• This record comes from PubMed

Beyond Latency: Chronic Toxoplasma Infection and Its Unveiled Behavioral and Clinical Manifestations-A 30-Year Research Perspective

. 2025 Jul 15 ; 13 (7) : . [epub] 20250715

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 40722801
PubMed Central PMC12292676
DOI 10.3390/biomedicines13071731
PII: biomedicines13071731
Knihovny.cz E-resources

Over the past three turbulent decades, research has profoundly reshaped our understanding of chronic Toxoplasma gondii infection-traditionally regarded as harmless in immunocompetent individuals-unveiling its surprising impact on human health, performance, and behavior. This review emphasizes the effects of chronic Toxoplasma infection on physical and mental health, cognitive performance, and behavioral changes, highlighting key findings from studies investigating these domains, with a particular focus on both ultimate and proximate mechanisms underlying the observed effects. To this end, the primary focus will be on human studies; however, animal model studies will also be thoroughly considered when necessary and appropriate, to provide context and additional important information. Research demonstrates that chronic Toxoplasma infection may contribute to a broad spectrum of physical health issues. Ecological studies have revealed correlations between toxoplasmosis prevalence and increased morbidity and mortality from various conditions, including cardiovascular diseases, neurological disorders, and certain cancers. Large-scale cross-sectional studies have further shown that infected individuals report a higher incidence of numerous health complaints and diagnosed diseases, suggesting a significant impact on overall physical well-being. In addition to physical health, lifelong Toxoplasma infection (subclinical toxoplasmosis) has been implicated in cognitive impairments and behavioral changes. Studies have reported associations between infection and poorer performance in areas such as reaction time, processing speed, working memory, and executive function. Many of these behavioral changes likely relate to worsened health and a shift towards a "fast life history strategy." These cognitive deficits can have significant implications for daily functioning and performance. Furthermore, the role of Toxoplasma infection in the development or exacerbation of mental health disorders has been extensively investigated. Meta-analyses, ecological studies, and large-scale observational studies have demonstrated associations between Toxoplasma infection and an increased risk of disorders such as schizophrenia and obsessive-compulsive disorder. While the precise mechanisms underlying these associations remain under investigation, research suggests that neuroinflammation and alterations in neurotransmitter systems are likely to play a role. Far from being harmless, subclinical toxoplasmosis is increasingly recognized as a hidden factor influencing human health, behavior, and cognitive performance-with implications that extend well beyond the individual to public health at large. Further research is warranted to elucidate the complex interplay between Toxoplasma infection, host physiology, and the development of various physical, cognitive, behavioral, and mental health conditions.

See more in PubMed

Johnson S.K., Johnson P.T.J. Toxoplasmosis: Recent advances in understanding the link between infection and host behavior. Annu. Rev. Anim. Biosci. 2021;9:249–264. doi: 10.1146/annurev-animal-081720-111125. PubMed DOI

Wesołowski R., Pawłowska M., Smoguła M., Szewczyk-Golec K. Advances and challenges in diagnostics of toxoplasmosis in HIV-infected patients. Pathogens. 2023;12:110. doi: 10.3390/pathogens12010110. PubMed DOI PMC

Tong W.H., Pavey C., O’Handley R., Vyas A. Behavioral biology of Toxoplasma gondii infection. Parasit. Vectors. 2021;14:77. doi: 10.1186/s13071-020-04528-x. PubMed DOI PMC

Dubey J.P., Jones J.L. Toxoplasma gondii infection in humans and animals in the United States. Int. J. Parasit. 2008;38:1257–1278. doi: 10.1016/j.ijpara.2008.03.007. PubMed DOI

Bogitsh J.B., Carter C.E., Oeltmann T.N. Med Parasitol. Elsevier, Inc.; Amsterdam, The Netherlands: 2013.

McAllister M.M. A decade of discoveries in veterinary protozoology changes our concept of “subclinical” toxoplasmosis. Vet. Parasitol. 2005;132:241–247. doi: 10.1016/j.vetpar.2005.07.003. PubMed DOI

Hill D.E., Chirukandoth S., Dubey J.P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 2005;6:41–61. doi: 10.1079/AHR2005100. PubMed DOI

Barnard C.J., Behnke J.M. Parasitism and Host Behaviour. Volume 1 Taylor and Francis; New York, NY, USA: 1990.

Flegr J. Xenoadaptations. In: Shackelford T.K., editor. Encyclopedia of Sexual Psychology and Behavior. Springer International Publishing; Cham, Switzerland: 2023. pp. 1–5.

Webster J.P. The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology. 1994;109:583–589. doi: 10.1017/S0031182000076460. PubMed DOI

Webster J.P., Brunton C.F.A., Macdonald D.W. Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology. 1994;109:37–43. doi: 10.1017/S003118200007774X. PubMed DOI

Hay J., Hutchison W.M., Aitken P.P., Graham D.I. The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann. Trop. Med. Parasitol. 1983;77:483–495. doi: 10.1080/00034983.1983.11811741. PubMed DOI

Hay J., Aitken P.P., Graham D.I. Toxoplasma infection and response to novelty in mice. Z. Parasitenkd. 1984;70:575–588. doi: 10.1007/BF00926588. PubMed DOI

Hutchison W.M., Bradley M., Cheyne W.M., Wells B.W.P., Hay J. Behavioural abnormalities in Toxoplasma-infected mice. Ann. Trop. Med. Parasit. 1980;74:337–345. doi: 10.1080/00034983.1980.11687350. PubMed DOI

Hutchison W.M., Aitken P.P., Wells W.P. Chronic Toxoplasma infections and familiarity-novelty discrimination in the mouse. Ann. Trop. Med. Parasit. 1980;74:145–150. doi: 10.1080/00034983.1980.11687324. PubMed DOI

Piekarski G., Zippelius H.M., Witting P.A. Auswirkungen einer latenten Toxoplasma-Infektion auf das Lernvermogen von weissen Laboratoriumsratten and Mausen. Z. Parasitenkd. 1978;57:1–15. doi: 10.1007/BF00927625. PubMed DOI

Witting P.A. Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Z. Parasitenkd. 1979;61:29–51. doi: 10.1007/BF00927085. PubMed DOI

Flegr J. Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol. 2010;57:81–87. doi: 10.14411/fp.2010.010. PubMed DOI

Flegr J., Hrdý I. Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitol. 1994;41:122–126. PubMed

Flegr J., Zitkova S., Kodym P., Frynta D. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology. 1996;113:49–54. doi: 10.1017/S0031182000066269. PubMed DOI

Hari Dass S.A., Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol. Ecol. 2014;23:6114–6122. doi: 10.1111/mec.12888. PubMed DOI

Whitaker J.W., McConkey G.A., Westhead D.R. The transferome of metabolic genes explored: Analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol. 2009;10:R36. doi: 10.1186/gb-2009-10-4-r36. PubMed DOI PMC

Castello A., Bruschetta G., Giunta R.P., Marino A.M.F., Ferlazzo A.M. The effect of Toxoplasma gondii on plasma serotonin concentration in sheep. Vet. World. 2018;11:1500–1505. doi: 10.14202/vetworld.2018.1500-1505. PubMed DOI PMC

Yin K., Xu C., Zhao G.H., Xie H.H. Epigenetic manipulation of psychiatric behavioral disorders induced by Toxoplasma gondii. Front. Cell. Infect. Microbiol. 2022;12:803502. doi: 10.3389/fcimb.2022.803502. PubMed DOI PMC

David C.N., Frias E.S., Szu J.I., Vieira P.A., Hubbard J.A., Lovelace J., Michael M., Worth D., McGovern K.E., Ethell I.M., et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii. PLoS Pathog. 2016;12:e1005643. doi: 10.1371/journal.ppat.1005643. PubMed DOI PMC

Flegr J., Latifi A., Kaňková Š. Toxoplasma infection and its sequential impact on physical health, stress, and anxiety: A large cross-sectional study testing the stress-coping hypothesis. medRxiv. 2024 doi: 10.1101/2024.10.21.24315879. DOI

Flegr J., Prandota J., Sovickova M., Israili Z.H. Toxoplasmosis—A global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9:e90203. doi: 10.1371/journal.pone.0090203. PubMed DOI PMC

Torrey E.F., Bartko J.J., Lun Z.R., Yolken R.H. Antibodies to Toxoplasma gondii in patients with schizophrenia: A meta-analysis. Schizophr. Bull. 2007;33:729–736. doi: 10.1093/schbul/sbl050. PubMed DOI PMC

Afifi M.A., Jiman-Fatani A.A., Al-Rabia M.W., Al-Hussainy N.H., El Saadany S., Mayah W. More than an association: Latent toxoplasmosis might provoke a local oxidative stress that triggers the development of bipolar disorder. J. Microsc. Ultrastruct. 2018;6:139–144. doi: 10.4103/JMAU.JMAU_22_18. PubMed DOI PMC

Yang L.L., Wang B.Y., Wu S.Z., Yang Z.H., Xin Z.X., Zheng S.Y., Zou W.H., Zhang C., Chen J.T., Peng H.J. Population-based cohort study of Toxoplasma gondii P22 antibody positivity correlation with anxiety. J. Affect. Disord. 2024;359:41–48. doi: 10.1016/j.jad.2024.05.043. PubMed DOI

Akaltun I., Kara T., Ayaydin H., Alyanak B., Beka H., Agacfidan A. The relation between serum Toxoplasma gondii IgG antibody in children and ADHD and its severity. Psychiatry Clin. Psychopharmacol. 2019;29:326–331. doi: 10.1080/24750573.2018.1449184. DOI

Gajewski P.D., Falkenstein M., Hengstler J.G., Golka K. Toxoplasma gondii impairs memory in infected seniors. Brain Behav. Immun. 2014;36:193–199. doi: 10.1016/j.bbi.2013.11.019. PubMed DOI

Egorov A.I., Converse R.R., Griffin S.M., Styles J.N., Sams E., Hudgens E., Wade T.J. Latent Toxoplasma gondii infections are associated with elevated biomarkers of inflammation and vascular injury. BMC Infect. Dis. 2021;21:188. doi: 10.1186/s12879-021-05882-6. PubMed DOI PMC

Xu H., Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl. Psychiatr. 2022;12:464. doi: 10.1038/s41398-022-02233-0. PubMed DOI PMC

Pålsson E., Sellgren C., Pelanis A., Zetterberg H., Blennow K., Landén M. Altered brain dopamine metabolism is a trait marker for bipolar disorder. Biomark. Neuropsychiatry. 2023;9:100078. doi: 10.1016/j.bionps.2023.100078. DOI

Hlaváčová J., Flegr J., Řežábek K., Calda P., Kaňková Š. Male-to-female presumed transmission of toxoplasmosis between sexual partners. Am. J. Epidemiol. 2021;190:386–392. doi: 10.1093/aje/kwaa198. PubMed DOI

Vyas A. Nuts and bolts of the behavioural manipulation by Toxoplasma gondii. Folia Parasitol. 2024;71:6. doi: 10.14411/fp.2024.017. PubMed DOI

Abdoli A., Ghaffarifar F., Sharifi Z., Taghipour A. Toxoplasma gondii infection and testosterone alteration: A systematic review and meta-analyses. PLoS ONE. 2024;19:e0297362. doi: 10.1371/journal.pone.0297362. PubMed DOI PMC

Gaskell E.A., Smith J.E., Pinney J.W., Westhead D.R., McConkey G.A. A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS ONE. 2009;4:e4801. doi: 10.1371/journal.pone.0004801. PubMed DOI PMC

Hodková H., Kodym P., Flegr J. Poorer results of mice with latent toxoplasmosis in learning tests: Impaired learning processes or the novelty discrimination mechanism? Parasitology. 2007;134:1329–1337. doi: 10.1017/S0031182007002673. PubMed DOI

Skallová A., Kodym P., Frynta D., Flegr J. The role of dopamine in Toxoplasma-induced behavioural alterations in mice: An ethological and ethopharmacological study. Parasitology. 2006;133:525–535. doi: 10.1017/S0031182006000886. PubMed DOI

