Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem
PubMed
35765217
PubMed Central
PMC9493410
DOI
10.1177/13524585221102584
Knihovny.cz E-zdroje
- Klíčová slova
- Multiple sclerosis, adverse events, clinical efficacy, extension study, ozanimod, sphingosine 1-phosphate receptor modulators,
- MeSH
- indany * škodlivé účinky MeSH
- lidé MeSH
- následné studie MeSH
- oxadiazoly * škodlivé účinky MeSH
- receptory sfingosin-1-fosfátu MeSH
- recidiva MeSH
- relabující-remitující roztroušená skleróza * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- indany * MeSH
- oxadiazoly * MeSH
- ozanimod MeSH Prohlížeč
- receptory sfingosin-1-fosfátu MeSH
BACKGROUND: Ozanimod, an oral sphingosine 1-phosphate receptor 1 and 5 modulator, is approved in multiple countries for treatment of relapsing forms of MS. OBJECTIVE: To characterize long-term safety and efficacy of ozanimod. METHODS: Patients with relapsing MS who completed a phase 1‒3 ozanimod trial were eligible for an open-label extension study (DAYBREAK) of ozanimod 0.92 mg/d. DAYBREAK began 16 October 2015; cutoff for this interim analysis was 2 February 2021. RESULTS: This analysis included 2494 participants with mean 46.8 (SD 11.9; range 0.033‒62.7) months of ozanimod exposure in DAYBREAK. During DAYBREAK, 2143 patients (85.9%) had treatment-emergent adverse events (TEAEs; similar in nature to those in the parent trials), 298 (11.9%) had a serious TEAE, and 75 (3.0%) discontinued treatment due to TEAEs. Serious infections (2.8%), herpes zoster infections (1.7%), confirmed macular edema cases (0.2%), and cardiac TEAEs (2.8%) were infrequent. Adjusted annualized relapse rate was 0.103 (95% confidence interval, 0.086‒0.123). Over 48 months, 71% of patients remained relapse free. Adjusted mean numbers of new/enlarging T2 lesions/scan and gadolinium-enhancing lesions were low and similar across parent trial treatment subgroups. CONCLUSIONS: This long-term extension of ozanimod trials confirmed a favorable safety/tolerability profile and sustained benefit on clinical and magnetic resonance imaging measures of disease activity.
Bristol Myers Squibb Princeton NJ USA
Mellen Center for MS Treatment and Research Cleveland Clinic Cleveland OH USA
NeuroRx Research and Montréal Neurological Institute McGill University Montréal QC Canada
Vita Salute San Raffaele University and Casa di Cura del Policlinico Milan Italy
Zobrazit více v PubMed
Cohen JA, Arnold DL, Comi G, et al.. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): A randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15(4): 373–381. PubMed
Cohen JA, Comi G, Arnold DL, et al.. Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Mult Scler 2019; 25(9): 1255–1262. PubMed PMC
Cohen JA, Comi G, Selmaj KW, et al.. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol 2019; 18(11): 1021–1033. PubMed
Comi G, Kappos L, Selmaj KW, et al.. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol 2019; 18(11): 1009–1020. PubMed
Selmaj KW, Cohen JA, Comi G, et al.. Ozanimod in relapsing multiple sclerosis: Pooled safety results from the clinical development program. Mult Scler Relat Disord 2021; 51: 102844. PubMed
Sriwastava S, Chaudhary D, Srivastava S, et al.. Progressive multifocal leukoencephalopathy and sphingosine 1-phosphate receptor modulators used in multiple sclerosis: An updated review of literature. J Neurol 2022; 269(3): 1678–1687. PubMed
Guidance for industry: Drug-induced liver injury: Premarketing clinical evaluation. Silver Spring, MD: U.S. Department of Health and Human Services, Food and Drug Administration, 2009.
Moiola L, Barcella V, Benatti S, et al.. The risk of infection in patients with multiple sclerosis treated with disease-modifying therapies: A Delphi consensus statement. Mult Scler 2021; 27(3): 331–346. PubMed
Sharma K, Chaudhary D, Beard K, et al.. A comprehensive review of varicella-zoster virus, herpes simplex virus and cryptococcal infections associated with sphingosine-1-phosphate receptor modulators in multiple sclerosis patients. Mult Scler Relat Disord 2022; 59: 103675. PubMed
Zingaropoli MA, Pasculli P, Iannetta M, et al.. Infectious risk in multiple sclerosis patients treated with disease-modifying therapies: A three-year observational cohort study. Mult Scler J Exp Transl Clin 2022; 8(1): 20552173211065731. PubMed PMC
Cohen JA, Barkhof F, Comi G, et al.. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362: 402–415. PubMed
Kappos L, Bar-Or A, Cree BAC, et al.. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet 2018; 391: 1263–1273. PubMed
Cohen JA, Tenenbaum N, Bhatt A, et al.. Extended treatment with fingolimod for relapsing multiple sclerosis: The 14-year LONGTERMS study results. Ther Adv Neurol Disord 2019; 12: 1756286419878324. PubMed PMC
Arvin AM, Wolinsky JS, Kappos L, et al.. Varicella-zoster virus infections in patients treated with fingolimod: Risk assessment and consensus recommendations for management. JAMA Neurol 2015; 72(1): 31–39. PubMed PMC
Oshima Y, Tanimoto T, Yuji K, et al.. Drug-associated progressive multifocal leukoencephalopathy in multiple sclerosis patients. Mult Scler 2019; 25(8): 1141–1149. PubMed
Patel A, Sul J, Gordon ML, et al.. Progressive multifocal leukoencephalopathy in a patient with progressive multiple sclerosis treated with ocrelizumab monotherapy. JAMA Neurol 2021; 78: 736–740. PubMed PMC
Gerevini S, Capra R, Bertoli D, et al.. Immune profiling of a patient with alemtuzumab-associated progressive multifocal leukoencephalopathy. Mult Scler 2019; 25(8): 1196–1201. PubMed
COVID-19 weekly epidemiological update. Geneva: World Health Organization, 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—-11-may-2021. Accessed June 13, 2022.
