Bioavailable central nervous system disease-modifying therapies for multiple sclerosis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
38162670
PubMed Central
PMC10755740
DOI
10.3389/fimmu.2023.1290666
Knihovny.cz E-zdroje
- Klíčová slova
- central nervous system, cladribine, fingolimod hydrochloride, multiple sclerosis, ozanimod, ponesimod, siponimod, sphingosine 1 phosphate receptor modulators,
- MeSH
- imunosupresiva MeSH
- kladribin MeSH
- lidé MeSH
- nemoci centrálního nervového systému * MeSH
- relabující-remitující roztroušená skleróza * MeSH
- roztroušená skleróza * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- imunosupresiva MeSH
- kladribin MeSH
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Brain and Mind Centre University of Sydney Sydney NSW Australia
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. . Rising prevalence of multiple sclerosis worldwide: insights from the atlas of ms, third edition. Mult Scler (2020) 26(14):1816–21. doi: 10.1177/1352458520970841 PubMed DOI PMC
Håkansson I. Biomarkers and Disease Activity in Multiple Sclerosis : A Cohort Study on Patients with Clinically Isolated Syndrome and Relapsing Remitting Multiple Sclerosis. Linköping, Sweden: Linköping University Electronic Press; (2019) p. 1–78. Available at: http://liu.diva-portal.org/smash/get/diva2:1358189/PREVIEW01.png. doi: 10.3384/diss.diva-160762 DOI
Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, et al. . Ectrims/ean guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler (2018) 24(2):96–120. doi: 10.1177/1352458517751049 PubMed DOI
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol (2022) 22(12):734–50. doi: 10.1038/s41577-022-00718-z PubMed DOI
Cree BAC, Arnold DL, Chataway J, Chitnis T, Fox RJ, Pozo Ramajo A, et al. . Secondary progressive multiple sclerosis: new insights. Neurology (2021) 97(8):378–88. doi: 10.1212/wnl.0000000000012323 PubMed DOI PMC
Lassmann H. Targets of therapy in progressive ms. Mult Scler (2017) 23(12):1593–9. doi: 10.1177/1352458517729455 PubMed DOI
Correale J, Halfon MJ, Jack D, Rubstein A, Villa A. Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis. Mult Scler Relat Disord (2021) 56:103264. doi: 10.1016/j.msard.2021.103264 PubMed DOI
Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. . Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet (2012) 380(9856):1819–28. doi: 10.1016/S0140-6736(12)61769-3 PubMed DOI
Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. . Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet (2012) 380(9856):1829–39. doi: 10.1016/S0140-6736(12)61768-1 PubMed DOI
Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. . Placebo-controlled phase 3 study of oral bg-12 or glatiramer in multiple sclerosis. N Engl J Med (2012) 367(12):1087–97. doi: 10.1056/NEJMoa1206328 PubMed DOI
Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. . Placebo-controlled phase 3 study of oral bg-12 for relapsing multiple sclerosis. N Engl J Med (2012) 367(12):1098–107. doi: 10.1056/NEJMoa1114287 PubMed DOI
Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. . Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase iii multicenter, double-blind placebo-controlled trial. The copolymer 1 multiple sclerosis study group. Neurology (1995) 45(7):1268–76. doi: 10.1212/wnl.45.7.1268 PubMed DOI
Jacobs L, O'Malley J, Freeman A, Ekes R. Intrathecal interferon reduces exacerbations of multiple sclerosis. Science (1981) 214(4524):1026–8. doi: 10.1126/science.6171035 PubMed DOI
The IFNB Multiple Sclerosis Study Group . Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The ifnb multiple sclerosis study group. Neurology (1993) 43(4):655–61. doi: 10.1212/wnl.43.4.655 PubMed DOI
Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. . Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The multiple sclerosis collaborative research group (Mscrg). Ann Neurol (1996) 39(3):285–94. doi: 10.1002/ana.410390304 PubMed DOI
European Study Group on Interferon beta-1b in Secondary Progressive MS . Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European study group on interferon beta-1b in secondary progressive ms. Lancet (1998) 352(9139):1491–7. doi: 10.1212/wnl.43.4.655 PubMed DOI
Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. . Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. Champs study group. N Engl J Med (2000) 343(13):898–904. doi: 10.1056/nejm200009283431301 PubMed DOI
Panitch H, Miller A, Paty D, Weinshenker B. Interferon beta-1b in secondary progressive ms: results from a 3-year controlled study. Neurology (2004) 63(10):1788–95. doi: 10.1212/01.wnl.0000146958.77317.3e PubMed DOI
Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, et al. . Treatment with interferon beta-1b delays conversion to clinically definite and mcdonald ms in patients with clinically isolated syndromes. Neurology (2006) 67(7):1242–9. doi: 10.1212/01.wnl.0000237641.33768.8d PubMed DOI
Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. . Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (Advance): A randomised, phase 3, double-blind study. Lancet Neurol (2014) 13(7):657–65. doi: 10.1016/s1474-4422(14)70068-7 PubMed DOI
Hartung HP, Gonsette R, König N, Kwiecinski H, Guseo A, Morrissey SP, et al. . Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet (2002) 360(9350):2018–25. doi: 10.1016/s0140-6736(02)12023-x PubMed DOI
Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. . A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med (2006) 354(9):899–910. doi: 10.1056/NEJMoa044397 PubMed DOI
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. . Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med (2017) 376(3):221–34. doi: 10.1056/NEJMoa1601277 PubMed DOI
Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. . Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med (2017) 376(3):209–20. doi: 10.1056/NEJMoa1606468 PubMed DOI
Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. . Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med (2020) 383(6):546–57. doi: 10.1056/NEJMoa1917246 PubMed DOI
O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. . Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med (2011) 365(14):1293–303. doi: 10.1056/NEJMoa1014656 PubMed DOI
Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. . Oral teriflunomide for patients with relapsing multiple sclerosis (Tower): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol (2014) 13(3):247–56. doi: 10.1016/s1474-4422(13)70308-9 PubMed DOI
Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sørensen P, et al. . A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med (2010) 362(5):416–26. doi: 10.1056/NEJMoa0902533 PubMed DOI
Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P, et al. . A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med (2010) 362(5):387–401. doi: 10.1056/NEJMoa0909494 PubMed DOI
Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. . Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (Freedoms ii): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol (2014) 13(6):545–56. doi: 10.1016/s1474-4422(14)70049-3 PubMed DOI
Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. . Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med (2010) 362(5):402–15. doi: 10.1056/NEJMoa0907839 PubMed DOI
Comi G, Kappos L, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. . Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (Sunbeam): A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol (2019) 18(11):1009–20. doi: 10.1016/S1474-4422(19)30239-X PubMed DOI
Cohen JA, Comi G, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. . Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (Radiance): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol (2019) 18(11):1021–33. doi: 10.1016/S1474-4422(19)30238-8 PubMed DOI
Kappos L, Fox RJ, Burcklen M, Freedman MS, Havrdová EK, Hennessy B, et al. . Ponesimod compared with teriflunomide in patients with relapsing multiplesclerosis in the active-comparator phase 3 optimum study: A randomized clinical trial. JAMA Neurol (2021) 78(5):558–67. doi: 10.1001/jamaneurol.2021.0405 PubMed DOI PMC
Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. . Siponimod versus placebo in secondary progressive multiple sclerosis (Expand): A double-blind, randomised, phase 3 study. Lancet (2018) 391(10127):1263–73. doi: 10.1016/s0140-6736(18)30475-6 PubMed DOI
Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol (2021) 268(1):30–44. doi: 10.1007/s00415-019-09421-x PubMed DOI PMC
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol (Bristol England) (2020) 2(1):H1–h18. doi: 10.1530/vb-19-0033 PubMed DOI PMC
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol (2015) 15(9):545–58. doi: 10.1038/nri3871 PubMed DOI
Hochmeister S, Grundtner R, Bauer J, Engelhardt B, Lyck R, Gordon G, et al. . Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol (2006) 65(9):855–65. doi: 10.1097/01.jnen.0000235119.52311.16 PubMed DOI
Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. . Multiple sclerosis. Nat Rev Dis Primers (2018) 4(1):43. doi: 10.1038/s41572-018-0041-4 PubMed DOI
Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, et al. . Clonal expansions of cd8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med (2000) 192(3):393–404. doi: 10.1084/jem.192.3.393 PubMed DOI PMC
Kuenz B, Lutterotti A, Ehling R, Gneiss C, Haemmerle M, Rainer C, et al. . Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PloS One (2008) 3(7):e2559. doi: 10.1371/journal.pone.0002559 PubMed DOI PMC
Park C, Ponath G, Levine-Ritterman M, Bull E, Swanson EC, De Jager PL, et al. . The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions. Acta Neuropathol Commun (2019) 7(1):130. doi: 10.1186/s40478-019-0779-2 PubMed DOI PMC
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron (2022) 110(21):3566–81. doi: 10.1016/j.neuron.2022.10.024 PubMed DOI PMC
Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain (2002) 125(Pt 10):2202–12. doi: 10.1093/brain/awf235 PubMed DOI
Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol (2018) 9:3116. doi: 10.3389/fimmu.2018.03116 PubMed DOI PMC
Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. . Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain (2007) 130(Pt 4):1089–104. doi: 10.1093/brain/awm038 PubMed DOI
MaChado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. . The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident cd8+ T lymphocytes and B cells. Brain (2018) 141(7):2066–82. doi: 10.1093/brain/awy151 PubMed DOI PMC
Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain (2022) 145(10):3363–73. doi: 10.1093/brain/awac233 PubMed DOI
Jain RW, Yong VW. B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol (2022) 22(8):513–24. doi: 10.1038/s41577-021-00652-6 PubMed DOI PMC
Yong VW. Microglia in multiple sclerosis: protectors turn destroyers. Neuron (2022) 110(21):3534–48. doi: 10.1016/j.neuron.2022.06.023 PubMed DOI
Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, et al. . Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol (2022) 22(1):78–88. doi: 10.1016/s1474-4422(22)00289-7 PubMed DOI PMC
Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. . Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm (2022) 9(2):e1139. doi: 10.1212/nxi.0000000000001139 PubMed DOI PMC
Calvi A, Carrasco FP, Tur C, Chard DT, Stutters J, De Angelis F, et al. . Association of slowly expanding lesions on mri with disability in people with aecondary progressive multiple sclerosis. Neurology (2022) 98(17):e1783–e93. doi: 10.1212/wnl.0000000000200144 PubMed DOI
Giedraitiene N, Drukteiniene E, Kizlaitiene R, Cimbalas A, Asoklis R, Kaubrys G. Cognitive decline in multiple sclerosis is related to the progression of retinal atrophy and presence of oligoclonal bands: A 5-year follow-up study. Front Neurol (2021) 12:678735. doi: 10.3389/fneur.2021.678735 PubMed DOI PMC
Wang C, Barnett MH, Yiannikas C, Barton J, Parratt J, You Y, et al. . Lesion activity and chronic demyelination are the major determinants of brain atrophy in ms. Neurol Neuroimmunol Neuroinflamm (2019) 6(5):e593. doi: 10.1212/nxi.0000000000000593 PubMed DOI PMC
Pulizzi A, Rovaris M, Judica E, Sormani MP, Martinelli V, Comi G, et al. . Determinants of disability in multiple sclerosis at various disease stages: A multiparametric magnetic resonance study. Arch Neurol (2007) 64(8):1163–8. doi: 10.1001/archneur.64.8.1163 PubMed DOI
Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng (2013) 6:7. doi: 10.3389/fneng.2013.00007 PubMed DOI PMC
Antel JP, Miron VE. Central nervous system effects of current and emerging multiple sclerosis-directed immuno-therapies. Clin Neurol Neurosurg (2008) 110(9):951–7. doi: 10.1016/j.clineuro.2008.03.021 PubMed DOI
Mavenclad. Rockland, MA: EMD Serono, Inc: (2022).
Mavenclad. Amsterdam, The Netherlands: Merck Europe; (2022).
Giovannoni G, Mathews J. Cladribine tablets for relapsing-remitting multiple sclerosis: A clinician's review. Neurol Ther (2022) 11(2):571–95. doi: 10.1007/s40120-022-00339-7 PubMed DOI PMC
Meuth SG, Bayas A, Kallmann B, Linker R, Rieckmann P, Wattjes MP, et al. . Long-term management of multiple sclerosis patients treated with cladribine tablets beyond year 4. Expert Opin Pharmacother (2022) 23(13):1503–10. doi: 10.1080/14656566.2022.2106783 PubMed DOI
Kearns CM, Blakley RL, Santana VM, Crom WR. Pharmacokinetics of cladribine (2-chlorodeoxyadenosine) in children with acute leukemia. Cancer Res (1994) 54(5):1235–9. PubMed
Liliemark J. The clinical pharmacokinetics of cladribine. Clin Pharmacokinet (1997) 32(2):120–31. doi: 10.2165/00003088-199732020-00003 PubMed DOI
Jørgensen L, Hyrlov KH, Elkjaer ML, Weber AB, Pedersen AE, Svenningsen ÅF, et al. . Cladribine modifies functional properties of microglia. Clin Exp Immunol (2020) 201(3):328–40. doi: 10.1111/cei.13473 PubMed DOI PMC
Singh V, Voss EV, Bénardais K, Stangel M. Effects of 2-chlorodeoxyadenosine (Cladribine) on primary rat microglia. J Neuroimmune Pharmacol (2012) 7(4):939–50. doi: 10.1007/s11481-012-9387-7 PubMed DOI
Aybar F, Julia Perez M, Silvina Marcora M, Eugenia Samman M, Marrodan M, María Pasquini J, et al. . 2-chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. Int Immunopharmacol (2022) 105:108571. doi: 10.1016/j.intimp.2022.108571 PubMed DOI
De Stefano N, Giorgio A, Battaglini M, De Leucio A, Hicking C, Dangond F, et al. . Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler (2018) 24(2):222–6. doi: 10.1177/1352458517690269 PubMed DOI PMC
Rejdak K, Stelmasiak Z, Grieb P. Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients: 10-year observational study. Mult Scler Relat Disord (2019) 27:117–20. doi: 10.1016/j.msard.2018.10.006 PubMed DOI
Gilenya. East Hanover, NJ: Novartis Pharmaceuticals Corporation; (2019).