Webster J.P. Who makes the decisions? Uncovering the evolutionary implications and clinical applications of Toxoplasma gondii’s Fatal Feline Attraction. Folia Parasitol. 2025;72:016. doi: 10.14411/fp.2025.016. PubMed DOI

Hay J., Aitken P.P., Hair D.M., Hutchison W.M., Graham D.I. The effect of congenital Toxoplasma infection on mouse activity and relative preference for exposed areas over a series of trials. Ann. Trop. Med. Parasit. 1984;78:611–618. doi: 10.1080/00034983.1984.11811872. PubMed DOI

Gil M.P., Hegglin D., Briner T., Ruetten M., Muller N., More G., Frey C.F., Deplazes P., Basso W. High prevalence rates of Toxoplasma gondii in cat-hunted small mammals-Evidence for parasite induced behavioural manipulation in the natural environment? Int. J. Parasitol. Parasites Wildl. 2023;20:108–116. doi: 10.1016/j.ijppaw.2023.01.007. PubMed DOI PMC

Berdoy M., Webster J.P., Macdonald D.W. Fatal attraction in rats infected with Toxoplasma gondii. Proc. R. Soc. Lond. B Biol. Sci. 2000;267:1591–1594. doi: 10.1098/rspb.2000.1182. PubMed DOI PMC

Vyas A., Kim S.K., Giacomini N., Boothroyd J.C., Sapolsky R.M. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc. Natl. Acad. Sci. USA. 2007;104:6442–6447. doi: 10.1073/pnas.0608310104. PubMed DOI PMC

Lim A., Kumar V., Dass S.A.H., Vyas A. Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol. Ecol. 2013;22:102–110. doi: 10.1111/mec.12042. PubMed DOI

Flegr J., Markos A. Masterpiece of epigenetic engineering—How Toxoplasma gondii reprogrammes host brains to change fear to sexual attraction. Mol. Ecol. 2014;23:5934–5936. doi: 10.1111/mec.13006. PubMed DOI

Cano-Terriza D., Puig-Ribas M., Jimenez-Ruiz S., Cabezon O., Almeria S., Galan-Relano A., Dubey J.P., Garcia-Bocanegra I. Risk factors of Toxoplasma gondii infection in hunting, pet and watchdogs from southern Spain and northern Africa. Parasitol. Int. 2016;65:363–366. doi: 10.1016/j.parint.2016.05.001. PubMed DOI

Dubey J.P., Murata F.H.A., Cerqueira-Cézar C.K., Kwok O.C.H., Yang Y., Su C. Recent epidemiologic, clinical, and genetic diversity of Toxoplasma gondii infections in non-human primates. Res. Vet. Sci. 2021;136:631–641. doi: 10.1016/j.rvsc.2021.04.017. PubMed DOI

Boesch C. The effects of leopard predation on grouping patterns in forest chimpanzees. Behaviour. 1991;117:220–241. doi: 10.1163/156853991X00544. DOI

Nakazawa N., Hanamura S., Inoue E., Nakatsukasa M., Nakamura M. A leopard ate a chimpanzee: First evidence from East Africa. J. Hum. Evol. 2013;65:334–337. doi: 10.1016/j.jhevol.2013.04.003. PubMed DOI

Poirotte C., Kappeler P.M., Ngoubangoye B., Bourgeois S., Moussodji M., Charpentier M.J.E. Morbid attraction to leopard urine in Toxoplasma-infected chimpanzees. Curr. Biol. 2016;26:R98–R99. doi: 10.1016/j.cub.2015.12.020. PubMed DOI

Lindová J., Novotná M., Havlíček J., Jozífková E., Skallová A., Kolbeková P., Hodný Z., Kodym P., Flegr J. Gender differences in behavioural changes induced by latent toxoplasmosis. Int. J. Parasit. 2006;36:1485–1492. doi: 10.1016/j.ijpara.2006.07.008. PubMed DOI

Cook T.B., Brenner L.A., Cloninger C.R., Langenberg P., Igbide A., Giegling I., Hartmann A.M., Konte B., Friedl M., Brundin L., et al. “Latent” infection with Toxoplasma gondii: Association with trait aggression and impulsivity in healthy adults. J. Psychiatr. Res. 2015;60:87–94. doi: 10.1016/j.jpsychires.2014.09.019. PubMed DOI

Coccaro E.F., Lee R., Groer M.W., Can A., Coussons-Read M., Postolache T.T. Toxoplasma gondii infection: Relationship with aggression in psychiatric subjects. J. Clin. Psychiatry. 2016;77:334–341. doi: 10.4088/JCP.14m09621. PubMed DOI

Hamid N., Azizy B., Hamidinejad H. Toxoplasma gondii infection and aggression in autistic children. Pediatr. Infect. Dis. J. 2022;41:492–495. doi: 10.1097/INF.0000000000003516. PubMed DOI

Flegr J., Havlíček J., Kodym P., Malý M., Šmahel Z. Increased risk of traffic accidents in subjects with latent toxoplasmosis: A retrospective case-control study. BMC Infect. Dis. 2002;2:art-11. doi: 10.1186/1471-2334-2-11. PubMed DOI PMC

Yereli K., Balcioglu I.C., Ozbilgin A. Is Toxoplasma gondii a potential risk for traffic accidents in Turkey? Forensic Sci. Int. 2006;163:34–37. doi: 10.1016/j.forsciint.2005.11.002. PubMed DOI

Stepanova E.V., Kondrashin A.V., Sergiev V.P., Morozova L.F., Turbabina N.A., Maksimova M.S., Brazhnikov A.I., Shevchenko S.B., Morozov E.N. Significance of chronic toxoplasmosis in epidemiology of road traffic accidents in Russian Federation. PLoS ONE. 2017;12:e0184930. doi: 10.1371/journal.pone.0184930. PubMed DOI PMC

Ghasemirad H., Aalazade M.S., Shariatpanahi M., Owliaey H., Kargar M., Ghasemirad M., Zare M. Higher risk of car accidents in older patients with Toxoplasma gondii in Yazd province, center of Iran: A Cohort Study. Preprint. 2022 doi: 10.21203/rs.3.rs-2213735/v1. DOI

Rayatdoost E., Chegin M., Taghipour A., Shadmand E., Rezaei F., Falahi S., Kenarkoohi A., Badri M., Solhjoo K., Abdoli A. Latent toxoplasmosis, Cytomegalovirus, and Herpes Simplex Virus infections and risk of motorcycle accidents: A case-control study in a county with a high rate of motorcycle injuries in Iran. PLoS ONE. 2024;19:e0307950. doi: 10.1371/journal.pone.0307950. PubMed DOI PMC

Flegr J., Dama M. Does prevalence of latent toxoplasmosis correlate with nation-wide rate of traffic accidents? Folia Parasitol. 2014;6:485–494. doi: 10.14411/fp.2014.061. PubMed DOI

Gohardehi S., Sharif M., Sarvi S., Moosazadeh M., Alizadeh-Navaei R., Hosseini S.A., Amouei A., Pagheh A., Sadeghi M., Daryani A. The potential risk of toxoplasmosis for traffic accidents: A systematic review and meta-analysis. Exp. Parasitol. 2018;191:19–24. doi: 10.1016/j.exppara.2018.06.003. PubMed DOI

Sutterland A.L., Kuin A., Kuiper B., van Gool T., Leboyer M., Fond G., de Haan L. Driving us mad: The association of Toxoplasma gondii with suicide attempts and traffic accidents—A systematic review and meta-analysis. Psychol. Med. 2019;49:1608–1623. doi: 10.1017/S0033291719000813. PubMed DOI

Alvarado-Esquivel C., Torres-Castorena A., Liesenfeld O., Estrada-Martinez S., Urbina-Alvarez J.D. High seroprevalence of Toxoplasma gondii infection in a subset of Mexican patients with work accidents and low socioeconomic status. Parasit Vectors. 2012;5:13. doi: 10.1186/1756-3305-5-13. PubMed DOI PMC

Johnson S.K., Fitza M.A., Lerner D.A., Calhoun D.M., Beldon M.A., Chan E.T., Johnson P.T.J. Risky business: Linking Toxoplasma gondii infection and entrepreneurship behaviours across individuals and countries. Proc. R. Soc. B-Biol. Sci. 2018;285:20180822. doi: 10.1098/rspb.2018.0822. PubMed DOI PMC

Flegr J., Kodym P., Tolarová V. Correlation of duration of latent Toxoplasma gondii infection with personality changes in women. Biol. Psychol. 2000;53:57–68. doi: 10.1016/S0301-0511(00)00034-X. PubMed DOI

Flegr J., Havlíček J. Changes in the personality profile of young women with latent toxoplasmosis. Folia Parasitol. 1999;46:22–28. PubMed

Flegr J., Novotná M., Fialová A., Kolbeková P., Gašová Z. The influence of RhD phenotype on toxoplasmosis- and age-associated changes in personality profile of blood donors. Folia Parasitol. 2010;57:143–150. doi: 10.14411/fp.2010.018. PubMed DOI

Lindová J., Příplatová L., Flegr J. Higher extraversion and lower conscientiousness in humans infected with Toxoplasma. Eur. J. Personal. 2012;26:285–291. doi: 10.1002/per.838. DOI

Flegr J., Preiss M., Klose J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS ONE. 2013;8:e61272. doi: 10.1371/journal.pone.0061272. PubMed DOI PMC

Lafferty K.D. Can the common brain parasite, Toxoplasma gondii, influence human culture? Proc. R. Soc. B-Biol. Sci. 2006;273:2749–2755. doi: 10.1098/rspb.2006.3641. PubMed DOI PMC

Flegr J., Preiss M., Klose J., Havlíček J., Vitáková M., Kodym P. Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii. Dopamine, a missing link between schizophrenia and toxoplasmosis? Biol. Psychol. 2003;63:253–268. doi: 10.1016/S0301-0511(03)00075-9. PubMed DOI

Lindová J., Kuběna A.A., Šturcová A., Křivohlavá R., Novotná M., Rubešová A., Havlíček J., Kodym P., Flegr J. Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol. 2010;57:136–142. doi: 10.14411/fp.2010.017. PubMed DOI

Alvarado-Esquivel C., Estrada-Martinez S., Ramos-Nevarez A., Perez-Alamos A.R., Beristain-Garcia I., Alvarado-Felix A.O., Cerrillo-Soto S.M., Alvarado-Felix G.A., Guido-Arreola C.A., Saenz-Soto L., et al. Is Toxoplasma gondii infection associated with sexual promiscuity? A cross-sectional study. Pathogens. 2021;10:1393. doi: 10.3390/pathogens10111393. PubMed DOI PMC

Sýkorová K., Flegr J. Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health. Sci. Rep. 2021;11:11254. doi: 10.1038/s41598-021-90579-8. PubMed DOI PMC

Thrall P.H., Antonovics J., Dobson A.P. Sexually transmitted diseases in polygynous mating systems: Prevalence and impact on reproductive success. Proc. Biol. Sci. 2000;267:1555–1563. doi: 10.1098/rspb.2000.1178. PubMed DOI PMC

Dass S.A.H., Vasudevan A., Dutta D., Soh L.J.T., Sapolsky R.M., Vyas A. Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS ONE. 2011;6:e27229. doi: 10.1371/journal.pone.0027229. PubMed DOI PMC

Moura A.B., Costa A.J., Jordao S., Paim B.B., Pinto F.R., Di Mauro D.C. Toxoplasma gondii in semen of experimentally infected swine. Pesqui. Vet. Bras. 2007;27:430–434. doi: 10.1590/S0100-736X2007001000008. DOI

Tong W.H., Hlavacova J., Abdulai-Saiku S., Kankova S., Flegr J., Vyas A. Presence of Toxoplasma gondii tissue cysts in human semen: Toxoplasmosis as a potential sexually transmissible infection. J. Infect. 2023;86:60–65. doi: 10.1016/j.jinf.2022.10.034. PubMed DOI

