Chronic inflammation in pregnant women with latent toxoplasmosis and explanation of discordant results of serological tests for toxoplasmosis

. 2025 Jul 11 ; 72 () : . [epub] 20250711

Jazyk angličtina Země Česko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40696824

Toxoplasma gondii (Nicolle et Manceaux, 1908), an intracellular parasite that causes toxoplasmosis, infects a third of the human population. Latent toxoplasmosis has been linked to altered immune responses, including elevated proinflammatory cytokines. In early pregnancy, the immune system adapts to balance inflammation and foetal tolerance. This study assessed whether pregnant women in the first trimester infected with Toxoplasma gondii have different cytokine levels than uninfected women. This study also examined whether women with discordant test results for toxoplasmosis represent a distinct group or a mixed group composed of infected women with unusually low levels of anti-Toxoplasma antibodies and uninfected women with high levels of cross-reacting antibodies. We measured 18 cytokines (IL-1β, IL-1ra, IL-2, IL-4, IL-7, IL-9, IL-17A, Eotaxin, FGF basic, G-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α) in 78 pregnant women, classified as Toxoplasma-positive, Toxoplasma-negative or Toxoplasma-discordant (negative by IgG ELISA, positive by complement fixation test [CFT]). Using exploratory factor analysis, we identified two factors, the first explaining 29.6% and the second 24.9% of the total variability in cytokine concentrations. Toxoplasma-positive women scored significantly higher in the second factor, primarily associated with cytokines linked to Th1-driven inflammation and cellular immunity. Specifically, these women exhibited elevated levels of IL-1β, IL-1ra, IL-2, FGF basic and PDGF-BB compared to Toxoplasma-negative women. This finding suggests that pregnant women with latent toxoplasmosis experience some degree of chronic inflammation. Additionally, our results indicate that Toxoplasma-discordant women are likely Toxoplasma-negative individuals with detectable anti-Toxoplasma IgM antibodies. However, as this study focused on pregnant women, further research is necessary to validate these conclusions in broader populations.

Zobrazit více v PubMed

Althouse A.D. 2016: Adjust for multiple comparisons? It's not that simple. Ann. Thorac. Surg. 101: 1644-1645. PubMed DOI

Bettelli E., Korn T., Kuchroo V.K. 2007: Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19: 652-657. PubMed DOI

Curry A.E., Vogel I., Skogstrand K., Drews C., Schendel D.E., Flanders W.D., Hougaard D.M., Thorsen P. 2008: Maternal plasma cytokines in early- and mid-gestation of normal human pregnancy and their association with maternal factors. J. Reprod. Immunol. 77: 152-160. PubMed DOI

Denkers E.Y., Gazzinelli R.T. 1998: Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev. 11: 569-588. PubMed DOI

Dimech W., Grangeot-Keros L., Vauloup-Fellous C. 2016: Standardization of assays that detect anti-rubella virus IgG antibodies. Clin. Microbiol. Rev. 29: 163-174. PubMed DOI

Dlouhá D., Roberts S.C., Hlaváčová J., Nouzová K., Kaňková Š. 2023: Longitudinal changes in disgust sensitivity during pregnancy and the early postpartum period, and the role of recent health problems. Sci. Rep. 13: 4752. PubMed DOI

Dubey J.P., Lindsay D.S., Speer C.A. 1998: Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin. Microbiol. Rev. 11: 267-299. PubMed DOI

Dunay I.R., Gajurel K., Dhakal R., Liesenfeld O., Montoya J.G. 2018: Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 31: e00057-17. PubMed DOI

Dunn D., Wallon M., Peyron F., Petersen E., Peckham C., Gilbert R. 1999: Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 353: 1829-1833. PubMed DOI

Dupont C.D., Christian D.A., Hunter C.A. 2012: Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol. 34: 793-813. PubMed DOI

Eisen H.N. 2014: Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol. Res. 2: 381-392. PubMed DOI

El-Tantawy N., Taman A., Shalaby H. 2014: Toxoplasmosis and female infertility: is there a co-relation? Am. J. Epidemiol. Infect. Dis. 2: 29-32.