Gilenya. Dublin, Ireland: Novartis Europharm Limited; (2022).
Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, et al. . Brain penetration of the oral immunomodulatory drug fty720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther (2007) 323(2):469–75. doi: 10.1124/jpet.107.127183 PubMed DOI
Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, et al. . Fty720 (Fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1p1) modulation. Proc Natl Acad Sci USA (2011) 108(2):751–6. doi: 10.1073/pnas.1014154108 PubMed DOI PMC
Tamagnan G, Tavares A, Barret O, Alagille D, Seibyl J, Marek K, et al. . Brain distribution of bzm055, an analog of fingolimod (Fty720), in human. Mult Scler (2012) 18(suppl 4):379.
Zhang J, Zhang ZG, Li Y, Ding X, Shang X, Lu M, et al. . Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiol Dis (2015) 76:57–66. doi: 10.1016/j.nbd.2015.01.006 PubMed DOI
Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm (2011) 8:76. doi: 10.1186/1742-2094-8-76 PubMed DOI PMC
Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, et al. . Fingolimod phosphate attenuates oligomeric amyloid B-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PloS One (2013) 8(4):e61988. doi: 10.1371/journal.pone.0061988 PubMed DOI PMC
Langdon DW, Tomic D, Penner IK, Calabrese P, Cutter G, Häring DA, et al. . Baseline characteristics and effects of fingolimod on cognitive performance in patients with relapsing-remitting multiple sclerosis. Eur J Neurol (2021) 28(12):4135–45. doi: 10.1111/ene.15081 PubMed DOI PMC
Cree BA, Cohen JA, Reder AT, Tomic D, Silva D, Piani Meier D, et al. . Disability improvement as a clinically relevant outcome in clinical trials of relapsing forms of multiple sclerosis. Mult Scler (2021) 27(14):2219–31. doi: 10.1177/13524585211000280 PubMed DOI PMC
Preziosa P, Storelli L, Meani A, Moiola L, Rodegher M, Filippi M, et al. . Effects of fingolimod and natalizumab on brain T1-/T2-weighted and magnetization transfer ratios: A 2-year study. Neurotherapeutics (2021) 18(2):878–88. doi: 10.1007/s13311-020-00997-1 PubMed DOI PMC
Albert C, Mikolajczak J, Liekfeld A, Piper SK, Scheel M, Zimmermann HG, et al. . Fingolimod after a first unilateral episode of acute optic neuritis (Moving) - preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurol (2020) 20(1):75. doi: 10.1186/s12883-020-01645-z PubMed DOI PMC
Zeposia. Utrecht, Netherlands: Celgene Distribution B.V; (2023).
Zeposia. Princeton, NJ, USA: Bristol Myers Squibb; (2023).
Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, et al. . Ozanimod (Rpc1063) is a potent sphingosine-1-phosphate receptor-1 (S1p1 ) and receptor-5 (S1p5 ) agonist with autoimmune disease-modifying activity. Br J Pharmacol (2016) 173(11):1778–92. doi: 10.1111/bph.13476 PubMed DOI PMC
Musella A, Gentile A, Guadalupi L, Rizzo FR, De Vito F, Fresegna D, et al. . Central modulation of selective sphingosine-1-phosphate receptor 1 ameliorates experimental multiple sclerosis. Cells (2020) 9(5):1290. doi: 10.3390/cells9051290 PubMed DOI PMC
Selkirk JV, Yan YG, Ching N, Paget K, Hargreaves R. In vitro assessment of the binding and functional reponses of ozanimod and its plasma metabolites across human sphingosine 1-phosphate receptors. Eur J Pharmacol (2022) 941:175442. doi: 10.1016/j.ejphar.2022.175442 PubMed DOI
Taylor Meadows KR, Selkirk JV, Akhtar MW, Hutton C, Opiteck GJ, Scott FL. Ozanimod (Rpc1063) is potentially neuroprotective through direct cns effects. Mult Scler (2017) 23(suppl 3):624.
Cree BA, Selmaj KW, Steinman L, Comi G, Bar-Or A, Arnold DL, et al. . Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: up to 5 Years of follow-up in the daybreak open-label extension trial. Mult Scler (2022) 28(12):1944–62. doi: 10.1177/13524585221102584 PubMed DOI PMC
Ponvory. Titusville, NJ: Janssen Pharmaceuticals; (2021).
Ponvory. Beerse, Belgium: Janssen-Cilag International NV; (2022).
Fourgeaud L, Le M, Needham A, Ait-Tihyaty M, Lair LL, Breu V, et al. . A central effect of ponesimod on neuroinflammation in a pre-clinical model of multiple sclerosis. Mult Scler (2021) 27(1 suppl):105. doi: 10.1177/13524585211015908 DOI
Kihara Y, Jonnalagadda D, Zhu Y, Ray M, Ngo T, Palmer C, et al. . Ponesimod inhibits astrocyte-mediated neuroinflammation and protects against cingulum demyelination via S1p(1) -selective modulation. FASEB J (2022) 36(2):e22132. doi: 10.1096/fj.202101531R PubMed DOI PMC
Fox R, Kappos L, Burcklen M, Freedman M, Havrdova E, Hennessy B, et al. . Effect on disability measures and msfc in patients with relapsing multiple sclerosis from the phase 3 ponesimod versus teriflunomide optimum study. Mult Scler (2020) 26(suppl 3):216–7.
Mayzent. East Hanover, NJ, USA: Novartis Pharmaceuticals Corporation; (2023).
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, et al. . Siponimod (Baf312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflamm (2016) 13(1):207. doi: 10.1186/s12974-016-0686-4 PubMed DOI PMC
Bigaud M, Rudolph B, Briard E, Beerli C, Schubart A, Gardin A. Siponimod penetrates, distributes and acts on the central nervous system: translational insights. Neurology (2020) 94(15 suppl):3973. PubMed PMC
Tiwari-Woodruff S, Yamate-Morgan H, Sekyi M, Lauderdale K, Hasselmann J, Schubart A. The sphingosine 1-phosphate (S1p) receptor modulator, siponimod decreases oligodendrocyte cell death and axon demyelination in a mouse model of multiple sclerosis. Neurology (2016) 86(16 suppl):I10.011.
Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, et al. . The xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult Scler (2018) 24(11):1421–32. doi: 10.1177/1352458517721355 PubMed DOI
Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, et al. . Increased remyelination and proregenerative microglia under siponimod therapy in mechanistic models. Neurol Neuroimmunol Neuroinflamm (2022) 9(3):e1161. doi: 10.1212/nxi.0000000000001161 PubMed DOI PMC
Colombo E, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G, et al. . Siponimod (Baf312) activates nrf2 while hampering nfκb in human astrocytes, and protects from astrocyte-induced neurodegeneration. Front Immunol (2020) 11:635. doi: 10.3389/fimmu.2020.00635 PubMed DOI PMC
Hundehege P, Cerina M, Eichler S, Thomas C, Herrmann AM, Göbel K, et al. . The next-generation sphingosine-1 receptor modulator baf312 (Siponimod) improves cortical network functionality in focal autoimmune encephalomyelitis. Neural Regener Res (2019) 14(11):1950–60. doi: 10.4103/1673-5374.259622 PubMed DOI PMC
Benedict RHB, Tomic D, Fox R, Cree BAC, Vermersch P, Giovannoni G, et al. . (2019). Siponimod improves cognitive processing speed in patients with secondary progressive multiple sclerosis: expand subgroup analyses, in: Annual meeting of the International MS Cognition Society, Amsterdam, Netherlands, June 6-7, 2019.
Arnold DL, Vermersch P, Cree BAC, Bar-or A, Giovannoni G, Gold R, et al. . Evidence for improved myelination in patients treated with siponimod: results from the phase 3 expand mri substudy. Eur J Neurol (2020) 27(suppl 1):194–5.