Boyer K.M., Holfels M., Roizen N., Swisher C., Mack D., Remington J., Withers S., Meier P., McLeod R. Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: Implications for prenatal management and screening. Am. J. Obstet. Gynecol. 2005;192:564–571. doi: 10.1016/j.ajog.2004.07.031. PubMed DOI

Petersen E., Vesco G., Villari S., Buffolano W. What do we know about risk factors for infection in humans with Toxoplasma gondii and how can we prevent infections? Zoonoses Public Health. 2010;57:8–17. doi: 10.1111/j.1863-2378.2009.01278.x. PubMed DOI

Flegr J., Klapilová K., Kaňková Š. Toxoplasmosis can be a sexually transmitted infection with serious clinical consequences. Not all routes of infection are created equal. Med. Hypotheses. 2014;83:286–289. doi: 10.1016/j.mehy.2014.05.019. PubMed DOI

Kodym P., Malý M., Švandová E., Lekatková H., Badoutová M., Vlková J., Beneš C., Zástěra M. Toxoplasma in the Czech Republic 1923–1999: First case to widespread outbreak: In Recent trends in research on congenital toxoplasmosis. Int. J. Parasit. 2000;30:11–18. doi: 10.1016/s0020-7519(00)00140-5. DOI

Torrey E.F., Bartko J.J., Yolken R.H. Toxoplasma gondii and other risk factors for schizophrenia: An update. Schizophr. Bull. 2012;38:642–647. doi: 10.1093/schbul/sbs043. PubMed DOI PMC

Holub D., Flegr J., Dragomirecka E., Rodriguez M., Preiss M., Novak T., Cermak J., Horacek J., Kodym P., Libiger J., et al. Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiat Scand. 2013;127:227–238. doi: 10.1111/acps.12031. PubMed DOI

Alvarado-Esquivel C., Sanchez-Anguiano L.F., Hernandez-Tinoco J., Arreola-Chaidez E., Lopez J., Salcido-Meraz K.I., Estrada-Martinez S., Navarrete-Flores J.A., Perez-Alamos A.R., Hernandez-Ochoa M., et al. High seroprevalence of Toxoplasma gondii infection in female sex workers: A case-control study. Eur. J. Microbiol. Immunol. 2015;5:285–292. doi: 10.1556/1886.2015.00039. PubMed DOI PMC

Kaňková Š., Hlaváčová J., Flegr J. Oral sex: A new, and possibly the most dangerous, route of toxoplasmosis transmission. Med. Hypotheses. 2020;141:109725. doi: 10.1016/j.mehy.2020.109725. PubMed DOI

Disko R., Braveny I., Vogel P. Studies on the occurrence of Toxoplasma gondii in the human ejaculate. Z. Tropenmed. Parasitol. 1971;22:391–396. PubMed

Ullmann J., Kodym P., Flegr J., Berenova D., Jirsová S., Kanková S. Oral sex as a potential route for Toxoplasma gondii transmission: Experiment with human semen and laboratory mice model. Acta Parasitol. 2024;69:1314–1318. doi: 10.1007/s11686-024-00848-5. PubMed DOI

Sýkorová K., Fiala V., Hlaváčová J., Kaňková Š., Flegr J. Redheaded women are more sexually active than other women, but it is probably due to their suitors. Front. Psychol. 2022;13:13. doi: 10.3389/fpsyg.2022.1000753. PubMed DOI PMC

Trigunaite A., Dimo J., Jørgensen T.N. Suppressive effects of androgens on the immune system. Cell. Immunol. 2015;294:87–94. doi: 10.1016/j.cellimm.2015.02.004. PubMed DOI

Henriquez S.A., Brett R., Alexander J., Pratt J., Roberts C.W. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation. 2009;16:122–133. doi: 10.1159/000180267. PubMed DOI

Flegr J., Kuba R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol. Psychol. 2016;14:1474704916659746. doi: 10.1177/1474704916659746. DOI

Flegr J. Does Toxoplasma infection increase sexual masochism and submissiveness? Yes and no. Commun. Integr. Biol. 2017;10:e1303590. doi: 10.1080/19420889.2017.1303590. PubMed DOI PMC

Flegr J., Escudero D.Q. Impaired health status and increased incidence of diseases in Toxoplasma-seropositive subjects—An explorative cross-sectional study. Parasitology. 2016;143:1974–1989. doi: 10.1017/S0031182016001785. PubMed DOI

Vyas A. Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii. J. Exp. Biol. 2013;216:120–126. doi: 10.1242/jeb.072983. PubMed DOI

Baum M.J., Kelliher K.R. Complementary roles of the main and accessory olfactory systems in mammalian mate recognition. Annu. Rev. Physiol. 2009;71:141–160. doi: 10.1146/annurev.physiol.010908.163137. PubMed DOI

Penn D., Potts W.K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 1998;13:391–396. doi: 10.1016/S0169-5347(98)01473-6. PubMed DOI

Møller A.P., Christe P., Lux E. Parasitism, host immune function, and sexual selection. Q. Rev. Biol. 1999;74:3–20. doi: 10.1086/392949. PubMed DOI

Hodková H. Diploma Thesis. Charles University; Prague, Czech Republic, 2006: Behavioral and Neurophysiological Manifestations of Latent Toxoplasmosis in Mice; p. 104.

Flegr J., Hrušková M., Hodný Z., Novotná M., Hanušová J. Body height, body mass index, waist-hip ratio, fluctuating asymmetry and second to fourth digit ratio in subjects with latent toxoplasmosis. Parasitology. 2005;130:621–628. doi: 10.1017/S0031182005007316. PubMed DOI

Hodková H., Kolbeková P., Skallová A., Lindová J., Flegr J. Higher perceived dominance in Toxoplasma infected men—A new evidence for role of increased level of testosterone in toxoplasmosis-associated changes in human behavior. Neuroendocrinol. Lett. 2007;28:110–114. PubMed

Borraz-Leon J.I., Rantala M.J., Krams I.A., Cerda-Molina A.L., Contreras-Garduno J. Are Toxoplasma-infected subjects more attractive, symmetrical, or healthier than non-infected ones? Evidence from subjective and objective measurements. PeerJ. 2022;10:e13122. doi: 10.7717/peerj.13122. PubMed DOI PMC

Flegr J., Lindová J., Kodym P. Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology. 2008;135:427–431. doi: 10.1017/S0031182007004064. PubMed DOI

Roved J., Westerdahl H., Hasselquist D. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Horm. Behav. 2017;88:95–105. doi: 10.1016/j.yhbeh.2016.11.017. PubMed DOI

Ortiz-Guerrero G., Gonzalez-Reyes R.E., de-la-Torre A., Medina-Rincon G., Nava-Mesa M.O. Pathophysiological mechanisms of cognitive impairment and neurodegeneration by Toxoplasma gondii infection. Brain Sci. 2020;10:369. doi: 10.3390/brainsci10060369. PubMed DOI PMC

Flegr J., Chvátalová V., Příplatová L., Tureček P., Kodym P., Šebánková B., Kaňková Š. Cognitive effects of Toxoplasma and CMV infections: A cross-sectional study of 557 young adults considering modulation by sex and Rh factor. Pathogens. 2024;13:363. doi: 10.3390/pathogens13050363. PubMed DOI PMC

Havlíček J., Gašová Z., Smith A.P., Zvára K., Flegr J. Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology. 2001;122:515–520. doi: 10.1017/S0031182001007624. PubMed DOI

Příplatová L., Šebanková B., Flegr J. Contrasting effect of prepulse signals on performance of Toxoplasma-infected and Toxoplasma-free subjects in an acoustic reaction times test. PLoS ONE. 2014;9:e112771. doi: 10.1371/journal.pone.0112771. PubMed DOI PMC

de Haan L., Sutterland A.L., Schotborgh J.V., Schirmbeck F., de Haan L. Association of Toxoplasma gondii seropositivity with cognitive function in healthy people: A systematic review and meta-analysis. JAMA Psychiatry. 2021;78:1103–1112. doi: 10.1001/jamapsychiatry.2021.1590. PubMed DOI PMC

Flegr J., Klose J., Novotná M., Berenreitterová M., Havlíček J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect. Dis. 2009;9:72. doi: 10.1186/1471-2334-9-72. PubMed DOI PMC

Novotná M., Havlíček J., Smith A.P., Kolbeková P., Skallová A., Klose J., Gašová Z., Písačka M., Sechovská M., Flegr J. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology. 2008;135:1253–1261. doi: 10.1017/S003118200800485X. PubMed DOI

Flegr J., Novotná M., Lindová J., Havlíček J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol. Lett. 2008;29:475–481. PubMed

Mahmoudvand H., Sheibani V., Shojaee S., Mirbadie S.R., Keshavarz H., Esmaeelpour K., Keyhani A.R., Ziaali N. Toxoplasma gondii infection potentiates cognitive impairments of Alzheimer’s disease in the Balb/c mice. J. Parasitol. 2016;102:629–635. doi: 10.1645/16-28. PubMed DOI

Torres L., Robinson S.A., Kim D.G., Yan A., Cleland T.A., Bynoe M.S. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. J. Neuroinflamm. 2018;15:57. doi: 10.1186/s12974-018-1086-8. PubMed DOI PMC

Möhle L., Israel N., Paarmann K., Krohn M., Pietkiewicz S., Müller A., Dunay I.R. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol. Commun. 2016;4:25. doi: 10.1186/s40478-016-0293-8. PubMed DOI PMC

Kusbeci O.Y., Miman O., Yaman M., Aktepe O.C., Yazar S. Could Toxoplasma gondii have any role in Alzheimer disease? Alzheimer Dis. Assoc. Disord. 2011;25:1–3. doi: 10.1097/WAD.0b013e3181f73bc2. PubMed DOI

Perry C.E., Gale S.D., Erickson L., Wilson E., Nielsen B., Kauwe J., Hedges D.W. Seroprevalence and serointensity of latent Toxoplasma gondii in a sample of elderly adults with and without alzheimer disease. Alzheimer Dis. Assoc. Disord. 2016;30:123–126. doi: 10.1097/WAD.0000000000000108. PubMed DOI

Galeh T.M., Ghazvini H., Mohammadi M., Sarvi S., Azizi S., Asgarian-Omran H., Hajizadeh F., Daryani A. Effects of diverse types of Toxoplasma gondii on the outcome of Alzheimer’s disease in the rat model. Microb. Pathog. 2023;174:8. doi: 10.1016/j.micpath.2022.105931. PubMed DOI

Gale S.D., Erickson L.D., Thacker E.L., Mitchell E.L., Brown B.L., Hedges D.W. Toxoplasma gondii seropositivity and serointensity and cognitive function in adults. PLoS Neglect. Trop. Dis. 2020;14:e0008733. doi: 10.1371/journal.pntd.0008733. PubMed DOI PMC

Song G., Zhao Q., Chen H., Li M., Zhang Z., Qu Z., Yang C., Lin X., Ma W., Standlee C.R. Toxoplasma gondii seropositivity and cognitive functioning in older adults: An analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011–2014. BMJ Open. 2024;14:e071513. doi: 10.1136/bmjopen-2022-071513. PubMed DOI PMC

Mendy A., Vieira E.R., Albatineh A.N., Gasana J. Toxoplasma gondii seropositivity and cognitive functions in school-aged children. Parasitology. 2015;142:1221–1227. doi: 10.1017/S0031182015000505. PubMed DOI

Dincel G.C., Atmaca H.T. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int. J. Immunopathol. Pharmacol. 2016;29:226–240. doi: 10.1177/0394632016638668. PubMed DOI PMC

Colzato L., Zhang W.X., Beste C., Stock A.K. Dissociating direct and indirect effects: A theoretical framework of how latent toxoplasmosis affects cognitive profile across the lifespan. Neurobiol. Aging. 2021;102:119–128. doi: 10.1016/j.neurobiolaging.2021.02.007. PubMed DOI