Flegr J. 2010: Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol. 57: 81-87. PubMed DOI

Flegr J. 2021: Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit. Vectors 14: 508. PubMed DOI

Flegr J., Escudero D.Q. 2016: Impaired health status and increased incidence of diseases in Toxoplasma-seropositive subjects - an explorative cross-sectional study. Parasitology 143: 1974-1989. PubMed DOI

Flegr J., Prandota J., Sovičková M., Israili Z.H. 2014: Toxoplasmosis - a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One 9: e90203. PubMed DOI

Flegr J., Stříž I. 2011: Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infect. Dis. 11: 274. PubMed DOI

Harvanová G., Duranková S., Bernasovská J. 2023: The role of cytokines and chemokines in the inflammatory response. Pol. J. Allergol. 10: 210-219. (In Czech.) DOI

Hostomská L., Jírovec O., Horáčková M., Hrubcová M. 1957: [Relation of toxoplasmosis in mother to mongolism in child]. Česk. Pediatr. 12: 713-723.

Jarmund A.H., Giskeødegård G.F., Ryssdal M., Steinkjer B., Stokkeland L.M.T., Madssen T.S., Stafne S.N., Stridsklev S., Moholdt T., Heimstad R., Vanky E., Iversen A.-C. 2021: Cytokine patterns in maternal serum from first trimester to term and beyond. Front. Immunol. 12: 752660. PubMed DOI

Kaňková Š., Flegr J. 2007: Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis. BMC Infect. Dis. 7: 114. PubMed DOI

Kaňková Š., Flegr J., Calda P. 2015: The influence of latent toxoplasmosis on women's reproductive function: four cross-sectional studies. Folia Parasitol. 62: 2015.041. PubMed DOI

Kaňková Š., Holáň V., Zajícová A., Kodym P., Flegr J. 2010: Modulation of immunity in mice with latent toxoplasmosis - the experimental support for the immunosuppression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans. Parasitol. Res. 107: 1421-1427. PubMed DOI

Kaňková Š., Šulc J., Křivohlavá R., Kuběna A., Flegr J. 2012: Slower postnatal motor development in infants of mothers with latent toxoplasmosis during the first 18 months of life. Early Hum. Dev. 88: 879-884. PubMed DOI

Kaňková Š., Takács L., Krulová M., Hlaváčová J., Nouzová K., Hill M., Včelák J., Monk C. 2022: Disgust sensitivity is negatively associated with immune system activity in early pregnancy: direct support for the compensatory prophylaxis hypothesis. Evol. Hum. Behav. 43: 234-241. DOI

Kazemi Arababadi M., Abdollahi S.H., Ramezani M., Zare-Bidaki M. 2024: A review of immunological and neuropsychobehavioral effects of latent toxoplasmosis on humans. Parasite Immunol. 46: e13060. PubMed DOI

Khan M.M. 2016: Role of cytokines. In: M.M. Khan (Ed.), Immunopharmacology. Springer International Publishing, Cham, pp. 57-92. DOI

Kolbeková P., Kourbatová E., Novotná M., Kodym P., Flegr J. 2007: New and old risk-factors for Toxoplasma gondii infection: prospective cross-sectional study among military personnel in the Czech Republic. Clin. Microbiol. Infect. 13: 1012-1017. PubMed DOI

Li S., Cui L., Zhao J., Dai P., Zong S., Zuo W., Chen C., Jin H., Gao H., Liu Q. 2011: Seroprevalence of Toxoplasma gondii infection in female sterility patients in China. J. Parasitol. 97: 529-530. PubMed DOI

Lopez A., Dietz V.J., Wilson M., Navin T.R., Jones J. L. 2000: Preventing congenital toxoplasmosis. MMWR Recomm. Rep. 49: 59-68.