Moreno-Torres I, Meca Lallana V, Costa-Frossard L, et al.. Risk and outcomes of COVID-19 in patients with multiple sclerosis. Eur J Neurol 2021; 28(11): 3712–3721. PubMed PMC
Zabalza A, Cárdenas-Robledo S, Tagliani P, et al.. COVID-19 in multiple sclerosis patients: Susceptibility, severity risk factors and serological response. Eur J Neurol 2021; 28(10): 3384–3395. PubMed
World population projections. Dover, DE: Worldometer. https://www.worldometers.info/world-population/world-population-projections/. Accessed June 13, 2022.
Sormani MP, De Rossi N, Schiavetti I, et al.. Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann Neurol 2021; 89(4): 780–789. PubMed PMC
Louapre C, Collongues N, Stankoff B, et al.. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol 2020; 77: 1079–1088. PubMed PMC
Reder AT, Centonze D, Naylor ML, et al.. COVID-19 in patients with multiple sclerosis: Associations with disease-modifying therapies. CNS Drugs 2021; 35(3): 317–330. PubMed PMC
Czarnowska A, Brola W, Zajkowska O, et al.. Clinical course and outcome of SARS-CoV-2 infection in multiple sclerosis patients treated with disease-modifying therapies—the Polish experience. Neurol Neurochir Pol 2021; 55(2): 212–222. PubMed
Salter A, Fox RJ, Newsome SD, et al.. Outcomes and risk factors associated with SARS-CoV-2 infection in a North American registry of patients with multiple sclerosis. JAMA Neurol 2021; 78: 699–708. PubMed PMC
Barzegar M, Mirmosayyeb O, Gajarzadeh M, et al.. COVID-19 among patients with multiple sclerosis: A systematic review. Neurol Neuroimmunol Neuroinflamm 2021; 8: e1001. PubMed PMC
Alping P, Askling J, Burman J, et al.. Cancer risk for fingolimod, natalizumab, and rituximab in MS patients. Ann Neurol 2020; 87: 688–699. PubMed
Kappos L, Li DK, Stuve O, et al.. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: Dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol 2016; 73: 1089–1098. PubMed
Kappos L, Fox RJ, Burcklen M, et al.. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: A randomized clinical trial. JAMA Neurol 2021; 78: 558–567. PubMed PMC
Stamatellos VP, Rigas A, Stamoula E, et al.. S1P receptor modulators in multiple sclerosis: Detecting a potential skin cancer safety signal. Mult Scler Relat Disord 2022; 59. DOI: 10.1016/j.msard.2022.103681. PubMed
Bielsa I, Soria X, Esteve M, et al.. Population-based incidence of basal cell carcinoma in a Spanish Mediterranean area. Br J Dermatol 2009; 161(6): 1341–1346. PubMed
Celić D, Lipozencić J, Jurakić Toncić R, et al.. The incidence of basal cell carcinoma in Croatia: An epidemiological study. Acta Dermatovenerol Croat 2009; 17(2): 108–112. PubMed
de Vries E, Micallef R, Brewster DH, et al.. Population-based estimates of the occurrence of multiple vs first primary basal cell carcinomas in 4 European regions. Arch Dermatol 2012; 148(3): 347–354. PubMed
Muzic JG, Schmitt AR, Wright AC, et al.. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: A population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc 2017; 92(6): 890–898. PubMed PMC
Camós-Carreras A, Alba-Arbalat S, Dotti-Boada M, et al.. Late onset macular oedema in a patient with multiple sclerosis treated with fingolimod. Neuroophthalmology 2021; 45(1): 61–64. PubMed PMC
Zarbin MA, Jampol LM, Jager RD, et al.. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology 2013; 120(7): 1432–1439. PubMed
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci 2016; 21: 1296–1313. PubMed PMC
Calabresi PA, Radue EW, Goodin D, et al.. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2014; 13(6): 545–556. PubMed
Mayzent (package insert). East Hanover, NJ: Novartis Pharmaceuticals, 2021.
Ponvory (package insert). Titusville, NJ: Janssen Pharmaceuticals, 2021.
Gilenya (package insert). East Hanover, NJ: Novartis Pharmaceuticals Corporation, 2019.
Barry B, Erwin AA, Stevens J, et al.. Fingolimod rebound: A review of the clinical experience and management considerations. Neurol Ther 2019; 8(2): 241–250. PubMed PMC
Litwin T, Smoliński Ł, Członkowka A. Substantial disease exacerbation in a patient with relapsing-remitting multiple sclerosis after withdrawal from siponimod. Neurol Neurochir Pol 2018; 52(1): 98–101. PubMed
Bioavailable central nervous system disease-modifying therapies for multiple sclerosis