He Y., Xu D.X., Yan Z.Y., Wu Y.S., Zhang Y.S., Tian X.K., Zhu J.H., Liu Z.Z., Cheng W.P., Zheng K.Y., et al. A metabolite attenuates neuroinflammation, synaptic loss and cognitive deficits induced by chronic infection of Toxoplasma gondii. Front. Immunol. 2022;13:21. doi: 10.3389/fimmu.2022.1043572. PubMed DOI PMC

Jones-Brando L., Torrey E.F., Yolken R. Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr. Res. 2003;62:237–244. doi: 10.1016/S0920-9964(02)00357-2. PubMed DOI

Hamdani N., Daban-Huard C., Lajnef M., Gadel R., Le Corvoisier P., Delavest M., Carde S., Lepine J.P., Jamain S., Houenou J., et al. Cognitive deterioration among bipolar disorder patients infected by Toxoplasma gondii is correlated to interleukin 6 levels. J. Affect. Disord. 2015;179:161–166. doi: 10.1016/j.jad.2015.03.038. PubMed DOI

Dickerson F., Stallings C., Origoni A., Katsafanas E., Schweinfurth L., Savage C., Khushalani S., Yolken R. Antibodies to Toxoplasma gondii and cognitive functioning in schizophrenia, bipolar disorder, and nonpsychiatric controls. J. Nerv. Ment. Dis. 2014;202:589–593. doi: 10.1097/NMD.0000000000000166. PubMed DOI

Guimaraes A.L., Coelho D., Scoriels L., Mambrini J., Antonelli L., Henriques P., Teixeira-Carvalho A., Martins O., Mineo J., Bahia-Oliveira L., et al. Effects of Toxoplasma gondii infection on cognition, symptoms, and response to digital cognitive training in schizophrenia. Schizophrenia. 2022;8:104. doi: 10.1038/s41537-022-00292-2. PubMed DOI PMC

Veleva I., Stoychev K., Stoimenova-Popova M., Stoyanov L., Mineva-Dimitrova E., Angelov I. Toxoplasma gondii seropositivity and cognitive function in adults with schizophrenia. Schizophr. Res. Cogn. 2022;30:6. doi: 10.1016/j.scog.2022.100269. PubMed DOI PMC

Millard S.J., Bearden C.E., Karlsgodt K.H., Sharpe M.J. The prediction-error hypothesis of schizophrenia: New data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology. 2022;47:628–640. doi: 10.1038/s41386-021-01188-y. PubMed DOI PMC

Zhan L., Kerr J.R., Lafuente M.J., Maclean A., Chibalina M.V., Liu B., Burke B., Bevan S., Nasir J. Altered expression and coregulation of dopamine signalling genes in schizophrenia and bipolar disorder. Neuropathol. Appl. Neurobiol. 2011;37:206–219. doi: 10.1111/j.1365-2990.2010.01128.x. PubMed DOI

Previc F.H. Dopamine and the origins of human intelligence. Brain Cogn. 1999;41:299–350. doi: 10.1006/brcg.1999.1129. PubMed DOI

Yang X., Zhou Y., Tan S., Tian X., Meng X., Li Y., Zhou B., Zhao G., Ge X., He C., et al. Alterations in gut microbiota contribute to cognitive deficits induced by chronic infection of Toxoplasma gondii. Brain Behav. Immun. 2024;119:394–407. doi: 10.1016/j.bbi.2024.04.008. PubMed DOI

Flegr J., Ullmann J., Toman J. Parasitic manipulation or side effects? The effects of past Toxoplasma gondii and Borrelia spp. infections on human personality and cognitive performance are not mediated by impaired health. Folia Parasitol. 2023;70:13. doi: 10.14411/fp.2023.020. PubMed DOI

Flegr J., Horáček J. Toxoplasmosis, but not borreliosis, is associated with psychiatric disorders and symptoms. Schizophr. Res. 2018;197:603–604. doi: 10.1016/j.schres.2018.02.008. PubMed DOI

Minto A., Roberts F.J. The psychiatric complications of toxoplasmosis. Lancet. 1959;1:1180–1182. doi: 10.1016/S0140-6736(59)91187-0. PubMed DOI

Torrey E.F. The linking of toxoplasmosis and schizophrenia. Folia Parasitol. 2024;71:7. doi: 10.14411/fp.2024.016. PubMed DOI

Sutterland A.L., Fond G., Kuin A., Koeter M.W., Lutter R., van Gool T., Yolken R., Szoke A., Leboyer M., de Haan L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: Systematic review and meta-analysis. Acta Psychiat. Scand. 2015;132:161–179. doi: 10.1111/acps.12423. PubMed DOI

Flegr J., Příplatová L., Hampl R., Bičíková M., Řípová D., Mohr P. Difference of neuro- and immunomodulatory steroids and selected hormone and lipid concentrations between Toxoplasma-free and Toxoplasma-infected but not CMV-free and CMV-infected schizophrenia patients. Neuroendocrinol. Lett. 2014;35:20–27. PubMed

Wang H.L., Wang G.H., Li Q.Y., Shu C., Jiang M.S., Guo Y. Prevalence of Toxoplasma infection in first-episode schizophrenia and comparison between Toxoplasma-seropositive and Toxoplasma-seronegative schizophrenia. Acta Psychiat Scand. 2006;114:40–48. doi: 10.1111/j.1600-0447.2006.00780.x. PubMed DOI

Celik T., Kartalci S., Aytas O., Akarsu G.A., Gozukara H., Unal S. Association between latent toxoplasmosis and clinical course of schizophrenia—Continuous course of the disease is characteristic for Toxoplasma gondii-infected patients. Folia Parasitol. 2015;62:015. doi: 10.14411/fp.2015.015. PubMed DOI

Flegr J. Predictors of Toxoplasma gondii infection in Czech and Slovak populations: The possible role of cat-related injuries and risky sexual behavior in the parasite transmission. Epidemiol. Infect. 2017;145:1351–1362. doi: 10.1017/S095026881700019X. PubMed DOI PMC

Fond G., Macgregor A., Tamouza R., Hamdani N., Meary A., Leboyer M., Dubremetz J.F. Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur. Arch. Psych. Clin. Neurosci. 2014;264:179–183. doi: 10.1007/s00406-013-0413-4. PubMed DOI

Prandovszky E., Gaskell E., Martin H., Dubey J.P., Webster J.P., McConkey G.A. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE. 2011;6:e23866. doi: 10.1371/journal.pone.0023866. PubMed DOI PMC

Flegr J., Horáček J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry. 2020;10:1012. doi: 10.3389/fpsyt.2019.01012. PubMed DOI PMC

El-Sayed S.H., Al-Shewy K.A.H., Abdin E.M., Hasan H.M. Seroprevalence of toxoplasmosis among children with autism. Egypt. J. Neurol. Psychiatr. Neurosurg. 2024;60:7. doi: 10.1186/s41983-024-00816-w. DOI

Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Sharif M., Amouei A., Daryani A. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis. Microb. Pathog. 2020;147:104434. doi: 10.1016/j.micpath.2020.104434. PubMed DOI

Pavăl D., Micluția I.V. The dopamine hypothesis of autism spectrum disorder revisited: Current status and future prospects. Dev. Neurosci. 2021;43:73–83. doi: 10.1159/000515751. PubMed DOI

Brown A.S., Sourander A., Hinkka-Yli-Salomäki S., McKeague I.W., Sundvall J., Surcel H.M. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry. 2014;19:259–264. doi: 10.1038/mp.2012.197. PubMed DOI PMC

Prandota J. Autism spectrum disorders may be due to cerebral toxoplasmosis associated with chronic neuroinflammation causing persistent hypercytokinemia that resulted in an increased lipid peroxidation, oxidative stress, and depressed metabolism of endogenous and exogenous substances. Res. Autism Spectr. Disord. 2010;4:119–155. doi: 10.1016/j.rasd.2009.09.011. DOI

Maisarah A., Mohamad S., Husain M., Abdullah S., Noordin R. Association between infection with Toxoplasma gondii and psychiatric disorders. Folia Parasitol. 2022;69:008. doi: 10.14411/fp.2022.008. PubMed DOI

Noori M.A., Al-Hasnawi S.M.J., Al-Haidari A.F., Hamza D.M. Toxoplasma gondii seropositivity and attention deficit hyperactivity disorder. J. Glob. Sci. Res. 2020;10:871–879.

Khademvatan S., Riahi F., Izadi-Mazidi M., Khajeddin N., Yousefi E. Toxoplasma gondii exposure and the risk of attention deficit hyperactivity disorder in children and adolescents. Pediatr. Infect. Dis. J. 2018;37:1097–1100. doi: 10.1097/INF.0000000000001985. PubMed DOI

Nayeri T., Sarvi S., Moosazadeh M., Hosseininejad Z., Amouei A., Daryani A. Toxoplasma gondii infection and risk of attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Pathog. Glob. Health. 2020;114:117–126. doi: 10.1080/20477724.2020.1738153. PubMed DOI PMC

Hamdani N., Daban-Huard C., Lajnef M., Richard J.R., Delavest M., Godin O., Le Guen E., Vederine F.E., Lepine J.P., Jamain S., et al. Relationship between Toxoplasma gondii infection and bipolar disorder in a French sample. J. Affect. Disord. 2013;148:444–448. doi: 10.1016/j.jad.2012.11.034. PubMed DOI

de Barros J., Barbosa I.G., Salem H., Rocha N.P., Kummer A., Okusaga O.O., Soares J.C., Teixeira A.L. Is there any association between Toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J. Affect. Disord. 2017;209:59–65. doi: 10.1016/j.jad.2016.11.016. PubMed DOI

Cossu G., Preti A., Gyppaz D., Gureje O., Carta M.G. Association between toxoplasmosis and bipolar disorder: A systematic review and meta-analysis. J. Psychiatr. Res. 2022;153:284–291. doi: 10.1016/j.jpsychires.2022.07.013. PubMed DOI

Smith M.J., Chmielowska M., Koola M.M., Srihari V.H. Gender differences within the psychosis spectrum. J. Neuropsychiatry Clin. Neurosci. 2019;31:64–71. doi: 10.4172/Neuropsychiatry.1000447. DOI

Seeman M.V. Women who suffer from schizophrenia: Critical issues. World J. Psychiatry. 2018;8:125–136. doi: 10.5498/wjp.v8.i5.125. PubMed DOI PMC

Petkari E., Mayoral F., Moreno-Küstner B. Gender matters in schizophrenia-spectrum disorders: Results from a healthcare users epidemiological study in Malaga, Spain. Compr. Psychiatry. 2017;72:136–143. doi: 10.1016/j.comppsych.2016.09.012. PubMed DOI

Hazell C.M., Berry C., Bogen-Johnston L., Banerjee M. Creating a hierarchy of mental health stigma: Testing the effect of psychiatric diagnosis on stigma. BJPsych Open. 2022;8:e174. doi: 10.1192/bjo.2022.578. PubMed DOI PMC

Groër M.W., Yolken R.H., Xiao J.C., Beckstead J.W., Fuchs D., Mohapatra S.S., Seyfang A., Postolache T.T. Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am. J. Obstet. Gynecol. 2011;204:433.e1–433.e7. doi: 10.1016/j.ajog.2011.01.004. PubMed DOI PMC

Markovitz A.A., Simanek A.M., Yolken R.H., Galea S., Koenen K.C., Chen S., Aiello A.E. Toxoplasma gondii and anxiety disorders in a community-based sample. Brain Behav. Immun. 2015;43:192–197. doi: 10.1016/j.bbi.2014.08.001. PubMed DOI

Zhang Y., Traskman-Bendz L., Janelidze S., Langenberg P., Saleh A., Constantine N., Okusaga O., Bay-Richter C., Brundin L., Postolache T.T. Toxoplasma gondii immunoglobulin G antibodies and nonfatal suicidal self-directed violence. J. Clin. Psychiatry. 2012;73:1069–1076. doi: 10.4088/JCP.11m07532. PubMed DOI

