al. A Phase II Study of the Dual MTOR Inhibitor MLN0128 in Patients with Metastatic Castration Resistant Prostate Cancer. Investig. New Drugs. 2018;36:458–467. doi: 10.1007/s10637-018-0578-9. PubMed DOI PMC
Mueller C., Al-Batran S., Jaeger E., Schmidt B., Bausch M., Unger C., Sethuraman N. A Phase IIa Study of PEGylated Glutaminase (PEG-PGA) plus 6-Diazo-5-Oxo-L-Norleucine (DON) in Patients with Advanced Refractory Solid Tumors. J. Clin. Oncol. 2008;26:2533. doi: 10.1200/jco.2008.26.15_suppl.2533. DOI
Meric-Bernstam F., Lee R.J., Carthon B.C., Iliopoulos O., Mier J.W., Patel M.R., Tannir N.M., Owonikoko T.K., Haas N.B., Voss M.H., et al. CB-839, a Glutaminase Inhibitor, in Combination with Cabozantinib in Patients with Clear Cell and Papillary Metastatic Renal Cell Cancer (MRCC): Results of a Phase I Study. J. Clin. Oncol. 2019;37:549. doi: 10.1200/JCO.2019.37.7_suppl.549. DOI
Zhou Y., Xu Q., Shang J., Lu L., Chen G. Crocin Inhibits the Migration, Invasion, and Epithelial-mesenchymal Transition of Gastric Cancer Cells via MiR-320/KLF5/HIF-1α Signaling. J. Cell. Physiol. 2019;234:17876–17885. doi: 10.1002/jcp.28418. PubMed DOI
Liu T., Zhao L., Zhang Y., Chen W., Liu D., Hou H., Ding L., Li X. Ginsenoside 20(S)-Rg3 Targets HIF-1α to Block Hypoxia-Induced Epithelial-Mesenchymal Transition in Ovarian Cancer Cells. PLoS ONE. 2014;9:e103887. doi: 10.1371/journal.pone.0103887. PubMed DOI PMC
Düvel K., Yecies J.L., Menon S., Raman P., Lipovsky A.I., Souza A.L., Triantafellow E., Ma Q., Gorski R., Cleaver S., et al. Activation of a Metabolic Gene Regulatory Network Downstream of MTOR Complex 1. Mol. Cell. 2010;39:171–183. doi: 10.1016/j.molcel.2010.06.022. PubMed DOI PMC
Saxton R.A., Sabatini D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. PubMed DOI PMC
Martini M., De Santis M.C., Braccini L., Gulluni F., Hirsch E. PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Ann. Med. 2014;46:372–383. doi: 10.3109/07853890.2014.912836. PubMed DOI
Li J., Kim S.G., Blenis J. Rapamycin: One Drug, Many Effects. Cell Metab. 2014;19:373–379. doi: 10.1016/j.cmet.2014.01.001. PubMed DOI PMC
Su D.W., Mita M., Mita A.C. The Clinical Pharmacology and Toxicity Profile of Rapalogs. In: Mita M., Mita A., Rowinsky E.K., editors. mTOR Inhibition for Cancer Therapy: Past, Present and Future. Springer; Paris, France: 2016. pp. 161–189.
Meng L., Zheng X.S. Toward Rapamycin Analog (Rapalog)-Based Precision Cancer Therapy. Acta Pharmacol. Sin. 2015;36:1163–1169. doi: 10.1038/aps.2015.68. PubMed DOI PMC
Kwitkowski V.E., Prowell T.M., Ibrahim A., Farrell A.T., Justice R., Mitchell S.S., Sridhara R., Pazdur R. FDA Approval Summary: Temsirolimus as Treatment for Advanced Renal Cell Carcinoma. Oncologist. 2010;15:428–435. doi: 10.1634/theoncologist.2009-0178. PubMed DOI PMC
Jurczak W., Ramanathan S., Giri P., Romano A., Mocikova H., Clancy J., Lechuga M., Casey M., Boni J., Giza A., et al. Comparison of Two Doses of Intravenous Temsirolimus in Patients with Relapsed/Refractory Mantle Cell Lymphoma. Leuk. Lymphoma. 2018;59:670–678. doi: 10.1080/10428194.2017.1357175. PubMed DOI
Hasskarl J. Everolimus. In: Martens U.M., editor. Small Molecules in Oncology. Volume 211. Springer International Publishing; Cham, Switzerland: 2018. pp. 101–123. Recent Results in Cancer Research.
