Chronic inflammation in pregnant women with latent toxoplasmosis and explanation of discordant results of serological tests for toxoplasmosis
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
40696824
DOI
10.14411/fp.2025.021
PII: 2025.021
Knihovny.cz E-zdroje
- Klíčová slova
- Toxoplasma gondii, cytokines, immunity, pregnancy,
- MeSH
- cytokiny krev MeSH
- dospělí MeSH
- latentní infekce * MeSH
- lidé MeSH
- mladý dospělý MeSH
- parazitární komplikace těhotenství * imunologie diagnóza MeSH
- protilátky protozoální krev MeSH
- sérologické testy MeSH
- těhotenství MeSH
- Toxoplasma imunologie MeSH
- toxoplazmóza * diagnóza imunologie MeSH
- zánět * imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- protilátky protozoální MeSH
Toxoplasma gondii (Nicolle et Manceaux, 1908), an intracellular parasite that causes toxoplasmosis, infects a third of the human population. Latent toxoplasmosis has been linked to altered immune responses, including elevated proinflammatory cytokines. In early pregnancy, the immune system adapts to balance inflammation and foetal tolerance. This study assessed whether pregnant women in the first trimester infected with Toxoplasma gondii have different cytokine levels than uninfected women. This study also examined whether women with discordant test results for toxoplasmosis represent a distinct group or a mixed group composed of infected women with unusually low levels of anti-Toxoplasma antibodies and uninfected women with high levels of cross-reacting antibodies. We measured 18 cytokines (IL-1β, IL-1ra, IL-2, IL-4, IL-7, IL-9, IL-17A, Eotaxin, FGF basic, G-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α) in 78 pregnant women, classified as Toxoplasma-positive, Toxoplasma-negative or Toxoplasma-discordant (negative by IgG ELISA, positive by complement fixation test [CFT]). Using exploratory factor analysis, we identified two factors, the first explaining 29.6% and the second 24.9% of the total variability in cytokine concentrations. Toxoplasma-positive women scored significantly higher in the second factor, primarily associated with cytokines linked to Th1-driven inflammation and cellular immunity. Specifically, these women exhibited elevated levels of IL-1β, IL-1ra, IL-2, FGF basic and PDGF-BB compared to Toxoplasma-negative women. This finding suggests that pregnant women with latent toxoplasmosis experience some degree of chronic inflammation. Additionally, our results indicate that Toxoplasma-discordant women are likely Toxoplasma-negative individuals with detectable anti-Toxoplasma IgM antibodies. However, as this study focused on pregnant women, further research is necessary to validate these conclusions in broader populations.
Department of Molecular Endocrinology Institute of Endocrinology Prague Czech Republic
ProfiGyn s r o Municipal Health Centre Prague Prague Czech Republic
Zobrazit více v PubMed
Althouse A.D. 2016: Adjust for multiple comparisons? It's not that simple. Ann. Thorac. Surg. 101: 1644-1645. PubMed DOI
Bettelli E., Korn T., Kuchroo V.K. 2007: Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19: 652-657. PubMed DOI
Curry A.E., Vogel I., Skogstrand K., Drews C., Schendel D.E., Flanders W.D., Hougaard D.M., Thorsen P. 2008: Maternal plasma cytokines in early- and mid-gestation of normal human pregnancy and their association with maternal factors. J. Reprod. Immunol. 77: 152-160. PubMed DOI
Denkers E.Y., Gazzinelli R.T. 1998: Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev. 11: 569-588. PubMed DOI
Dimech W., Grangeot-Keros L., Vauloup-Fellous C. 2016: Standardization of assays that detect anti-rubella virus IgG antibodies. Clin. Microbiol. Rev. 29: 163-174. PubMed DOI
Dlouhá D., Roberts S.C., Hlaváčová J., Nouzová K., Kaňková Š. 2023: Longitudinal changes in disgust sensitivity during pregnancy and the early postpartum period, and the role of recent health problems. Sci. Rep. 13: 4752. PubMed DOI
Dubey J.P., Lindsay D.S., Speer C.A. 1998: Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin. Microbiol. Rev. 11: 267-299. PubMed DOI
Dunay I.R., Gajurel K., Dhakal R., Liesenfeld O., Montoya J.G. 2018: Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 31: e00057-17. PubMed DOI
Dunn D., Wallon M., Peyron F., Petersen E., Peckham C., Gilbert R. 1999: Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 353: 1829-1833. PubMed DOI
Dupont C.D., Christian D.A., Hunter C.A. 2012: Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol. 34: 793-813. PubMed DOI
Eisen H.N. 2014: Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol. Res. 2: 381-392. PubMed DOI
El-Tantawy N., Taman A., Shalaby H. 2014: Toxoplasmosis and female infertility: is there a co-relation? Am. J. Epidemiol. Infect. Dis. 2: 29-32.