Gale S.D., Brown B.L., Berrett A., Erickson L.D., Hedges D.W. Association between latent toxoplasmosis and major depression, generalised anxiety disorder and panic disorder in human adults. Folia Parasitol. 2014;61:285–292. doi: 10.14411/fp.2014.038. PubMed DOI

de Bles N.J., van der Does J.E.H., Kortbeek L.M., Hofhuis A., van Grootheest G., Vollaard A.M., Schoevers R.A., van Hemert A.M., Penninx B., Rius-Ottenheim N., et al. Toxoplasma gondii seropositivity in patients with depressive and anxiety disorders. Brain Behav. Immun. Health. 2021;11:100197. doi: 10.1016/j.bbih.2020.100197. PubMed DOI PMC

Dionisie V., Filip G.A., Manea M.C., Manea M., Riga S. The anti-inflammatory role of SSRI and SNRI in the treatment of depression: A review of human and rodent research studies. Inflammopharmacology. 2021;29:75–90. doi: 10.1007/s10787-020-00777-5. PubMed DOI

Kar N., Misra B. Toxoplasma seropositivity and depression: A case report. BMC Psychiatry. 2004;4:1. doi: 10.1186/1471-244X-4-1. PubMed DOI PMC

Nasirpour S., Kheirandish F., Fallahi S. Depression and Toxoplasma gondii infection: Assess the possible relationship through a seromolecular case-control study. Arch. Microbiol. 2020;203:2689–2695. doi: 10.1007/s00203-020-01993-x. PubMed DOI

Rahiminezhad A., Latifi A., Rostami R., Farahani H. Psychopathology of latent toxoplasmosis in infected individuals: Roles of age, duration of infection, and sex. Med. J. Tabriz Univ. Med. Sci. Health Serv. 2024;46:61–73. doi: 10.34172/mj.2024.014. DOI

Miman O., Mutlu E.A., Ozcan O., Atambay M., Karlidag R., Unal S. Is there any role of Toxoplasma gondii in the etiology of obsessive-compulsive disorder? Psychiatry Res. 2010;177:263–265. doi: 10.1016/j.psychres.2009.12.013. PubMed DOI

Flegr J., Horáček J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiatry. 2017;40:82–87. doi: 10.1016/j.eurpsy.2016.09.001. PubMed DOI

Kazemi F., Sayyah M., Tavalla M., Arjmand R. Toxoplasmosis in treatment-resistant obsessive-compulsive disorder patients. Acta Parasitol. 2022;67:356–361. doi: 10.1007/s11686-021-00471-8. PubMed DOI

Nayeri Chegeni T., Sarvi S., Amouei A., Moosazadeh M., Hosseininejad Z., Aghayan S.A., Daryani A. Relationship between toxoplasmosis and obsessive compulsive disorder: A systematic review and meta-analysis. PLoS Neglect. Trop. Dis. 2019;13:e0007306. doi: 10.1371/journal.pntd.0007306. PubMed DOI PMC

American Psychiatric A. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Publishing; Arlington, VA, USA: 2022. DSM-5-TR.

Akgul O. The effects of latent Toxoplasma gondii infection on the behavior and personality characteristics of university students. Anadolu Psikiyatri Dergisi. 2020;21:70–76. doi: 10.5455/apd.40913. DOI

Flegr J. Effects of Toxoplasma on human behavior. Schizophr. Bull. 2007;33:757–760. doi: 10.1093/schbul/sbl074. PubMed DOI PMC

Rocha-Salais A., Munoz-Larreta F.Y., Garcia-Perez S.I., Serrato-Enriquez A.I., Rivas-Gonzalez M.A., Sifuentes-Alvarez A., Rabago-Sanchez E., Beristain-Garcia I., Alvarado-Esquivel C. Survey on the association between Toxoplasma gondii infection and violent behavior in inmates. PLoS ONE. 2023;18:e0284202. doi: 10.1371/journal.pone.0284202. PubMed DOI PMC

Berrett A.N., Gale S.D., Erickson L.D., Thacker E.L., Brown B.L., Hedges D.W. Toxoplasma gondii seropositivity and substance use in US adults. Folia Parasitol. 2018;65:11. doi: 10.14411/fp.2018.011. PubMed DOI

Elmorsy E., Mahmoud E.H.M., Rakha S.A., Shoaib M. An association between latent toxoplasmosis and substance abuse: An Egyptian Center Study. J. Addict. Dis. 2019;37:165–172. doi: 10.1080/10550887.2019.1641378. PubMed DOI

Bahreini M.S., Jahromi S.S., Radfar A.H., Salemi A.M., Dastan N., Asgari Q. The Relationship of Latent Toxoplasmosis and Cigarette Smoking: Seroprevalence, Risk Factor, and Case-Control Study in Fars Province, Southern Iran. Pathogens. 2022;11:1274. doi: 10.3390/pathogens11111274. PubMed DOI PMC

Flegr J. Neurological and neuropsychiatric consequences of chronic Toxoplasma infection. Clin. Microbiol. Rep. 2015;2:163–172. doi: 10.1007/s40588-015-0024-0. DOI

Breitschwerdt E.B., Maggi R.G., Nicholson W.L., Cherry N.A., Woods C.W. Bartonella sp bacteremia in patients with neurological and neurocognitive dysfunction. J. Clin. Microbiol. 2008;46:2856–2861. doi: 10.1128/JCM.00832-08. PubMed DOI PMC

Stewart Z., Korsapathy S., Frohlich F. Crowd-sourced investigation of a potential relationship between Bartonella-associated cutaneous lesions and neuropsychiatric symptoms. Front. Psychiatry. 2023;14:1244121. doi: 10.3389/fpsyt.2023.1244121. PubMed DOI PMC

Delaney S., Robveille C., Maggi R.G., Lashnits E., Kingston E., Liedig C., Murray L., Fallon B.A., Breitschwerdt E.B. Bartonella species bacteremia in association with adult psychosis. Front. Psychiatry. 2024;15:10. doi: 10.3389/fpsyt.2024.1388442. PubMed DOI PMC

Guirguis V., Pupillo F., Rodrigues S., Walker N., Roth H., Liedig C.E., Maggi R.G., Breitschwerdt E.B., Frohlich F. Bartonella spp. infection in people with Mild Cognitive Impairment: A pilot study. PLoS ONE. 2024;19:e0307060. doi: 10.1371/journal.pone.0307060. PubMed DOI PMC

Lashnits E., Maggi R., Jarskog F., Bradley J., Breitschwerdt E., Frohlich F. Schizophrenia and Bartonella spp. infection: A pilot case-control study. Vector-Borne Zoonotic Dis. 2021;21:413–421. doi: 10.1089/vbz.2020.2729. PubMed DOI PMC

Flegr J., Preiss M., Balatova P. Depressiveness and neuroticism in Bartonella seropositive and seronegative subjects-Preregistered case-controls study. Front. Psychiatry. 2018;9:314. doi: 10.3389/fpsyt.2018.00314. PubMed DOI PMC

Flegr J., Hodny Z. Cat scratches, not bites, are associated with unipolar depression—Cross-sectional study. Parasit. Vectors. 2016;9:8. doi: 10.1186/s13071-015-1290-7. PubMed DOI PMC

Hanauer D.A., Ramakrishnan N., Seyfried L.S. Describing the relationship between cat bites and human depression using data from an electronic health record. PLoS ONE. 2013;8:e70585. doi: 10.1371/journal.pone.0070585. PubMed DOI PMC

Wong W.K., Upton A., Thomas M.G. Neuropsychiatric symptoms are common in immunocompetent adult patients with Toxoplasma gondii acute lymphadenitis. Scand. J. Infect. Dis. 2013;45:357–361. doi: 10.3109/00365548.2012.737017. PubMed DOI

Šebánková B., Flegr J. Physical and mental health status in Toxoplasma-infected women before and three years after they learn about their infection: Manipulation or side-effects of impaired health? Front. Ecol. Evol. 2017;5:144. doi: 10.3389/fevo.2017.00144. DOI

Flegr J. Thirty years of studying latent toxoplasmosis: Behavioural, physiological, and health insights. Folia Parasitol. 2025;72:005. doi: 10.14411/fp.2025.005. PubMed DOI

Flegr J., Hrdá Š., Kodym P. Influence of latent ‘asymptomatic’ toxoplasmosis on body weight of pregnant women. Folia Parasitol. 2005;52:199–204. doi: 10.14411/fp.2005.026. PubMed DOI

Kaňková Š., Flegr J. Longer pregnancy and slower fetal development in women with latent “asymptomatic” toxoplasmosis BMC Infect. Dis. 2007;7:114. doi: 10.1186/1471-2334-7-114. PubMed DOI PMC

Kaňková Š., Šulc J., Flegr J. Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology. 2010;137:1773–1779. doi: 10.1017/S0031182010000661. PubMed DOI

Kaňková Š., Flegr J., Calda P. An elevated blood glucose level and increased incidence of gestational diabetes mellitus in pregnant women with latent toxoplasmosis. Folia Parasitol. 2015;62:056. doi: 10.14411/fp.2015.056. PubMed DOI

Kaňková Š., Procházková L., Flegr J., Calda P., Springer D., Potluková E. Effects of latent toxoplasmosis on autoimmune thyroid diseases in pregnancy. PLoS ONE. 2014;9:e110878. doi: 10.1371/journal.pone.0110878. PubMed DOI PMC

Kaňkova S., Šulc J., Křivohlavá R., Kuběna A., Flegr J. Slower postnatal motor development in infants of mothers with latent toxoplasmosis during the first 18 months of life. Early Hum. Dev. 2012;88:879–884. doi: 10.1016/j.earlhumdev.2012.07.001. PubMed DOI

Kaňková Š., Šulc J., Nouzová K., Fajfrlik K., Frynta D., Flegr J. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften. 2007;94:122–127. doi: 10.1007/s00114-006-0166-2. PubMed DOI

Flegr J., Kankova S. The effects of toxoplasmosis on sex ratio at birth. Early Hum. Dev. 2020;141:104874. doi: 10.1016/j.earlhumdev.2019.104874. PubMed DOI

James W.H., Grech V. Can offspring sex ratios help to explain the endocrine effects of toxoplasmosis infection on human behaviour? Early Hum. Dev. 2018;122:42–44. doi: 10.1016/j.earlhumdev.2018.06.001. PubMed DOI

Abdulai-Saiku S., Vyas A. Loss of predator aversion in female rats after Toxoplasma gondii infection is not dependent on ovarian steroids. Brain Behav. Immun. 2017;65:95–98. doi: 10.1016/j.bbi.2017.04.005. PubMed DOI

Kaňková Š., Kodym P., Frynta D., Vavřinová R., Kuběna A., Flegr J. Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology. 2007;134:1709–1717. doi: 10.1017/S0031182007003253. PubMed DOI

Dama M.S., Novakova L.M., Flegr J. Do differences in Toxoplasma prevalence influence global variation in secondary sex ratio? Preliminary ecological regression study. Parasitology. 2016;143:1193–1203. doi: 10.1017/S0031182016000597. PubMed DOI

Trivers R.L., Willard D.E. Natural selection of parental ability to vary the sex ratio of offspring. Science. 1973;179:90–92. doi: 10.1126/science.179.4068.90. PubMed DOI

Tyebji S., Hannan A.J., Tonkin C.J. Pathogenic infection in male mice changes sperm small rna profiles and transgenerationally alters offspring behavior. Cell Rep. 2020;31:107573. doi: 10.1016/j.celrep.2020.107573. PubMed DOI

Lopes W.D., da Costa A.J., Santana L.F., Dos Santos R.S., Rossanese W.M., Lopes W.C., Costa G.H., Sakamoto C.A., Dos Santos T.R. Aspects of Toxoplasma infection on the reproductive system of experimentally infected rams (Ovis aries) J. Parasitol. Res. 2009;2009:602803. doi: 10.1155/2009/602803. PubMed DOI PMC

Martínez-García F., Regadera J., Mayer R., Sanchez S., Nistal M. Protozoan infections in the male genital tract. J. Urol. 1996;156:340–349. doi: 10.1016/S0022-5347(01)65846-4. PubMed DOI