Armstrong A.J., Shen T., Halabi S., Kemeny G., Bitting R.L., Kartcheske P., Embree E., Morris K., Winters C., Jaffe T., et al. A Phase II Trial of Temsirolimus in Men With Castration-Resistant Metastatic Prostate Cancer. Clin. Genitourin. Cancer. 2013;11:397–406. doi: 10.1016/j.clgc.2013.05.007. PubMed DOI
Ohtsu A., Ajani J.A., Bai Y.-X., Bang Y.-J., Chung H.-C., Pan H.-M., Sahmoud T., Shen L., Yeh K.-H., Chin K., et al. Everolimus for Previously Treated Advanced Gastric Cancer: Results of the Randomized, Double-Blind, Phase III GRANITE-1 Study. J. Clin. Oncol. 2013;31:3935–3943. doi: 10.1200/JCO.2012.48.3552. PubMed DOI PMC
Du L., Li X., Zhen L., Chen W., Mu L., Zhang Y., Song A. Everolimus Inhibits Breast Cancer Cell Growth through PI3K/AKT/MTOR Signaling Pathway. Mol. Med. Rep. 2018;17:7163–7169. doi: 10.3892/mmr.2018.8769. PubMed DOI PMC
Chui M.H., Kjaer S.K., Frederiksen K., Hannibal C.G., Wang T.-L., Vang R., Shih I.-M. BRAF V600E -Mutated Ovarian Serous Borderline Tumors Are at Relatively Low Risk for Progression to Serous Carcinoma. Oncotarget. 2019;10:6870–6878. doi: 10.18632/oncotarget.27326. PubMed DOI PMC
Singh J.C., Novik Y., Stein S., Volm M., Meyers M., Smith J., Omene C., Speyer J., Schneider R., Jhaveri K., et al. Phase 2 Trial of Everolimus and Carboplatin Combination in Patients with Triple Negative Metastatic Breast Cancer. Breast Cancer Res. 2014;16:3389. doi: 10.1186/bcr3634. PubMed DOI PMC
Zhang H., Dou J., Yu Y., Zhao Y., Fan Y., Cheng J., Xu X., Liu W., Guan S., Chen Z., et al. MTOR ATP-Competitive Inhibitor INK128 Inhibits Neuroblastoma Growth via Blocking MTORC Signaling. Apoptosis. 2015;20:50–62. doi: 10.1007/s10495-014-1066-0. PubMed DOI PMC
Zhang S., Song X., Cao D., Xu Z., Fan B., Che L., Hu J., Chen B., Dong M., Pilo M.G., et al. Pan-MTOR Inhibitor MLN0128 Is Effective against Intrahepatic Cholangiocarcinoma in Mice. J. Hepatol. 2017;67:1194–1203. doi: 10.1016/j.jhep.2017.07.006. PubMed DOI PMC
Voss M.H., Gordon M.S., Mita M., Rini B., Makker V., Macarulla T., Smith D.C., Cervantes A., Puzanov I., Pili R., et al. Phase 1 Study of MTORC1/2 Inhibitor Sapanisertib (TAK-228) in Advanced Solid Tumours, with an Expansion Phase in Renal, Endometrial or Bladder Cancer. Br. J. Cancer. 2020;123:1590–1598. doi: 10.1038/s41416-020-01041-x. PubMed DOI PMC
Chresta C.M., Davies B.R., Hickson I., Harding T., Cosulich S., Critchlow S.E., Vincent J.P., Ellston R., Jones D., Sini P., et al. AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In Vitro and In Vivo Antitumor Activity. Cancer Res. 2010;70:288–298. doi: 10.1158/0008-5472.CAN-09-1751. PubMed DOI
Pike K.G., Malagu K., Hummersone M.G., Menear K.A., Duggan H.M.E., Gomez S., Martin N.M.B., Ruston L., Pass S.L., Pass M. Optimization of Potent and Selective Dual MTORC1 and MTORC2 Inhibitors: The Discovery of AZD8055 and AZD2014. Bioorg. Med. Chem. Lett. 2013;23:1212–1216. doi: 10.1016/j.bmcl.2013.01.019. PubMed DOI