Arnold DL, Piani-Meier D, Bar-Or A, Benedict RH, Cree BA, Giovannoni G, et al. . Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: gray matter atrophy and magnetization transfer ratio analyses from the expand phase 3 trial. Mult Scler (2022) 28(10):1526–40. doi: 10.1177/13524585221076717 PubMed DOI PMC
Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. . Oral fingolimod in primary progressive multiple sclerosis (Informs): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet (2016) 387(10023):1075–84. doi: 10.1016/s0140-6736(15)01314-8 PubMed DOI
Cadavid D, Mellion M, Hupperts R, Edwards KR, Calabresi PA, Drulović J, et al. . Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (Synergy): A randomised, placebo-controlled, phase 2 trial. Lancet Neurol (2019) 18(9):845–56. doi: 10.1016/s1474-4422(19)30137-1 PubMed DOI
Cree BAC, Cutter G, Wolinsky JS, Freedman MS, Comi G, Giovannoni G, et al. . Safety and efficacy of md1003 (High-dose biotin) in patients with progressive multiple sclerosis (Spi2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol (2020) 19(12):988–97. doi: 10.1016/s1474-4422(20)30347-1 PubMed DOI
Cree B. (2021). Elezanumab did not outperform placebo in progressive and relapsing ms, in: Ectrims 2021 Peer-Reviewed Conference Report, Dusseldorf, Germany. p. 9. Medicom Medical Publishers.
Krämer J, Wiendl H. What have failed, interrupted, and withdrawn antibody therapies in multiple sclerosis taught us? Neurotherapeutics (2022) 19(3):785–807. doi: 10.1007/s13311-022-01246-3 PubMed DOI PMC
U.S. Food and Drug Administration . Fda Roundup: December 30, 2022. U.S. Food and Drug Administration; (2022). Available at: https://www.fda.gov/news-events/press-announcements/fda-roundup-december-30-2022.
Sahraian MA, Mohyeddin Bonab M, Baghbanian SM, Owji M, Naser Moghadasi A. Therapeutic use of intrathecal mesenchymal stem cells in patients with multiple sclerosis: A pilot study with booster injection. Immunol Invest (2019) 48(2):160–8. doi: 10.1080/08820139.2018.1504301 PubMed DOI
Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. . Safety and efficacy of tolebrutinib, an oral brain-penetrant btk inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol (2021) 20(9):729–38. doi: 10.1016/s1474-4422(21)00237-4 PubMed DOI PMC
Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK, et al. . Epstein-barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight (2018) 3(22):e124714. doi: 10.1172/jci.insight.124714 PubMed DOI PMC
Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, et al. . Epstein-barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler (2014) 20(11):1541–4. doi: 10.1177/1352458514521888 PubMed DOI PMC
Owens TD, Smith PF, Redfern A, Xing Y, Shu J, Karr DE, et al. . Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of btk inhibitor tolebrutinib (Prn2246, sar442168). Clin Transl Sci (2022) 15(2):442–50. doi: 10.1111/cts.13162 PubMed DOI PMC
Noteboom S, Arnold D, Bar-Or A, Pender M, Hodgkinson S, Broadley S, et al. . Long-term disability improvement during ebv-targeted T-cell immunotherapy ata188 is related to brain volume change and normalised magnetisation transfer ratio in T2 lesions. Mult Scler (2022) 28(3 suppl):1005–6. doi: 10.1177/13524585221126910 DOI
Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, et al. . Placebo-controlled trial of an oral btk inhibitor in multiple sclerosis. N Engl J Med (2019) 380(25):2406–17. doi: 10.1056/NEJMoa1901981 PubMed DOI
Hartung HP, Derfuss T, Cree BA, Sormani MP, Selmaj K, Stutters J, et al. . Efficacy and safety of temelimab in multiple sclerosis: results of a randomized phase 2b and extension study. Mult Scler (2021) 28(3):429–40. doi: 10.1177/13524585211024997 PubMed DOI
Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F, et al. . Clemastine fumarate as a remyelinating therapy for multiple sclerosis (Rebuild): A randomised, controlled, double-blind, crossover trial. Lancet (2017) 390(10111):2481–9. doi: 10.1016/s0140-6736(17)32346-2 PubMed DOI
Boffa G, Massacesi L, Inglese M, Mariottini A, Capobianco M, Lucia M, et al. . Long-term clinical outcomes of hematopoietic stem cell transplantation in multiple sclerosis. Neurology (2021) 96(8):e1215–26. doi: 10.1212/wnl.0000000000011461 PubMed DOI
Becker A, Martin EC, Mitchell DY, Grenningloh R, Bender AT, Laurent J, et al. . Safety, tolerability, pharmacokinetics, target occupancy, and concentration-qt analysis of the novel btk inhibitor evobrutinib in healthy volunteers. Clin Transl Sci (2020) 13(2):325–36. doi: 10.1111/cts.12713 PubMed DOI PMC
National Institute of Allergy and Infectious Diseases . Best Available Therapy Versus Autologous Hematopoetic Stem Cell Transplant for Multiple Sclerosis (Beat-Ms) (Beat-Ms). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04047628.