Crider S.R., Horstman W.G., Massey G.S. Toxoplasma orchitis—Report of a case and a review of the literature. Am. J. Med. 1988;85:421–424. doi: 10.1016/0002-9343(88)90599-2. PubMed DOI

Tabares Tejada P., Cardona Maya W.D. Toxoplasma gondii infection in the male reproductive system: A systematic review. Acta Parasitol. 2025;70:29. doi: 10.1007/s11686-024-00978-w. PubMed DOI

Zhou Y.H., Lu Y.J., Wang R.B., Song L.M., Shi F., Gao Q.F., Luo Y.F., Gu X.F., Wang P. Survey of infection of Toxoplasma gondii in infertile couples in Suzhou countryside. Zhonghua Nan Ke Xue. 2002;8:350–352. PubMed

Flegr J., Preiss M. Friends with malefit. The effects of keeping dogs and cats, sustaining animal-related injuries and Toxoplasma infection on health and quality of life. PLoS ONE. 2019;14:e0221988. doi: 10.1371/journal.pone.0221988. PubMed DOI PMC

Kaňková S., Flegr J., Calda P. The influence of latent toxoplasmosis on women’s reproductive function: Four cross-sectional studies. Folia Parasitol. 2015;62:041. doi: 10.14411/fp.2015.041. PubMed DOI

Pavlinová J., Kinčeková J., Ostró A., Saksun L., Vasilková Z., Königová A. Parasitic infections and pregnancy complications. Helminthologia. 2011;48:8–12. doi: 10.2478/s11687-011-0002-x. DOI

Abdoli A., Dalimi A., Soltanghoraee H., Ghaffarifar F. Molecular detection and genotypic characterization of Toxoplasma gondii in paraffin-embedded fetoplacental tissues of women with recurrent spontaneous abortion. Int. J. Fertil. Steril. 2017;10:327–336. doi: 10.22074/ijfs.2016.4569. PubMed DOI PMC

Zeinali S., Khademvatan S., Jafari R., Vazifekhah S., Yousefi E., Behroozi-Lak T. Prevalence and risk factors of Toxoplasma gondii infection among women with miscarriage and their aborted fetuses in the northwest of Iran. PLoS ONE. 2023;18:e0283493. doi: 10.1371/journal.pone.0283493. PubMed DOI PMC

Giorgino F.L., Mega M. Toxoplasmosis and habitual abortion. Our experience. Clin. Exp. Obstet. Gynecol. 1981;8:132–134. PubMed

Qublan H.S., Jumaian N., Abu-Salem A., Hamadelil F.Y., Mashagbeh M., Abdel-Ghani F. Toxoplasmosis and habitual abortion. J. Obstet. Gynaecol. 2002;22:296–298. doi: 10.1080/01443610220130616. PubMed DOI

Kalantari N., Gorgani-Firouzjaee T., Moulana Z., Chehrazi M., Ghaffari S. Toxoplasma gondii infection and spontaneous abortion: A systematic review and meta-analysis. Microb. Pathog. 2021;158:105070. doi: 10.1016/j.micpath.2021.105070. PubMed DOI

Stock A.K., Dajkic D., Kohling H.L., von Heinegg E.H., Fiedler M., Beste C. Humans with latent toxoplasmosis display altered reward modulation of cognitive control. Sci. Rep. 2017;7:10170. doi: 10.1038/s41598-017-10926-6. PubMed DOI PMC

Skallová A., Novotná M., Kolbeková P., Gašová Z., Veselý V., Flegr J. Decreased level of novelty seeking in blood donors infected with Toxoplasma. Neuroendocrinol. Lett. 2005;26:480–486. PubMed

Rossini J.C., Lopes C.S., Dirscherl F.P., Silva D.A.O., Mineo J.R. Altered visual attention behavior of Toxoplasma gondii-infected individuals. Psychol. Neurosci. 2019;12:485–494. doi: 10.1037/pne0000179. DOI

Chudasama Y., Robbins T.W. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology. 2004;29:1628–1636. doi: 10.1038/sj.npp.1300490. PubMed DOI

Yamaguchi Y., Atsumi T., Poirot R., Lee Y.A., Kato A., Goto Y. Dopamine-dependent visual attention preference to social stimuli in nonhuman primates. Psychopharmacology. 2017;234:1113–1120. doi: 10.1007/s00213-017-4544-6. PubMed DOI PMC

Matzel L.D., Sauce B. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence. Front. Behav. Neurosci. 2023;17:1060786. doi: 10.3389/fnbeh.2023.1060786. PubMed DOI PMC

Rihet P., Possamai C.A., Micallef-Roll J., Blin O., Hasbroucq T. Dopamine and human information processing: A reaction-time analysis of the effect of levodopa in healthy subjects. Psychopharmacology. 2002;163:62–67. doi: 10.1007/s00213-002-1127-x. PubMed DOI

Sonnenschein S.F., Gomes F.V., Grace A.A. Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Front. Psychiatry. 2020;11:613. doi: 10.3389/fpsyt.2020.00613. PubMed DOI PMC

Hsueh Y.S., Lin C.Y., Chiu N.T., Yang Y.K., Chen P.S., Chang H.H. Changes in striatal dopamine transporters in bipolar disorder and valproate treatment. Eur. Psychiatry. 2021;64:e9. doi: 10.1192/j.eurpsy.2021.1. PubMed DOI PMC

Denys D., de Vries F., Cath D., Figee M., Vulink N., Veltman D.J., van der Doef T.F., Boellaard R., Westenberg H., van Balkom A., et al. Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. Eur. Neuropsychopharmacol. 2013;23:1423–1431. doi: 10.1016/j.euroneuro.2013.05.012. PubMed DOI

Yolken R.H., Dickerson F.B., Torrey E.F. Toxoplasma and schizophrenia. Parasite Immunol. 2009;31:706–715. doi: 10.1111/j.1365-3024.2009.01131.x. PubMed DOI

Ayano G. Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: Review of literatures. J. Ment. Disord. Treat. 2016;2:2. doi: 10.4172/2471-271X.1000120. DOI

Chaudhury A., Ramana B.V. Schizophrenia and bipolar disorders: The Toxoplasma connection. Trop. Parasitol. 2019;9:71–76. doi: 10.4103/tp.TP_28_19. PubMed DOI PMC

Hassel B., Dingledine R. Basic Neurochemistry. Academic Press; Cambridge, MA, USA: 2012. Glutamate and glutamate receptors; pp. 342–366.

Yuen E.Y., Wei J., Liu W., Zhong P., Li X., Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73:962–977. doi: 10.1016/j.neuron.2011.12.033. PubMed DOI PMC

Woodcock E.A., Anand C., Khatib D., Diwadkar V.A., Stanley J.A. Working memory modulates glutamate levels in the dorsolateral prefrontal cortex during (1)H fMRS. Front. Psychiatry. 2018;9:66. doi: 10.3389/fpsyt.2018.00066. PubMed DOI PMC

Frank S.M., Forster L., Pawellek M., Malloni W.M., Ahn S., Tse P.U., Greenlee M.W. Visual attention modulates glutamate-glutamine levels in vestibular cortex: Evidence from magnetic resonance spectroscopy. J. Neurosci. 2021;41:1970–1981. doi: 10.1523/JNEUROSCI.2018-20.2020. PubMed DOI PMC

Gallinat J., Kunz D., Senkowski D., Kienast T., Seifert F., Schubert F., Heinz A. Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing. Psychopharmacology. 2006;187:103–111. doi: 10.1007/s00213-006-0397-0. PubMed DOI

Hashimoto K., Sawa A., Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol. Psychiatry. 2007;62:1310–1316. doi: 10.1016/j.biopsych.2007.03.017. PubMed DOI

Chakrabarty K., Bhattacharyya S., Christopher R., Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30:1735–1740. doi: 10.1038/sj.npp.1300733. PubMed DOI

Coyle J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 2006;26:365–384. doi: 10.1007/s10571-006-9062-8. PubMed DOI PMC

Rojas D.C. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J. Neural Transm. (Vienna) 2014;121:891–905. doi: 10.1007/s00702-014-1216-0. PubMed DOI PMC

Swanson C.J., Bures M., Johnson M.P., Linden A.M., Monn J.A., Schoepp D.D. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov. 2005;4:131–144. doi: 10.1038/nrd1630. PubMed DOI

Brooks J.M., Carrillo G.L., Su J.M., Lindsay D.S., Fox M.A., Blader I.J. Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. MBio. 2015;6:10-1128. doi: 10.1128/mBio.01428-15. PubMed DOI PMC

Bando H., Fukuda Y., Watanabe N., Olawale J.T., Kato K. Depletion of intracellular glutamine pools triggers Toxoplasma gondii stage conversion in human glutamatergic neurons. Front. Cell. Infect. Microbiol. 2021;11:788303. doi: 10.3389/fcimb.2021.788303. PubMed DOI PMC

Latifi A., Flegr J. Toxoplasma infection. In: Shackelford T.K., editor. Encyclopedia of Sexual Psychology and Behavior. Springer International Publishing; Cham, Switzerland: 2023. pp. 1–14.

Lucchese G. From toxoplasmosis to schizophrenia via nMda dysfunction: Peptide overlap between Toxoplasma gondii and N-Methyl-D-aspartate receptors as a potential Mechanistic Link. Front. Psychiatry. 2017;8:37. doi: 10.3389/fpsyt.2017.00037. PubMed DOI PMC

Acquarone M., Poleto A., Perozzo A.F., Gonçalves P.F.R., Panizzutti R., Menezes J.R.L., Neves G.A., Barbosa H.S. Social preference is maintained in mice with impaired startle reflex and glutamate/D-serine imbalance induced by chronic cerebral toxoplasmosis. Sci. Rep. 2021;11:14029. doi: 10.1038/s41598-021-93504-1. PubMed DOI PMC

Jacobs B.L., Azmitia E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992;72:165–229. doi: 10.1152/physrev.1992.72.1.165. PubMed DOI

Lucki I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry. 1998;44:151–162. doi: 10.1016/S0006-3223(98)00139-5. PubMed DOI

Jonnakuty C., Gragnoli C. What do we know about serotonin? J. Cell. Physiol. 2008;217:301–306. doi: 10.1002/jcp.21533. PubMed DOI

Leathwood P.D. Tryptophan availability and serotonin synthesis. Proc. Nutr. Soc. 1987;46:143–156. doi: 10.1079/PNS19870018. PubMed DOI

Pfefferkorn E.R. Interferon-gamma blocks the growth of Toxoplasma gondii in human-fibroblasts by inducing the host-cells to degrade tryptophan. Proc. Natl. Acad. Sci. USA. 1984;81:908–912. doi: 10.1073/pnas.81.3.908. PubMed DOI PMC

Kak G., Raza M., Tiwari B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts. 2018;9:64–79. doi: 10.1515/bmc-2018-0007. PubMed DOI

Taylor M.W., Feng G.S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516–2522. doi: 10.1096/fasebj.5.11.1907934. PubMed DOI

Rahdar M., Farbod Y., Seydinejad S., Zarrin M. The effect of chronic experimental toxoplasmosis on some brain neurotransmitters level and behavior changes. Exp. Parasitol. 2023;251:7. doi: 10.1016/j.exppara.2023.108575. PubMed DOI

Lin S.H., Lee L.T., Yang Y.K. Serotonin and mental disorders: A concise review on molecular neuroimaging evidence. Clin. Psychopharmacol. Neurosci. 2014;12:196–202. doi: 10.9758/cpn.2014.12.3.196. PubMed DOI PMC

Davidson M., Rashidi N., Nurgali K., Apostolopoulos V. The Role of tryptophan metabolites in neuropsychiatric disorders. Int. J. Mol. Sci. 2022;23:9968. doi: 10.3390/ijms23179968. PubMed DOI PMC

Anguelova M., Benkelfat C., Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: II. Suicidal behavior. Mol. Psychiatry. 2003;8:646–653. doi: 10.1038/sj.mp.4001336. PubMed DOI