Benjamin D., Colombi M., Moroni C., Hall M.N. Rapamycin Passes the Torch: A New Generation of MTOR Inhibitors. Nat. Rev. Drug Discov. 2011;10:868–880. doi: 10.1038/nrd3531. PubMed DOI
Sparks C.A., Guertin D.A. Targeting MTOR: Prospects for MTOR Complex 2 Inhibitors in Cancer Therapy. Oncogene. 2010;29:3733–3744. doi: 10.1038/onc.2010.139. PubMed DOI PMC
Janes M.R., Limon J.J., So L., Chen J., Lim R.J., Chavez M.A., Vu C., Lilly M.B., Mallya S., Ong S.T., et al. Effective and Selective Targeting of Leukemia Cells Using a TORC1/2 Kinase Inhibitor. Nat. Med. 2010;16:205–213. doi: 10.1038/nm.2091. PubMed DOI PMC
Asahina H., Nokihara H., Yamamoto N., Yamada Y., Tamura Y., Honda K., Seki Y., Tanabe Y., Shimada H., Shi X., et al. Safety and Tolerability of AZD8055 in Japanese Patients with Advanced Solid Tumors; a Dose-Finding Phase I Study. Investig. New Drugs. 2013;31:677–684. doi: 10.1007/s10637-012-9860-4. PubMed DOI
Eyre T.A., Hildyard C., Hamblin A., Ali A.S., Houlton A., Hopkins L., Royston D., Linton K.M., Pettitt A., Rule S., et al. A Phase II Study to Assess the Safety and Efficacy of the Dual MTORC1/2 Inhibitor Vistusertib in Relapsed, Refractory DLBCL. Hematol. Oncol. 2019;37:352–359. doi: 10.1002/hon.2662. PubMed DOI
Slotkin E.K., Patwardhan P.P., Vasudeva S.D., de Stanchina E., Tap W.D., Schwartz G.K. MLN0128, an ATP-Competitive MTOR Kinase Inhibitor with Potent In Vitro and In Vivo Antitumor Activity, as Potential Therapy for Bone and Soft-Tissue Sarcoma. Mol. Cancer Ther. 2015;14:395–406. doi: 10.1158/1535-7163.MCT-14-0711. PubMed DOI PMC
Badawi M., Kim J., Dauki A., Sutaria D., Motiwala T., Reyes R., Wani N., Kolli S., Jiang J., Coss C.C., et al. CD44 Positive and Sorafenib Insensitive Hepatocellular Carcinomas Respond to the ATP-Competitive MTOR Inhibitor INK128. Oncotarget. 2018;9:26032–26045. doi: 10.18632/oncotarget.25430. PubMed DOI PMC
Zhou H.-Y., Huang S.-L. Current Development of the Second Generation of MTOR Inhibitors as Anticancer Agents. Chin. J. Cancer. 2013;32:8–18. doi: 10.5732/cjc.011.10281. PubMed DOI PMC
Bresin A., Cristofoletti C., Caprini E., Cantonetti M., Monopoli A., Russo G., Narducci M.G. Preclinical Evidence for Targeting PI3K/MTOR Signaling with Dual-Inhibitors as a Therapeutic Strategy against Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2020;140:1045–1053. doi: 10.1016/j.jid.2019.08.454. PubMed DOI
Hu X., Xia M., Wang J., Yu H., Chai J., Zhang Z., Sun Y., Su J., Sun L. Dual PI3K/MTOR Inhibitor PKI-402 Suppresses the Growth of Ovarian Cancer Cells by Degradation of Mcl-1 through Autophagy. Biomed. Pharmacother. 2020;129:110397. doi: 10.1016/j.biopha.2020.110397. PubMed DOI
Wu Y.-Y., Wu H.-C., Wu J.-E., Huang K.-Y., Yang S.-C., Chen S.-X., Tsao C.-J., Hsu K.-F., Chen Y.-L., Hong T.-M. The Dual PI3K/MTOR Inhibitor BEZ235 Restricts the Growth of Lung Cancer Tumors Regardless of EGFR Status, as a Potent Accompanist in Combined Therapeutic Regimens. J. Exp. Clin. Cancer Res. 2019;38:282. doi: 10.1186/s13046-019-1282-0. PubMed DOI PMC