Study of Mesenchymal Autologous Stem Cells as Regenerative Treatment for Multiple Sclerosis (Smart-Ms). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04749667.
Oh J, Bar-Or A. Emerging therapies to target cns pathophysiology in multiple sclerosis. Nat Rev Neurol (2022) 18(8):465–75. doi: 10.1038/s41582-022-00675-0 PubMed DOI
Boschert U, Crandall T, Pereira A, Higginbotham G, Wu Y, Grenningloh R, et al. . (2017). T cell mediated experimental cns autoimmunity induced by plp in sjl mice is modulated by evobrutinib (M2951) a novel bruton's tyrosine kinase inhibitor, in: Triennial Joint Meeting of the European and Americas Committees for Treatment and Research in Multiple Sclerosis, Paris, France, October 25-28, 2017.
Francesco M, Wong M, LaStant J, Finkle D, Loewenstein N, Macsata R, et al. . (2017). Prn2246, a potent and selective blood brain barrier penetrating btk inhibitor, exhibits efficacy in central nervous system immunity, in: Triennial Joint Meeting of the European and Americas Committees for Treatment and Research in Multiple Sclerosis, Paris, France, October 25-28, 2017.
Gruber R, Blazier A, Lee L, Ryan S, Cheong A, Havari E, et al. . Evaluating the effect of btk inhibitor tolebrutinib in human tri-culture (P1-1.Virtual). Neurology (2022) 98(18 suppl):2594.
Gruber RC, Chretien N, Dufault MR, Proto J, Zhang M, LaMorte M, et al. . Central effects of btk inhibition in neuroinflammation. Neurology (2020) 94(15 suppl):808.
Weber MS, Harp C, Goodyear A, Yuen TJ, Durk MR, Kappos L. (2021). Fenebrutinib reduces disease activity in a mouse model of inflammatory multiple sclerosis associated with reduced microglial activation, in: Congress of the European Committee for Treatment and Research in Multiple Sclerosis, , October 13-15, 2021.
Martin E, Aigrot MS, Grenningloh R, Stankoff B, Lubetzki C, Boschert U, et al. . Bruton's tyrosine kinase inhibition promotes myelin repair. Brain plasticity (Amsterdam Netherlands) (2020) 5(2):123–33. doi: 10.3233/bpl-200100 PubMed DOI PMC
A Study of Efficacy and Safety of M2951 in Participants with Relapsing Multiple Sclerosis. ClinicalTrials.gov; (2021). Available at: https://clinicaltrials.gov/ct2/show/NCT02975349?term=evobrutinib&cond=multiple+sclerosis&draw=2&rank=5.
Study to Evaluate the Efficacy and Safety of Fenebrutinib Compared with Teriflunomide in Relapsing Multiple Sclerosis (Rms) (Fenhance). ClinicalTrials.gov; (2021). Available at: https://clinicaltrials.gov/ct2/show/NCT04586023.
A Phase 2 Study of Orelabrutinib in Patients with Relapsing-Remitting Multiple Sclerosis. ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04711148.
Study of Evobrutinib in Participants with Rms (Evolutionrms 1). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04338022.
Relapsing Forms of Multiple Sclerosis (Rms) Study of Bruton's Tyrosine Kinase (Btk) Inhibitor Tolebrutinib (Sar442168) (Gemini 2). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04410991.
Relapsing Forms of Multiple Sclerosis (Rms) Study of Bruton's Tyrosine Kinase (Btk) Inhibitor Tolebrutinib (Sar442168) (Gemini 1). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04410978.
Primary Progressive Multiple Sclerosis (Ppms) Study of Bruton's Tyrosine Kinase (Btk) Inhibitor Tolebrutinib (Sar442168) (Perseus). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04458051.