Flegr J. 2010: Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol. 57: 81-87. PubMed DOI
Flegr J. 2021: Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit. Vectors 14: 508. PubMed DOI
Flegr J., Escudero D.Q. 2016: Impaired health status and increased incidence of diseases in Toxoplasma-seropositive subjects - an explorative cross-sectional study. Parasitology 143: 1974-1989. PubMed DOI
Flegr J., Prandota J., Sovičková M., Israili Z.H. 2014: Toxoplasmosis - a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One 9: e90203. PubMed DOI
Flegr J., Stříž I. 2011: Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infect. Dis. 11: 274. PubMed DOI
Harvanová G., Duranková S., Bernasovská J. 2023: The role of cytokines and chemokines in the inflammatory response. Pol. J. Allergol. 10: 210-219. (In Czech.) DOI
Hostomská L., Jírovec O., Horáčková M., Hrubcová M. 1957: [Relation of toxoplasmosis in mother to mongolism in child]. Česk. Pediatr. 12: 713-723.
Jarmund A.H., Giskeødegård G.F., Ryssdal M., Steinkjer B., Stokkeland L.M.T., Madssen T.S., Stafne S.N., Stridsklev S., Moholdt T., Heimstad R., Vanky E., Iversen A.-C. 2021: Cytokine patterns in maternal serum from first trimester to term and beyond. Front. Immunol. 12: 752660. PubMed DOI
Kaňková Š., Flegr J. 2007: Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis. BMC Infect. Dis. 7: 114. PubMed DOI
Kaňková Š., Flegr J., Calda P. 2015: The influence of latent toxoplasmosis on women's reproductive function: four cross-sectional studies. Folia Parasitol. 62: 2015.041. PubMed DOI
Kaňková Š., Holáň V., Zajícová A., Kodym P., Flegr J. 2010: Modulation of immunity in mice with latent toxoplasmosis - the experimental support for the immunosuppression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans. Parasitol. Res. 107: 1421-1427. PubMed DOI
Kaňková Š., Šulc J., Křivohlavá R., Kuběna A., Flegr J. 2012: Slower postnatal motor development in infants of mothers with latent toxoplasmosis during the first 18 months of life. Early Hum. Dev. 88: 879-884. PubMed DOI
Kaňková Š., Takács L., Krulová M., Hlaváčová J., Nouzová K., Hill M., Včelák J., Monk C. 2022: Disgust sensitivity is negatively associated with immune system activity in early pregnancy: direct support for the compensatory prophylaxis hypothesis. Evol. Hum. Behav. 43: 234-241. DOI
Kazemi Arababadi M., Abdollahi S.H., Ramezani M., Zare-Bidaki M. 2024: A review of immunological and neuropsychobehavioral effects of latent toxoplasmosis on humans. Parasite Immunol. 46: e13060. PubMed DOI
Khan M.M. 2016: Role of cytokines. In: M.M. Khan (Ed.), Immunopharmacology. Springer International Publishing, Cham, pp. 57-92. DOI
Kolbeková P., Kourbatová E., Novotná M., Kodym P., Flegr J. 2007: New and old risk-factors for Toxoplasma gondii infection: prospective cross-sectional study among military personnel in the Czech Republic. Clin. Microbiol. Infect. 13: 1012-1017. PubMed DOI
Li S., Cui L., Zhao J., Dai P., Zong S., Zuo W., Chen C., Jin H., Gao H., Liu Q. 2011: Seroprevalence of Toxoplasma gondii infection in female sterility patients in China. J. Parasitol. 97: 529-530. PubMed DOI
Lopez A., Dietz V.J., Wilson M., Navin T.R., Jones J. L. 2000: Preventing congenital toxoplasmosis. MMWR Recomm. Rep. 49: 59-68.
