Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13692S
Grantová Agentura České Republiky
204056
Wellcome Trust - United Kingdom
PubMed
34583758
PubMed Central
PMC8477627
DOI
10.1186/s13071-021-05021-9
PII: 10.1186/s13071-021-05021-9
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, Cat, Pets, Risk factors, SARS-CoV-2, Symptoms, Zoonosis,
- MeSH
- COVID-19 epidemiologie parazitologie patofyziologie MeSH
- incidence MeSH
- lidé MeSH
- průřezové studie MeSH
- průzkumy a dotazníky MeSH
- rizikové faktory MeSH
- sociální média * MeSH
- stupeň závažnosti nemoci MeSH
- Toxoplasma imunologie patogenita MeSH
- toxoplazmóza komplikace MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Slovenská republika epidemiologie MeSH
BACKGROUND: Latent toxoplasmosis, i.e. a lifelong infection with the protozoan parasite Toxoplasma gondii, affects about a third of the human population worldwide. In the past 10 years, numerous studies have shown that infected individuals have a significantly higher incidence of mental and physical health problems and are more prone to exhibiting the adverse effects of various diseases. METHODS: A cross-sectional internet study was performed on a population of 4499 (786 Toxoplasma-infected) participants and looked for factors which positively or negatively affect the risk of SARS-CoV-2 infection and likelihood of a severe course of COVID-19. RESULTS: Logistic regression and partial Kendall correlation controlling for sex, age, and size of the place of residence showed that latent toxoplasmosis had the strongest effect on the risk of infection (OR = 1.50) before sport (OR = 1.30) and borreliosis (1.27). It also had the strongest effect on the risk of severe course of infection (Tau = 0.146), before autoimmunity, immunodeficiency, male sex, keeping a cat, being overweight, borreliosis, higher age, or chronic obstructive pulmonary disease. Toxoplasmosis augmented the adverse effects of other risk factors but was not the proximal cause of the effect of cat-keeping on higher likelihood of COVID infection and higher severity of the course of infection because the effect of cat-keeping was also observed (and in particular) in a subset of Toxoplasma-infected respondents (Tau = 0.153). Effects of keeping a cat were detected only in respondents from multi-member families, suggesting that a cat could be a vector for the transmission of SARS-CoV-2 within a family. CONCLUSIONS: Toxoplasmosis is currently not considered a risk factor for COVID-19, and Toxoplasma-infected individuals are neither informed about their higher risk nor prioritised in vaccination programs. Because toxoplasmosis affects a large segment of the human population, its impact on COVID-19-associated effects on public health could be considerable.
Zobrazit více v PubMed
Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasit. 2000;30:1217–1258. doi: 10.1016/S0020-7519(00)00124-7. PubMed DOI PMC
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasit. 2021;51:95–121. doi: 10.1016/j.ijpara.2020.11.001. PubMed DOI
Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect Dis. 1992;15:211–222. doi: 10.1093/clinids/15.2.211. PubMed DOI
Garweg JG, Pleyer U. Treatment strategy in human ocular toxoplasmosis: Why antibiotics have failed. J Clin Med. 2021;10:1090. doi: 10.3390/jcm10051090. PubMed DOI PMC
Prusa AR, Kasper DC, Sawers L, Walter E, Hayde M, Stillwaggon E. Congenital toxoplasmosis in Austria: Prenatal screening for prevention is cost-saving. PLoS Negl Trop Dis. 2017;11:7. doi: 10.1371/journal.pntd.0005648. PubMed DOI PMC
Petersen E, Kijlstra A, Stanford M. Epidemiology of ocular toxoplasmosis. Ocul Immunol Inflamm. 2012;20:68–75. doi: 10.3109/09273948.2012.661115. PubMed DOI
Bodaghi B, Touitou V, Fardeau C, Paris L, LeHoang P. Toxoplasmosis: new challenges for an old disease. Eye. 2012;26:241–244. doi: 10.1038/eye.2011.331. PubMed DOI PMC
Holland GN. LX Edward Jackson memorial lecture - Ocular toxoplasmosis: A global reassessment. Part 1: Epidemiology and course of disease. Am J Ophthalmol. 2003;136:973–988. doi: 10.1016/j.ajo.2003.09.040. PubMed DOI
Bertranpetit E, Jombart T, Paradis E, Pena H, Dubey J, Su CL, et al. Phylogeography of Toxoplasma gondii points to a South American origin. Infect Genet Evol. 2017;48:150–155. doi: 10.1016/j.meegid.2016.12.020. PubMed DOI
Grigg ME, Dubey JP, Nussenblatt RB. Ocular toxoplasmosis: Lessons from Brazil. Am J Ophthalmol. 2015;159:999–1001. doi: 10.1016/j.ajo.2015.04.005. PubMed DOI PMC
Lidar M, Langevitz P, Shoenfeld Y. The role of infection in inflammatory bowel disease: initiation, exacerbation and protection. Isr Med Assoc J. 2009;11:558–563. PubMed
Severance EG, Alaedini A, Yang SJ, Halling M, Gressitt KL, Stallings CR, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. 2012;138:48–53. doi: 10.1016/j.schres.2012.02.025. PubMed DOI PMC
Shapira Y, Agmon-Levin N, Selmi C, Petrikova J, Barzilai O, Ram M, et al. Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases. J Autoimmun. 2012;39:112–116. doi: 10.1016/j.jaut.2012.01.001. PubMed DOI
Vittecoq M, Elguero E, Lafferty KD, Roche B, Brodeur J, Gauthier-Clerc M, et al. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France. Infect Genet Evol. 2012;12:496–498. doi: 10.1016/j.meegid.2012.01.013. PubMed DOI
Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M, Misse D. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common. Biol Lett. 2012;8:101–103. doi: 10.1098/rsbl.2011.0588. PubMed DOI PMC
El-Saadi O, Welham J, Saha S, MaCaulay C, Collingwood L, Chant D, et al. The incidence and prevalence of schizophrenia: preliminary results from a systematic review. Schizophr Res. 2002;53:32.
Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schiz Bull. 2007;33:729–736. doi: 10.1093/schbul/sbl050. PubMed DOI PMC
Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: an update. Schiz Bull. 2012;38:642–647. doi: 10.1093/schbul/sbs043. PubMed DOI PMC
Flegr J, Horáček J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur Psychiat. 2017;40:82–87. doi: 10.1016/j.eurpsy.2016.09.001. PubMed DOI
Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psych Scand. 2015;132:161–179. doi: 10.1111/acps.12423. PubMed DOI
Lindová J, Kuběna AA, Šturcová A, Křivohlavá R, Novotná M, Rubešová A, et al. Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol. 2010;57:136–142. doi: 10.14411/fp.2010.017. PubMed DOI
Lindová J, Novotná M, Havlíček J, Jozífková E, Skallová A, Kolbeková P, et al. Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasit. 2006;36:1485–1492. doi: 10.1016/j.ijpara.2006.07.008. PubMed DOI
Flegr J, Zitkova S, Kodym P, Frynta D. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology. 1996;113:49–54. doi: 10.1017/S0031182000066269. PubMed DOI
Flegr J. Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exper Biol. 2013;216:127–133. doi: 10.1242/jeb.073635. PubMed DOI
Flegr J, Escudero DQ. Impaired health status and increased incidence of diseases in Toxoplasma-seropositive subjects - an explorative cross-sectional study. Parasitology. 2016;143:1974–1989. doi: 10.1017/S0031182016001785. PubMed DOI
Flegr J, Prandota J, Sovickova M, Israili ZH. Toxoplasmosis - A global threat Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9:3. doi: 10.1371/journal.pone.0090203. PubMed DOI PMC
Havlíček J, Gašová Z, Smith AP, Zvára K, Flegr J. Decrease of psychomotor performance in subjects with latent 'asymptomatic' toxoplasmosis. Parasitology. 2001;122:515–520. doi: 10.1017/S0031182001007624. PubMed DOI
Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA. Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect Immun. 1997;65:1675–1682. doi: 10.1128/iai.65.5.1675-1682.1997. PubMed DOI PMC
Kaňková Š, Holáň V, Zajícová A, Kodym P, Flegr J. Modulation of immunity in mice with latent toxoplasmosis - the experimental support for the immunosupression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans. Parasitol Res. 2010;107:1421–1427. doi: 10.1007/s00436-010-2013-9. PubMed DOI
Buzoni-Gatel D, Dubremetz JF, Werts C. Molecular cross talk between Toxoplasma gondii and the host immune system. M S-Medecine Sciences. 2008;24:191–196. PubMed
Fenoy IM, Chiurazzi R, Sanchez VR, Argenziano MA, Soto A, Picchio MS, et al. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation. PLoS ONE. 2012;7:e43420. doi: 10.1371/journal.pone.0043420. PubMed DOI PMC
Flegr J, Stříž I. Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infect Dis. 2011;11:274. doi: 10.1186/1471-2334-11-274. PubMed DOI PMC
Kankova S, Flegr J, Calda P. An elevated blood glucose level and increased incidence of gestational diabetes mellitus in pregnant women with latent toxoplasmosis. Folia Parasitol. 2015;62:88. PubMed
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, 2018.
Kim S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Communic Stat Applic Met. 2015;22:665–674. doi: 10.5351/CSAM.2015.22.6.665. PubMed DOI PMC
Flegr J, Flegr P. Doing exploratory analysis in R with a package Explorer v. 1.0. Figshare. 2021.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc Series B-Methodol. 1995;57:289–300.