Moghaddami R., Mahdipour M., Ahmadpour E. 2024: Inflammatory pathways of Toxoplasma gondii infection in pregnancy. Travel Med. Infect. Dis. 62: 102760. PubMed DOI

Mohamed K., Kodym P., Malý M., Intisar E.R. 2012: Assessment of screening tests used to detect Toxoplasma gondii in women in Sudan. J. Med. Diagn. Methods 1: 102. DOI

Montoya J.G. 2002: Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J. Infect. Dis. 185: S73-S82. PubMed DOI

Neuhäuser M., Krackow S. 2007: Adaptive-filtering of trisomy 21: risk of Down syndrome depends on family size and age of previous child. Naturwissenschaften 94: 117-121. PubMed DOI

Pernas L., Ramirez R., Holmes T.H., Montoya J.G., Boothroyd J.C. 2014: Immune profiling of pregnant Toxoplasma-infected US and Colombia patients reveals surprising impacts of infection on peripheral blood cytokines. J. Infect. Dis. 210: 923-931. PubMed DOI

Peterson L.S., Stelzer I.A., Tsai A.S., Ghaemi M.S., Han X., Ando K., Winn V.D., Martinez N.R., Contrepois K., Moufarrej M.N., Quake S., Relman D.A., Snyder M.P., Shaw G.M., Stevenson D.K., Wong R.J., Arck P., Angst M.S., Aghaeepour N., Gaudilliere B. 2020: Multiomic immune clockworks of pregnancy. Semin. Immunopathol. 42: 397-412. PubMed DOI

Prescott S., Mutka T., Baumgartel K., Yoo J.Y., Morgan H., Postolache T.T., Seyfang A., Gostner J.M., Fuchs D., Kim K., Groer M.E. 2023: Tryptophan metabolism and immune alterations in pregnant Hispanic women with chronic Toxoplasma gondii infection. Am. J. Reprod. Immunol. 90: e13768. PubMed DOI

Racicot K., Kwon J.-Y., Aldo P., Silasi M., Mor G. 2014: Understanding the complexity of the immune system during pregnancy. Am. J. Reprod. Immunol. 72: 107-116. PubMed DOI

Robert-Gangneux F., Murat J.-B., Fricker-Hidalgo H., Brenier-Pinchart M.-P., Gangneux J.-P., Pelloux H. 2011: The placenta: a main role in congenital toxoplasmosis? Trends Parasitol. 27: 530-536. PubMed DOI

Sana M., Rashid M., Rashid I., Akbar H., Gomez-Marin J.E., Dimier-Poisson I. 2022: Immune response against toxoplasmosis - some recent updates RH: Toxoplasma gondii immune response. Int. J. Immunopathol. Pharmacol. 36: 1-19. PubMed DOI

Sharma S., Godbole G., Modi D. 2016: Decidual control of trophoblast invasion. Am. J. Reprod. Immunol. 75: 341-350. PubMed DOI

Spence T., Allsopp P.J., Yeates A.J., Mulhern M.S., Strain J.J., McSorley E.M. 2021: Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J. Pregnancy 2021: 6649608. PubMed DOI

Tenter A.M., Heckeroth A.R., Weiss L.M. 2000: Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30: 1217-1258. PubMed DOI

The jamovi project 2022: jamovi. (Version 2.3) [Computer Software]. Retrieved from www.jamovi.org.

Varella I.S., Canti I.C.T., Santos B.R., Coppini A.Z., Argondizzo L.C., Tonin C., Wagner M.B. 2009: Prevalence of acute toxoplasmosis infection among 41,112 pregnant women and the mother-to-child transmission rate in a public hospital in South Brazil. Mem. Inst. Oswaldo Cruz 104: 383-388. PubMed DOI

Weisel F., Shlomchik M. 2017: Memory B cells of mice and humans. Annu. Rev. Immunol. 35: 255-284. PubMed DOI

Wolf A., Cowen D., Paige B.H. 1939: Toxoplasmic encephalomyelitis: III. A new case of granulomatous encephalomyelitis due to a protozoon. Am. J. Pathol. 15: 657-694.

Yoon C., Ham Y.S., Gil W.J., Yang C.-S. 2022: The strategies of NLRP3 inflammasome to combat Toxoplasma gondii. Front. Immunol. 13: 1002387. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...