Bremshey S., Groß J., Renken K., Masseck O.A. The role of serotonin in depression-A historical roundup and future directions. J. Neurochem. 2024;168:1751–1779. doi: 10.1111/jnc.16097. PubMed DOI

Coccaro E.F., Fanning J.R., Phan K.L., Lee R. Serotonin and impulsive aggression. CNS Spectr. 2015;20:295–302. doi: 10.1017/S1092852915000310. PubMed DOI

Sinopoli V.M., Burton C.L., Kronenberg S., Arnold P.D. A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 2017;80:372–381. doi: 10.1016/j.neubiorev.2017.05.029. PubMed DOI

Kamal A.M., Abd El-Fatah A.S., Rizk M.M., Hassan E.E. Latent toxoplasmosis is associated with depression and suicidal behavior. Arch. Suicide Res. 2020;26:819–830. doi: 10.1080/13811118.2020.1838368. PubMed DOI

Martinez V.O., Lima F.W.D., Rocha R.B.A., Bah H.A.F., Carvalho C.F., Menezes J.A. Interaction of Toxoplasma gondii infection and elevated blood lead levels on children’s neurobehavior. Neurotoxicology. 2020;78:177–185. doi: 10.1016/j.neuro.2020.03.010. PubMed DOI

Alsaady I., Tedford E., Alsaad M., Bristow G., Kohli S., Murray M., Reeves M., Vijayabaskar M.S., Clapcote S.J., Wastling J., et al. Downregulation of the central noradrenergic system by Toxoplasma gondii infection. Infect. Immun. 2019;87:10-1128. doi: 10.1128/IAI.00789-18. PubMed DOI PMC

Sugama S., Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem. Int. 2021;143:104943. doi: 10.1016/j.neuint.2020.104943. PubMed DOI

Laing C., Blanchard N., McConkey G.A. Noradrenergic signaling and neuroinflammation crosstalk regulate Toxoplasma gondi-induced behavioral changes. Trends Immunol. 2020;41:1072–1082. doi: 10.1016/j.it.2020.10.001. PubMed DOI

Zhang Y., Chen Y., Xin Y., Peng B., Liu S. Norepinephrine system at the interface of attention and reward. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2023;125:110751. doi: 10.1016/j.pnpbp.2023.110751. PubMed DOI

Lambert G., Johansson M., Agren H., Friberg P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: Evidence in support of the catecholamine hypothesis of mood disorders. Arch. Gen. Psychiatry. 2000;57:787–793. doi: 10.1001/archpsyc.57.8.787. PubMed DOI

Ressler K.J., Nemeroff C.B. Role of norepinephrine in the pathophysiology of neuropsychiatric disorders. CNS Spectr. 2001;6:663–666, 670. doi: 10.1017/S1092852900001358. PubMed DOI

Nanjappa M.S., Voyiaziakis E., Pradhan B., Mannekote Thippaiah S. Use of selective serotonin and norepinephrine reuptake inhibitors (SNRIs) in the treatment of autism spectrum disorder (ASD), comorbid psychiatric disorders and ASD-associated symptoms: A clinical review. CNS Spectr. 2022;27:290–297. doi: 10.1017/S109285292000214X. PubMed DOI

Morilak D.A., Barrera G., Echevarria D.J., Garcia A.S., Hernandez A., Ma S., Petre C.O. Role of brain norepinephrine in the behavioral response to stress. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005;29:1214–1224. doi: 10.1016/j.pnpbp.2005.08.007. PubMed DOI

Maletic V., Eramo A., Gwin K., Offord S.J., Duffy R.A. The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: A systematic review. Front. Psychiatry. 2017;8:42. doi: 10.3389/fpsyt.2017.00042. PubMed DOI PMC

Cairney P., McConkey G. Neurobiology of Infectious Diseases. Academic Press; Cambridge, MA, USA: 2025. Pathophysiological mechanisms of Toxoplasma gondii infection in the central nervous system (CNS) pp. 337–346.

Singh D.K., Dass S.A.H., Abdulai-Saiku S., Vyas A. Testosterone acts within the medial amygdala of rats to reduce innate fear to predator odor akin to the effects of Toxoplasma gondii infection. Front. Psychiatry. 2020;11:630. doi: 10.3389/fpsyt.2020.00630. PubMed DOI PMC

Bancroft J. Hormones and human sexual behavior. J. Sex. Marital. Ther. 1984;10:3–21. doi: 10.1080/00926238408405785. PubMed DOI

Bain J. The many faces of testosterone. Clin. Interv. Aging. 2007;2:567–576. doi: 10.2147/CIA.S1417. PubMed DOI PMC

Ciocca G., Limoncin E., Carosa E., Di Sante S., Gravina G.L., Mollaioli D., Gianfrilli D., Lenzi A., Jannini E.A. Is testosterone a food for the brain? Sex Med. Rev. 2016;4:15–25. doi: 10.1016/j.sxmr.2015.10.007. PubMed DOI

Zghair K.H., Al-Qadhi B.N., Mahmood S.H. The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. J. Parasit. Dis. 2015;39:393–400. doi: 10.1007/s12639-013-0382-6. PubMed DOI PMC

Kadhim R.A., Al-awadi H.M. Changes in testosterone, progesterone and prolactin levels in pregnant women with chronic toxoplasmosis. Med. J. Babylon. 2013;10:699–708.

Zouei N., Shojaee S., Mohebali M., Keshavarz H. The association of latent toxoplasmosis and level of serum testosterone in humans. BMC Res. Notes. 2018;11:365. doi: 10.1186/s13104-018-3468-5. PubMed DOI PMC

Carrier N., Saland S.K., Duclot F., He H., Mercer R., Kabbaj M. The anxiolytic and antidepressant-like effects of testosterone and estrogen in gonadectomized male rats. Biol. Psychiatry. 2015;78:259–269. doi: 10.1016/j.biopsych.2014.12.024. PubMed DOI PMC

Roncati L., Manenti A., Pusiol T., Piscioli F., Barbolini G., Maiorana A. Testosterone aromatization to estradiol in course of ovarian functioning brenner tumor associated with endometrial carcinoma and endometriosis (Roncati-Manenti triad) Int. J. Gynecol. Cancer. 2016;26:1461–1464. doi: 10.1097/IGC.0000000000000779. PubMed DOI

Chen C.V., Jordan C.L., Breedlove S.M. Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neurosci. Lett. 2021;753:135852. doi: 10.1016/j.neulet.2021.135852. PubMed DOI

Caldwell H.K., Lee H.J., Macbeth A.H., Young W.S., 3rd Vasopressin: Behavioral roles of an “original” neuropeptide. Prog. Neurobiol. 2008;84:1–24. doi: 10.1016/j.pneurobio.2007.10.007. PubMed DOI PMC

Frank E., Landgraf R. The vasopressin system--from antidiuresis to psychopathology. Eur. J. Pharmacol. 2008;583:226–242. doi: 10.1016/j.ejphar.2007.11.063. PubMed DOI

Zimmermann-Peruzatto J.M., Lazzari V.M., de Moura A.C., Almeida S., Giovenardi M. Examining the role of vasopressin in the modulation of parental and sexual behaviors. Front. Psychiatry. 2015;6:130. doi: 10.3389/fpsyt.2015.00130. PubMed DOI PMC

Morales-Medina J.C., Witchey S.K., Caldwell H.K. The role of vasopressin in anxiety and depression. In: López-Muñoz F., Srinivasan V., de Berardis D., Álamo C., Kato T., editors. Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer; New Delhi, India: 2016.

Campbell A. Oxytocin and human social behavior. Pers. Soc. Psychol. Rev. 2010;14:281–295. doi: 10.1177/1088868310363594. PubMed DOI

Lischke A., Gamer M., Berger C., Grossmann A., Hauenstein K., Heinrichs M., Herpertz S.C., Domes G. Oxytocin increases amygdala reactivity to threatening scenes in females. Psychoneuroendocrinology. 2012;37:1431–1438. doi: 10.1016/j.psyneuen.2012.01.011. PubMed DOI

Radke S., Volman I., Kokal I., Roelofs K., de Bruijn E.R.A., Toni I. Oxytocin reduces amygdala responses during threat approach. Psychoneuroendocrinology. 2017;79:160–166. doi: 10.1016/j.psyneuen.2017.02.028. PubMed DOI

Ayers L.W., Missig G., Schulkin J., Rosen J.B. Oxytocin reduces background anxiety in a fear-potentiated startle paradigm: Peripheral vs central administration. Neuropsychopharmacology. 2011;36:2488–2497. doi: 10.1038/npp.2011.138. PubMed DOI PMC

Eckstein M., Becker B., Scheele D., Scholz C., Preckel K., Schlaepfer T.E., Grinevich V., Kendrick K.M., Maier W., Hurlemann R. Oxytocin facilitates the extinction of conditioned fear in humans. Biol. Psychiatry. 2015;78:194–202. doi: 10.1016/j.biopsych.2014.10.015. PubMed DOI

Abdulai-Saiku S., Vyas A. Toxoplasma gondii infection causes an atypical abundance of oxytocin and its receptor in the female rat brain. Pathogens. 2021;10:1495. doi: 10.3390/pathogens10111495. PubMed DOI PMC

Mazael N.A., Shakir O.M. Impact of Toxoplasma gondii on prostaglandin, progesterone, oxytocin and anti-müllerian in abortion women. Int. J. Biol. Sci. 2024;6:45–49. doi: 10.33545/26649926.2024.v6.i1a.186. DOI

Ferreira A.C., Osório F.L. Peripheral oxytocin concentrations in psychiatric disorders—A systematic review and methanalysis: Further evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2022;117:110561. doi: 10.1016/j.pnpbp.2022.110561. PubMed DOI

Chaulagain R.P., Shrestha Y., Shrestha H., Bhandari R., Gurung P. The neurobiological impact of oxytocin in mental health disorders: A comprehensive review. Ann. Med. Surg. 2025;87:1479–1486. doi: 10.1097/MS9.0000000000003015. PubMed DOI PMC

Katsu Y., Baker M.E. Subchapter 123D—Cortisol. In: Ando H., Ukena K., Nagata S., editors. Handbook of Hormones. 2nd ed. Academic Press; San Diego, CA, USA: 2021. pp. 947–949.

Fallah M., Ehsan T.S., Salehi I., Maghsood A.H., Matini M., Pooyandehravan A. Effect of acute toxoplasmosis on anxiety and cortisol and interleukin-17 levels in male rats: An experimental study. Zahedan J. Res. Med. Sci. 2021;23:e95733. doi: 10.5812/zjrms.95733. DOI

Laubach Z.M., Gering E., Yang E., Montgomery T.M., Getty T., Holekamp K.E. Associations between Toxoplasma gondii infection and steroid hormone levels in spotted hyenas. Int. J. Parasitol. Parasites Wildl. 2022;17:53–59. doi: 10.1016/j.ijppaw.2021.11.007. PubMed DOI PMC

Shirbazou S., Abasian L., Talebi M.F. Effects of Toxoplasma gondii infection on plasma testosterone and cortisol level and stress index on patients referred to Sina hospital, Tehran. Jundishapur J. Microbiol. 2011;4:167–173.