Rubinstein M.M., Hyman D.M., Caird I., Won H., Soldan K., Seier K., Iasonos A., Tew W.P., O’Cearbhaill R.E., Grisham R.N., et al. Phase 2 Study of LY3023414 in Patients with Advanced Endometrial Cancer Harboring Activating Mutations in the PI3K Pathway. Cancer. 2020;126:1274–1282. doi: 10.1002/cncr.32677. PubMed DOI PMC
Shapiro G.I., Bell-McGuinn K.M., Molina J.R., Bendell J., Spicer J., Kwak E.L., Pandya S.S., Millham R., Borzillo G., Pierce K.J., et al. First-in-Human Study of PF-05212384 (PKI-587), a Small-Molecule, Intravenous, Dual Inhibitor of PI3K and MTOR in Patients with Advanced Cancer. Clin. Cancer Res. 2015;21:1888–1895. doi: 10.1158/1078-0432.CCR-14-1306. PubMed DOI PMC
Bendell J.C., Varghese A.M., Hyman D.M., Bauer T.M., Pant S., Callies S., Lin J., Martinez R., Wickremsinhe E., Fink A., et al. A First-in-Human Phase 1 Study of LY3023414, an Oral PI3K/MTOR Dual Inhibitor, in Patients with Advanced Cancer. Clin. Cancer Res. 2018;24:3253–3262. doi: 10.1158/1078-0432.CCR-17-3421. PubMed DOI
Salazar R., Garcia-Carbonero R., Libutti S.K., Hendifar A.E., Custodio A., Guimbaud R., Lombard-Bohas C., Ricci S., Klümpen H.-J., Capdevila J., et al. Phase II Study of BEZ235 versus Everolimus in Patients with Mammalian Target of Rapamycin Inhibitor-Naïve Advanced Pancreatic Neuroendocrine Tumors. Oncologist. 2018;23:766-e90. doi: 10.1634/theoncologist.2017-0144. PubMed DOI PMC
Khan K.H., Wong M., Rihawi K., Bodla S., Morganstein D., Banerji U., Molife L.R. Hyperglycemia and Phosphatidylinositol 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin (PI3K/AKT/MTOR) Inhibitors in Phase I Trials: Incidence, Predictive Factors, and Management. Oncologist. 2016;21:855–860. doi: 10.1634/theoncologist.2015-0248. PubMed DOI PMC
Wang D., Meng G., Zheng M., Zhang Y., Chen A., Wu J., Wei J. The Glutaminase-1 Inhibitor 968 Enhances Dihydroartemisinin-Mediated Antitumor Efficacy in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0166423. doi: 10.1371/journal.pone.0166423. PubMed DOI PMC
Wang Z., Liu F., Fan N., Zhou C., Li D., Macvicar T., Dong Q., Bruns C.J., Zhao Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front. Oncol. 2020;10:589508. doi: 10.3389/fonc.2020.589508. PubMed DOI PMC
Li L., Meng Y., Li Z., Dai W., Xu X., Bi X., Bian J. Discovery and Development of Small Molecule Modulators Targeting Glutamine Metabolism. Eur. J. Med. Chem. 2019;163:215–242. doi: 10.1016/j.ejmech.2018.11.066. PubMed DOI
Emadi A., Jun S.A., Tsukamoto T., Fathi A.T., Minden M.D., Dang C.V. Inhibition of Glutaminase Selectively Suppresses the Growth of Primary Acute Myeloid Leukemia Cells with IDH Mutations. Exp. Hematol. 2014;42:247–251. doi: 10.1016/j.exphem.2013.12.001. PubMed DOI
Shukla K., Ferraris D.V., Thomas A.G., Stathis M., Duvall B., Delahanty G., Alt J., Rais R., Rojas C., Gao P., et al. Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-Phenylacetamido-1,2,4-Thiadiazol-2-Yl)Ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors. J. Med. Chem. 2012;55:10551–10563. doi: 10.1021/jm301191p. PubMed DOI PMC