Moghaddami R., Mahdipour M., Ahmadpour E. 2024: Inflammatory pathways of Toxoplasma gondii infection in pregnancy. Travel Med. Infect. Dis. 62: 102760. PubMed DOI
Mohamed K., Kodym P., Malý M., Intisar E.R. 2012: Assessment of screening tests used to detect Toxoplasma gondii in women in Sudan. J. Med. Diagn. Methods 1: 102. DOI
Montoya J.G. 2002: Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J. Infect. Dis. 185: S73-S82. PubMed DOI
Neuhäuser M., Krackow S. 2007: Adaptive-filtering of trisomy 21: risk of Down syndrome depends on family size and age of previous child. Naturwissenschaften 94: 117-121. PubMed DOI
Pernas L., Ramirez R., Holmes T.H., Montoya J.G., Boothroyd J.C. 2014: Immune profiling of pregnant Toxoplasma-infected US and Colombia patients reveals surprising impacts of infection on peripheral blood cytokines. J. Infect. Dis. 210: 923-931. PubMed DOI
Peterson L.S., Stelzer I.A., Tsai A.S., Ghaemi M.S., Han X., Ando K., Winn V.D., Martinez N.R., Contrepois K., Moufarrej M.N., Quake S., Relman D.A., Snyder M.P., Shaw G.M., Stevenson D.K., Wong R.J., Arck P., Angst M.S., Aghaeepour N., Gaudilliere B. 2020: Multiomic immune clockworks of pregnancy. Semin. Immunopathol. 42: 397-412. PubMed DOI
Prescott S., Mutka T., Baumgartel K., Yoo J.Y., Morgan H., Postolache T.T., Seyfang A., Gostner J.M., Fuchs D., Kim K., Groer M.E. 2023: Tryptophan metabolism and immune alterations in pregnant Hispanic women with chronic Toxoplasma gondii infection. Am. J. Reprod. Immunol. 90: e13768. PubMed DOI
Racicot K., Kwon J.-Y., Aldo P., Silasi M., Mor G. 2014: Understanding the complexity of the immune system during pregnancy. Am. J. Reprod. Immunol. 72: 107-116. PubMed DOI
Robert-Gangneux F., Murat J.-B., Fricker-Hidalgo H., Brenier-Pinchart M.-P., Gangneux J.-P., Pelloux H. 2011: The placenta: a main role in congenital toxoplasmosis? Trends Parasitol. 27: 530-536. PubMed DOI
Sana M., Rashid M., Rashid I., Akbar H., Gomez-Marin J.E., Dimier-Poisson I. 2022: Immune response against toxoplasmosis - some recent updates RH: Toxoplasma gondii immune response. Int. J. Immunopathol. Pharmacol. 36: 1-19. PubMed DOI
Sharma S., Godbole G., Modi D. 2016: Decidual control of trophoblast invasion. Am. J. Reprod. Immunol. 75: 341-350. PubMed DOI
Spence T., Allsopp P.J., Yeates A.J., Mulhern M.S., Strain J.J., McSorley E.M. 2021: Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia. J. Pregnancy 2021: 6649608. PubMed DOI
Tenter A.M., Heckeroth A.R., Weiss L.M. 2000: Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30: 1217-1258. PubMed DOI
The jamovi project 2022: jamovi. (Version 2.3) [Computer Software]. Retrieved from www.jamovi.org.
Varella I.S., Canti I.C.T., Santos B.R., Coppini A.Z., Argondizzo L.C., Tonin C., Wagner M.B. 2009: Prevalence of acute toxoplasmosis infection among 41,112 pregnant women and the mother-to-child transmission rate in a public hospital in South Brazil. Mem. Inst. Oswaldo Cruz 104: 383-388. PubMed DOI
Weisel F., Shlomchik M. 2017: Memory B cells of mice and humans. Annu. Rev. Immunol. 35: 255-284. PubMed DOI
Wolf A., Cowen D., Paige B.H. 1939: Toxoplasmic encephalomyelitis: III. A new case of granulomatous encephalomyelitis due to a protozoon. Am. J. Pathol. 15: 657-694.
Yoon C., Ham Y.S., Gil W.J., Yang C.-S. 2022: The strategies of NLRP3 inflammasome to combat Toxoplasma gondii. Front. Immunol. 13: 1002387. PubMed DOI