Novotná M, Havlíček J, Smith AP, Kolbeková P, Skallová A, Klose J, et al. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology. 2008;135:1253–1261. doi: 10.1017/S003118200800485X. PubMed DOI
Flegr J, Novotná M, Fialová A, Kolbeková P, Gašová Z. The influence of RhD phenotype on toxoplasmosis- and age-associated changes in personality profile of blood donors. Folia Parasitol. 2010;57:143–150. doi: 10.14411/fp.2010.018. PubMed DOI
Flegr J, Preiss M, Klose J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS ONE. 2013;8:e61272. doi: 10.1371/journal.pone.0061272. PubMed DOI PMC
Sýkorová K, Flegr J. Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health. Sci Rep. 2021;11:11254. doi: 10.1038/s41598-021-90579-8. PubMed DOI PMC
Leroy EM, Gouilh MA, Brugere-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health. 2020;10:100133. doi: 10.1016/j.onehlt.2020.100133. PubMed DOI PMC
Newman A, Smith D, Ghai RR, Wallace RM, Torchetti MK, Loiacono C, et al. First reported cases of SARS-CoV-2 infection in companion animals - New York, March-April 2020. Morbid Mortal W Rep. 2020;69:710–713. doi: 10.15585/mmwr.mm6923e3. PubMed DOI PMC
Hosie MJ, Hofmann-Lehmann R, Hartmann K, Egberink H, Truyen U, Addie DD, et al. Anthropogenic infection of cats during the 2020 COVID-19 pandemic. Viruses. 2021;13:185. doi: 10.3390/v13020185. PubMed DOI PMC
Drozdz M, Krzyzek P, Dudek B, Makuch S, Janczura A, Paluch E. Current state of knowledge about role of pets in zoonotic transmission of SARS-CoV-2. Viruses-Basel. 2021;13:1149. doi: 10.3390/v13061149. PubMed DOI PMC
Giraldo-Ramirez S, Rendon-Marin S, Jaimes JA, Martinez-Gutierrez M, Ruiz-Saenz J. SARS-CoV-2 clinical outcome in domestic and wild cats: A systematic review. Animals. 2021;11:2056. doi: 10.3390/ani11072056. PubMed DOI PMC
Dileepan M, Di D, Huang QF, Ahmed S, Heinrich D, Ly H, et al. Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota. USA Virulence. 2021;12:1597–1609. doi: 10.1080/21505594.2021.1936433. PubMed DOI PMC
Michelitsch A, Schoen J, Hoffmann D, Beer M, Wernike K. The second wave of SARS-CoV-2 circulation-antibody detection in the domestic cat population in Germany. Viruses-Basel. 2021;13:1009. doi: 10.3390/v13061009. PubMed DOI PMC
Calvet GA, Pereira SA, Ogrzewalska M, Pauvolid-Correa A, Resende PC, Tassinari WD, et al. Investigation of SARS-CoV-2 infection in dogs and cats of humans diagnosed with COVID-19 in Rio de Janeiro. Brazil. PLoS One. 2021;16:e0250853. doi: 10.1371/journal.pone.0250853. PubMed DOI PMC
Neira V, Brito B, Aguero B, Berrios F, Valdes V, Gutierrez A, et al. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerg Microbes Infect. 2021;10:376–383. doi: 10.1080/22221751.2020.1863132. PubMed DOI PMC
Pagani G, Lai A, Bergna A, Rizzo A, Stranieri A, Giordano A, et al. Human-to-cat SARS-CoV-2 transmission: Case report and full-genome sequencing from an infected pet and its owner in Northern Italy. Pathogens. 2021;10:252. doi: 10.3390/pathogens10020252. PubMed DOI PMC
Decaro N, Balboni A, Bertolotti L, Martino PA, Mazzei M, Mira F, et al. SARS-CoV-2 infection in dogs and cats: Facts and speculations. Front Vet Sci. 2021;8:619207. doi: 10.3389/fvets.2021.619207. PubMed DOI PMC
Lauzi S, Stranieri A, Giordano A, Lelli D, Elia G, Desario C, et al. Do dogs and cats passively carry SARS-CoV-2 on hair and pads? Viruses. 2021;13:1357. doi: 10.3390/v13071357. PubMed DOI PMC
Flegr J, Horáček J. Toxoplasmosis, but not borreliosis, is associated with psychiatric disorders and symptoms. Schizophr Res. 2018;197:603–604. doi: 10.1016/j.schres.2018.02.008. PubMed DOI
Matowicka-Karna J, Dymicka-Piekarska V, Kemona H. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clin Dev Immunol. 2009;374696:374696. PubMed PMC
Flegr J, Horáček J. Negative effects of latent toxoplasmosis on mental health. Front Psychiatry. 2020;10:1012. doi: 10.3389/fpsyt.2019.01012. PubMed DOI PMC
Flegr J, Kuba R, Kopecký R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS ONE. 2020;15:e0236134. doi: 10.1371/journal.pone.0236134. PubMed DOI PMC
Flegr J. Predictors of Toxoplasma gondii infection in Czech and Slovak populations: the possible role of cat-related injuries and risky sexual behavior in the parasite transmission. Epidemiol Infect. 2017;145:1351–1362. doi: 10.1017/S095026881700019X. PubMed DOI PMC
Flegr J, Preiss M. Friends with malefit. The effects of keeping dogs and cats, sustaining animal-related injuries and Toxoplasma infection on health and quality of life. PLoS ONE. 2019;14:e0221988. doi: 10.1371/journal.pone.0221988. PubMed DOI PMC
Flegr J. The association between covid-19 and toxoplasmosis. Dataset Figshare. 2021 doi: 10.6084/m9.figshare.14559993.v1. DOI
Thirty years of studying latent toxoplasmosis: behavioural, physiological, and health insights