Ren L., Ruiz-Rodado V., Dowdy T., Huang S., Issaq S.H., Beck J., Wang H., Tran Hoang C., Lita A., Larion M., et al. Glutaminase-1 (GLS1) Inhibition Limits Metastatic Progression in Osteosarcoma. Cancer Metab. 2020;8:4. doi: 10.1186/s40170-020-0209-8. PubMed DOI PMC
Earhart R.H., Amato D.J., Chang Y.-C.A., Borden E.C., Shiraki M., Dowd M.E., Comis R.L., Davis T.E., Smith T.J. Phase II Trial of 6-Diazo-5-Oxo-L-Norleucine versus Aclacinomycin-A in Advanced Sarcomas and Mesotheliomas. Investig. New Drugs. 1990;8:113–119. doi: 10.1007/BF00216936. PubMed DOI
Calithera Biosciences, Inc Ph1 Study of the Safety, PK, and PDn of Escalating Oral Doses of the Glutaminase Inhibitor CB-839, as a Single Agent and in Combination with Standard Chemotherapy in Patients with Advanced and/or Treatment-Refractory Solid Tumors; clinicaltrials.gov. [(accessed on 20 January 2022)];2020 Available online: https://clinicaltrials.gov/ct2/show/NCT02071862.
First-in-Human Study of DRP-104 (Sirpiglenastat) as Single Agent and in Combination with Atezolizumab in Patients with Advanced Solid Tumors—No Study Results Posted—ClinicalTrials.Gov. [(accessed on 24 January 2022)]; Available online: https://clinicaltrials.gov/ct2/show/results/NCT04471415.
Hampp C., Borders-Hemphill V., Moeny D.G., Wysowski D.K. Use of Antidiabetic Drugs in the U.S., 2003–2012. Diabetes Care. 2014;37:1367–1374. doi: 10.2337/dc13-2289. PubMed DOI
Torres W., Nava M., Galbán N., Gómez Y., Morillo V., Rojas M., Cano C., Chacín M., D′Marco L., Herazo Y., et al. Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective. Curr. Pharm. Des. 2020;26:4496–4508. doi: 10.2174/1381612826666200716161610. PubMed DOI
Shank J.J., Yang K., Ghannam J., Cabrera L., Johnston C.J., Reynolds R.K., Buckanovich R.J. Metformin Targets Ovarian Cancer Stem Cells In Vitro and In Vivo. Gynecol. Oncol. 2012;127:390–397. doi: 10.1016/j.ygyno.2012.07.115. PubMed DOI PMC
Ugwueze C.V., Ogamba O.J., Young E.E., Onyenekwe B.M., Ezeokpo B.C. Metformin: A Possible Option in Cancer Chemotherapy. Anal. Cell. Pathol. 2020;2020:7180923. doi: 10.1155/2020/7180923. PubMed DOI PMC
Evans J.M.M., Donnelly L.A., Emslie-Smith A.M., Alessi D.R., Morris A.D. Metformin and Reduced Risk of Cancer in Diabetic Patients. BMJ. 2005;330:1304–1305. doi: 10.1136/bmj.38415.708634.F7. PubMed DOI PMC
Yu H., Zhong X., Gao P., Shi J., Wu Z., Guo Z., Wang Z., Song Y. The Potential Effect of Metformin on Cancer: An Umbrella Review. Front. Endocrinol. 2019;10:617. doi: 10.3389/fendo.2019.00617. PubMed DOI PMC
Franciosi M., Lucisano G., Lapice E., Strippoli G.F.M., Pellegrini F., Nicolucci A. Metformin Therapy and Risk of Cancer in Patients with Type 2 Diabetes: Systematic Review. PLoS ONE. 2013;8:e71583. doi: 10.1371/journal.pone.0071583. PubMed DOI PMC
Kasznicki J., Sliwinska A., Drzewoski J. Metformin in Cancer Prevention and Therapy. Ann. Transl. Med. 2014;2:57. doi: 10.3978/j.issn.2305-5839.2014.06.01. PubMed DOI PMC