A Study to Investigate the Efficacy of Fenebrutinib in Relapsing Multiple Sclerosis (Rms) (Fenopta). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT05119569.
A Study to Evaluate the Efficacy and Safety of Fenebrutinib Compared with Teriflunomide in Relapsing Multiple Sclerosis (Rms) (Fenhance). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04586010.
Study of Evobrutinib in Participants with Rms (Evolutionrms 2). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04338061.
A Study to Evaluate the Efficacy and Safety of Fenebrutinib Compared with Ocrelizumab in Adult Participants with Primary Progressive Multiple Sclerosis (Fentrepid). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04544449.
Nonrelapsing Secondary Progressive Multiple Sclerosis (Nrspms) Study of Bruton's Tyrosine Kinase (Btk) Inhibitor Tolebrutinib (Sar442168) (Hercules). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT04411641.
Efficacy and Safety of Remibrutinib Compared to Teriflunomide in Participants with Relapsing Multiple Sclerosis. ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT05147220?term=remibrutinib&draw=2&rank=2.
Study to Evaluate Oral Biib061 Added to Interferon-Beta1 (Ifn-B1) or Glatiramer Acetate in Relapsing Multiple Sclerosis (Rms). ClinicalTrials.gov; (2021). Available at: https://clinicaltrials.gov/ct2/show/NCT04079088.
Mei F, Fancy SPJ, Shen YA, Niu J, Zhao C, Presley B, et al. . Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med (2014) 20(8):954–60. doi: 10.1038/nm.3618 PubMed DOI PMC
Assessing Changes in Multi-Parametric Mri in Ms Patients Taking Clemastine Fumarate as a Myelin Repair Therapy (Revive). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT05359653.
CCMR Two: A Phase Iia, Randomised, Double-Blind, Placebo-Controlled Trial of the Ability of the Combination of Metformin and Clemastine to Promote Remyelination in People with Relapsing-Remitting Multiple Sclerosis Already on Disease-Modifying Therapy. ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT05131828.
Phase 1/2 Study to Evaluate the Safety and Efficacy of Ata188 in Subjects with Progressive Multiple Sclerosis (Embold). ClinicalTrials.gov; (2022). Available at: https://clinicaltrials.gov/ct2/show/NCT03283826.
Shaffer CL. Chapter 4 - Defining Neuropharmacokinetic Parameters in Cns Drug Discovery to Determine Cross-Species Pharmacologic Exposure–Response Relationships. In: Macor JE, editor. Annu Rep Med Chem, vol. 45 . Academic Press; (2010). p. 55–70.
Airas L, Rissanen E, Rinne J. Imaging of microglial activation in ms using pet: research use and potential future clinical application. Mult Scler (2017) 23(4):496–504. doi: 10.1177/1352458516674568 PubMed DOI
Suhara T, Chaki S, Kimura H, Furusawa M, Matsumoto M, Ogura H, et al. . Strategies for utilizing neuroimaging biomarkers in cns drug discovery and development: cinp/jsnp working group report. Int J Neuropsychopharmacol (2017) 20(4):285–94. doi: 10.1093/ijnp/pyw111 PubMed DOI PMC
Vargas WS, Monohan E, Pandya S, Raj A, Vartanian T, Nguyen TD, et al. . Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. NeuroImage Clin (2015) 9:369–75. doi: 10.1016/j.nicl.2015.09.003 PubMed DOI PMC
Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. . Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler (2019) 25(14):1915–25. doi: 10.1177/1352458518814117 PubMed DOI PMC
Simmons SB, Ontaneda D. Slowly expanding lesions: A new target for progressive multiple sclerosis trials? Neurology (2022) 98(17):699–700. doi: 10.1212/wnl.0000000000200230 PubMed DOI
He Q, Ma Y, Fan S, Shao H, Sheth V, Bydder GM, et al. . Direct magnitude and phase imaging of myelin using ultrashort echo time (Ute) pulse sequences: A feasibility study. Magn Reson Imaging (2017) 39:194–9. doi: 10.1016/j.mri.2017.02.009 PubMed DOI PMC
Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. . Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol (2017) 16(10):797–812. doi: 10.1016/s1474-4422(17)30278-8 PubMed DOI
Avasarala J. It's time for combination therapies: in multiple sclerosis. Innov Clin Neurosci (2017) 14(5-6):28–30. PubMed PMC
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG, et al. . thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov (2022). doi: 10.1038/s41573-022-00477-5. PubMed DOI PMC