Wu S., Zhang Q., Zhang F., Meng F., Liu S., Zhou R., Wu Q., Li X., Shen L., Huang J., et al. HER2 Recruits AKT1 to Disrupt STING Signalling and Suppress Antiviral Defence and Antitumour Immunity. Nat. Cell Biol. 2019;21:1027–1040. doi: 10.1038/s41556-019-0352-z. PubMed DOI
Sung M., Tan X., Lu B., Golas J., Hosselet C., Wang F., Tylaska L., King L., Zhou D., Dushin R., et al. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1) Mol. Cancer Ther. 2018;17:243–253. doi: 10.1158/1535-7163.MCT-17-0403. PubMed DOI
Tian C., Yuan Z., Xu D., Ding P., Wang T., Zhang L., Jiang Z. Inhibition of Glycolysis by a Novel EGFR/HER2 Inhibitor KU004 Suppresses the Growth of HER2+ Cancer. Exp. Cell Res. 2017;357:211–221. doi: 10.1016/j.yexcr.2017.05.019. PubMed DOI
Chang J., Wang Q., Bhetuwal A., Liu W. Metabolic Pathways Underlying GATA6 Regulating Trastuzumab Resistance in Gastric Cancer Cells Based on Untargeted Metabolomics. Int. J. Med. Sci. 2020;17:3146–3164. doi: 10.7150/ijms.50563. PubMed DOI PMC
Su B., Huang T., Jin Y., Yin H., Qiu H., Yuan X. Apatinib Exhibits Synergistic Effect with Pyrotinib and Reverses Acquired Pyrotinib Resistance in HER2-Positive Gastric Cancer via Stem Cell Factor/c-Kit Signaling and Its Downstream Pathways. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2021;24:352–367. doi: 10.1007/s10120-020-01126-9. PubMed DOI PMC
Wu C.-S., Wei K.-L., Chou J.-L., Lu C.-K., Hsieh C.-C., Lin J.M.J., Deng Y.-F., Hsu W.-T., Wang H.-M.D., Leung C.-H., et al. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer. Int. J. Mol. Sci. 2016;17:E1467. doi: 10.3390/ijms17091467. PubMed DOI PMC
Liu J., Pan C., Guo L., Wu M., Guo J., Peng S., Wu Q., Zuo Q. A New Mechanism of Trastuzumab Resistance in Gastric Cancer: MACC1 Promotes the Warburg Effect via Activation of the PI3K/AKT Signaling Pathway. J. Hematol. Oncol. J. Hematol. Oncol. 2016;9:76. doi: 10.1186/s13045-016-0302-1. PubMed DOI PMC
Wang X., Du Z., Xu T., Wang X., Li W., Gao J., Li J., Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front. Oncol. 2021;11:785111. doi: 10.3389/fonc.2021.785111. PubMed DOI PMC
Grande F., Aiello F., Garofalo A., Neamati N. Identification and Preclinical Evaluation of SC144, a Novel Pyrroloquinoxaline Derivative with Broad-Spectrum Anticancer Activity. Mini-Rev. Med. Chem. 2016;16:644–650. doi: 10.2174/138955751608160307175649. PubMed DOI
Lu T., Tang J., Shrestha B., Heath B.R., Hong L., Lei Y.L., Ljungman M., Neamati N. Up-Regulation of Hypoxia-Inducible Factor Antisense as a Novel Approach to Treat Ovarian Cancer. Theranostics. 2020;10:6959–6976. doi: 10.7150/thno.41792. PubMed DOI PMC
Greenberger L.M., Horak I.D., Filpula D., Sapra P., Westergaard M., Frydenlund H.F., Albæk C., Schrøder H., Ørum H. A RNA Antagonist of Hypoxia-Inducible Factor-1α, EZN-2968, Inhibits Tumor Cell Growth. Mol. Cancer Ther. 2008;7:3598–3608. doi: 10.1158/1535-7163.MCT-08-0510. PubMed DOI
Bin Y.-L., Hu H.-S., Tian F., Wen Z.-H., Yang M.-F., Wu B.-H., Wang L.-S., Yao J., Li D.-F. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front. Oncol. 2022;11:1–14. doi: 10.3389/fonc.2021.745209. PubMed DOI PMC
Lu J., Chen H., He F., You Y., Feng Z., Chen W., Li X., Zhao L. Ginsenoside 20(S)-Rg3 Upregulates HIF-1α-targeting MiR-519a-5p to Inhibit the Warburg Effect in Ovarian Cancer Cells. Clin. Exp. Pharmacol. Physiol. 2020;47:1455–1463. doi: 10.1111/1440-1681.13321. PubMed DOI
Bortner C.D., Cidlowski J.A. Ion Channels and Apoptosis in Cancer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369:20130104. doi: 10.1098/rstb.2013.0104. PubMed DOI PMC
Wulff H., Castle N.A. Therapeutic Potential of KCa3.1 Blockers: Recent Advances and Promising Trends. Expert Rev. Clin. Pharmacol. 2010;3:385–396. doi: 10.1586/ecp.10.11. PubMed DOI PMC
Sontheimer H. An Unexpected Role for Ion Channels in Brain Tumor Metastasis. Exp. Biol. Med. Maywood NJ. 2008;233:779–791. doi: 10.3181/0711-MR-308. PubMed DOI PMC
Turner K.L., Sontheimer H. Cl- and K+ Channels and Their Role in Primary Brain Tumour Biology. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369:20130095. doi: 10.1098/rstb.2013.0095. PubMed DOI PMC
Mamelak A.N., Jacoby D.B. Targeted Delivery of Antitumoral Therapy to Glioma and Other Malignancies with Synthetic Chlorotoxin (TM-601) Expert Opin. Drug Deliv. 2007;4:175–186. doi: 10.1517/17425247.4.2.175. PubMed DOI
Mamelak A.N., Rosenfeld S., Bucholz R., Raubitschek A., Nabors L.B., Fiveash J.B., Shen S., Khazaeli M.B., Colcher D., Liu A., et al. Phase I Single-Dose Study of Intracavitary-Administered Iodine-131-TM-601 in Adults with Recurrent High-Grade Glioma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006;24:3644–3650. doi: 10.1200/JCO.2005.05.4569. PubMed DOI
Hockaday D.C., Shen S., Fiveash J., Raubitschek A., Colcher D., Liu A., Alvarez V., Mamelak A.N. Imaging Glioma Extent with 131I-TM-601. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2005;46:580–586. PubMed
Zuliani V., Rapalli A., Patel M.K., Rivara M. Sodium Channel Blockers: A Patent Review (2010–2014) Expert Opin. Ther. Pat. 2015;25:279–290. doi: 10.1517/13543776.2014.995628. PubMed DOI
Djamgoz M.B.A., Onkal R. Persistent Current Blockers of Voltage-Gated Sodium Channels: A Clinical Opportunity for Controlling Metastatic Disease. Recent Patents Anticancer Drug Discov. 2013;8:66–84. doi: 10.2174/1574892811308010066. PubMed DOI
Vandenberg J.I., Perry M.D., Perrin M.J., Mann S.A., Ke Y., Hill A.P. HERG K(+) Channels: Structure, Function, and Clinical Significance. Physiol. Rev. 2012;92:1393–1478. doi: 10.1152/physrev.00036.2011. PubMed DOI
Fnu G., Weber G.F. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front. Oncol. 2021;11:765329. doi: 10.3389/fonc.2021.765329. PubMed DOI PMC
Szablewski L. Glucose Transporters as Markers of Diagnosis and Prognosis in Cancer Diseases. Oncol. Rev. 2022;16:561. doi: 10.4081/oncol.2022.561. PubMed DOI PMC
Pliszka M., Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers. 2021;13:4184. doi: 10.3390/cancers13164184. PubMed DOI PMC