El-Gebaly N., Abd-Eltawab M., Hamed A., Mahfouz N., Adel S., Mahfoz A., Rehan M., Elsebaei E. Insights into the interplay of latent toxoplasmosis, testosterone, cortisol and oxidative stress in screened schizophrenic patients in Egypt. Parasitol. United J. 2019;12:102–109. doi: 10.21608/puj.2019.11819.1040. DOI

Heck A.L., Handa R.J. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: An important role for gonadal hormones. Neuropsychopharmacology. 2019;44:45–58. doi: 10.1038/s41386-018-0167-9. PubMed DOI PMC

Jellyman J.K., Valenzuela O.A., Fowden A.L. HORSE SPECIES SYMPOSIUM: Glucocorticoid programming of hypothalamic-pituitary-adrenal axis and metabolic function: Animal studies from mouse to horse. J. Anim. Sci. 2015;93:3245–3260. doi: 10.2527/jas.2014-8612. PubMed DOI

Rohleder N., Wolf J.M., Kirschbaum C. Glucocorticoid sensitivity in humans-interindividual differences and acute stress effects. Stress. 2003;6:207–222. doi: 10.1080/1025389031000153658. PubMed DOI

Mcleod R., Estes R.G., Mack D.G., Cohen H. Immune-response of mice to ingested Toxoplasma gondii—A model of Toxoplasma infection acquired by ingestion. J. Infect. Dis. 1984;149:234–244. doi: 10.1093/infdis/149.2.234. PubMed DOI

Fischer H.G., Nitzgen B., Reichmann G., Hadding U. Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur. J. Immunol. 1997;27:1539–1548. doi: 10.1002/eji.1830270633. PubMed DOI

Matowicka-Karna J., Dymicka-Piekarska V., Kemona H. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clin. Dev. Immunol. 2009;2009:374696. doi: 10.1155/2009/374696. PubMed DOI PMC

Mohyuddin H., Laffon B., Teixeira J.P., Costa S., Teixeira-Gomes A., Pásaro E., Constantine N., Dagdag A., Ortmeyer H.K., Tizenberg B., et al. Toxoplasma gondii IgG serointensity is positively associated with frailty. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2024;79:glad228. doi: 10.1093/gerona/glad228. PubMed DOI PMC

Ullmann J., Flegr J., Nouzová K., Včelák J., Kaňková Š. Chronic inflammation in pregnant women with latent toxoplasmosis and explanation of discordant results of serological tests for toxoplasmosis. Folia Parasitol. 2025;72:21. doi: 10.14411/fp.2025.021. PubMed DOI

Lopes C.S., Carvalho R.J.V., da Silva T.L., Barros H.L.S., Costa L.V.S., Mota D., Barbosa B.F., Vieira L.S., de Araujo T.M., Costa A.R., et al. Pregnant women chronically infected by Toxoplasma gondii with depressive disorder: Differential modulation of pro-inflammatory and anti-inflammatory cytokines. Pathogens. 2025;14:15. doi: 10.3390/pathogens14040330. PubMed DOI PMC

Flegr J., Stříž I. Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infect. Dis. 2011;11:274. doi: 10.1186/1471-2334-11-274. PubMed DOI PMC

Sana M., Rashid M., Rashid I., Akbar H., Gomez-Marin J.E., Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int. J. Immunopathol. Pharmacol. 2022;36:3946320221078436. doi: 10.1177/03946320221078436. PubMed DOI PMC

Bliss S.K., Marshall A.J., Zhang Y., Denkers E.Y. Human polymorphonuclear leukocytes produce IL-12, TNF-α, and the chemokines macrophage-inflammatory protein-1α and -1β in response to Toxoplasma gondii antigens. J. Immunol. 1999;162:7369–7375. doi: 10.4049/jimmunol.162.12.7369. PubMed DOI

Ihara F., Yamamoto M. The role of IFN-γ-mediated host immune responses in monitoring and the elimination of Toxoplasma gondii infection. Int. Immunol. 2024;36:199–210. doi: 10.1093/intimm/dxae001. PubMed DOI PMC

Bisetegn H., Debash H., Ebrahim H., Mahmood N., Gedefie A., Tilahun M., Alemayehu E., Mohammed O., Feleke D.G. Global seroprevalence of Toxoplasma gondii infection among patients with mental and neurological disorders: A systematic review and meta-analysis. Health Sci. Rep. 2023;6:15. doi: 10.1002/hsr2.1319. PubMed DOI PMC

Babekir A., Mostafa S., Obeng-Gyasi E. The association of Toxoplasma gondii IgG and cardiovascular biomarkers. Int. J. Environ. Res. Public Health. 2021;18:4908. doi: 10.3390/ijerph18094908. PubMed DOI PMC

Babekir A., Mostafa S., Obeng-Gyasi E. The association of Toxoplasma gondii IgG antibody and chronic kidney disease biomarkers. Microorganisms. 2022;10:115. doi: 10.3390/microorganisms10010115. PubMed DOI PMC

Babekir A., Mostafa S., Obeng-Gyasi E. The association of Toxoplasma gondii with the combination of cardiovascular disease, chronic kidney disease, or chronic liver disease: A preliminary study. Med. Sci. 2023;11:65. doi: 10.3390/medsci11040065. PubMed DOI PMC

Saraav I., Cervantes-Barragan L., Olias P., Fu Y., Wang Q., Wang L., Mack M., Baldridge M.T., Stappenbeck T., Colonna M., et al. Chronic Toxoplasma gondii infection enhances susceptibility to colitis. Proc. Natl. Acad. Sci. USA. 2021;118:e2106730118. doi: 10.1073/pnas.2106730118. PubMed DOI PMC

Shapira Y., Agmon-Levin N., Selmi C., Petrikova J., Barzilai O., Ram M., Bizzaro N., Valentini G., Matucci-Cerinic M., Anaya J.M., et al. Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases. J. Autoimmun. 2012;39:112–116. doi: 10.1016/j.jaut.2012.01.001. PubMed DOI

Abdullah R.G., Eassa S.H., Mohammad F.K., Eassa S. Plasma cholinesterase activity in patients with rheumatoid arthritis and toxoplasmosis. Cureus. 2023;15:e50979. doi: 10.7759/cureus.50979. PubMed DOI PMC

Reeves G., Mazaheri S., Snitker S., Langenberg P., Giegling I., Hartmann A., Konte B., Friedl M., Okusaga O., Groer M., et al. A positive association between T. gondii seropositivity and obesity. Front. Public Health. 2013;1:73. doi: 10.3389/fpubh.2013.00073. PubMed DOI PMC

Salem D.A., Salem N.A., Hendawy S.R. Association between Toxoplasma gondii infection and metabolic syndrome in obese adolescents: A possible immune-metabolic link. Parasitol. Int. 2021;83:102343. doi: 10.1016/j.parint.2021.102343. PubMed DOI

Majidiani H., Datuand S., Daryani A., Galuan-Ramirez M.D., Foroutan-Rad M. Is chronic toxoplasmosis a risk factor for diabetes mellitus? A systematic review and meta-analysis of case-control studies. Braz. J. Infect. Dis. 2016;20:605–609. doi: 10.1016/j.bjid.2016.09.002. PubMed DOI PMC

Hong H., Kim B.S., Im H.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J. 2016;20:S2–S7. doi: 10.5213/inj.1632604.302. PubMed DOI PMC

Almeida P.G.C., Nani J.V., Oses J.P., Brietzke E., Hayashi M.A.F. Neuroinflammation and glial cell activation in mental disorders. Brain Behav. Immun. Health. 2020;2:100034. doi: 10.1016/j.bbih.2019.100034. PubMed DOI PMC

Khandaker G.M., Cousins L., Deakin J., Lennox B.R., Yolken R., Jones P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2:258–270. doi: 10.1016/S2215-0366(14)00122-9. PubMed DOI PMC

Fries G.R., Walss-Bass C., Bauer M.E., Teixeira A.L. Revisiting inflammation in bipolar disorder. Pharmacol. Biochem. Behav. 2019;177:12–19. doi: 10.1016/j.pbb.2018.12.006. PubMed DOI

Coelho D.R.A., Salvi J.D., Vieira W.F., Cassano P. Inflammation in obsessive-compulsive disorder: A literature review and hypothesis-based potential of transcranial photobiomodulation. J. Neurosci. Res. 2024;102:e25317. doi: 10.1002/jnr.25317. PubMed DOI

Beurel E., Toups M., Nemeroff C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron. 2020;107:234–256. doi: 10.1016/j.neuron.2020.06.002. PubMed DOI PMC

Ye Z., Kappelmann N., Moser S., Davey Smith G., Burgess S., Jones P.B., Khandaker G.M. Role of inflammation in depression and anxiety: Tests for disorder specificity, linearity and potential causality of association in the UK Biobank. EClinicalMedicine. 2021;38:100992. doi: 10.1016/j.eclinm.2021.100992. PubMed DOI PMC

Fard M.T., Cribb L., Nolidin K., Savage K., Wesnes K., Stough C. Is there a relationship between low-grade systemic inflammation and cognition in healthy people aged 60–75 years? Behav. Brain Res. 2020;383:112502. doi: 10.1016/j.bbr.2020.112502. PubMed DOI

Hostomská L., J¡rovec O., Horáčková M., Hrubcová M. Mongolismus und latente Toxoplasmosis der Mutter. Endokrinologie. 1957;34:295–304. PubMed

Kaňková Š., Holáň V., Zajícová A., Kodym P., Flegr J. Modulation of immunity in mice with latent toxoplasmosis—The experimental support for the immunosupression hypothesis of Toxoplasma-induced changes in reproduction of mice and humans. Parasitol. Res. 2010;107:1421–1427. doi: 10.1007/s00436-010-2013-9. PubMed DOI

Hegazy M.M., Elmehankar M.S., Azab M.S., El-Tantawy N.L., Abdel-Aziz A. Sex dichotomy in the course of experimental latent toxoplasmosis. Exp. Parasitol. 2019;202:15–21. doi: 10.1016/j.exppara.2019.05.003. PubMed DOI

Mendy A., Vieira E.R., Albatineh A.N., Gasana J. Immediate rather than delayed memory impairment in older adults with latent toxoplasmosis. Brain Behav. Immun. 2015;45:36–40. doi: 10.1016/j.bbi.2014.12.006. PubMed DOI

Gonçalves L.N.B., Menezes I.R.R., Palmer J.L., Brys I. Chronic Toxoplasma gondii infection is associated with decreased working memory performance in women. Estud. Psicol. 2024;41:e210112. doi: 10.1590/1982-0275202441e210112. DOI

Alvarado-Esquivel C., Estrada-Martinez S., Perez-Alamos A.R., Beristain-Garcia I., Alvarado-Felix A.O., Alvarado-Felix G.A., Sifuentes-Alvarez A. Toxoplasma gondii infection and suicidal behavior in people with alcohol consumption. Pathogens. 2021;10:734. doi: 10.3390/pathogens10060734. PubMed DOI PMC

Hlaváčová J., Flegr J., Fiurášková K., Kaňková Š. Relationship between latent toxoplasmosis and depression in clients of a Center for Assisted Reproduction. Pathogens. 2021;10:1052. doi: 10.3390/pathogens10081052. PubMed DOI PMC

Borráz-León J.I., Rantala M.J., Luoto S., Krams I., Contreras-Garduño J., Cerda-Molina A.L., Krama T. Toxoplasma gondii and psychopathology: Latent infection Is associated with interpersonal sensitivity, psychoticism, and higher testosterone levels in men, but not in women. Adapt. Hum. Behav. Physiol. 2021;7:28–42. doi: 10.1007/s40750-020-00160-2. DOI

Huang L., You X., Lu Z., Zhou X., He L., Zou C., Wang Q. Toxoplasma gondii infection and cardiovascular mortality: Sex-specific differences in a United States population-based cohort study. BMC Infect. Dis. 2024;24:1029. doi: 10.1186/s12879-024-09934-5. PubMed DOI PMC

Carritt B., Kemp T.J., Poulter M. Evolution of the human RH (rhesus) blood group genes: A 50 year old prediction (partially) fulfilled. Hum. Mol. Genet. 1997;6:843–850. doi: 10.1093/hmg/6.6.843. PubMed DOI

Flegel W.A. Molecular genetics of RH and its clinical application. Transfus. Clin. Biol. 2006;13:4–12. doi: 10.1016/j.tracli.2006.02.011. PubMed DOI

Prandota J. Rhesus-associated glycoprotein (RhAG) phenotype of the red blood cells modulates T. gondii infection-associated psychomotor performance reaction times and changes in the human personality profile. Impaired function of the CO2, AQP1, and AQP4 gas channels may cause hypoxia and thus enhance neuroinflammation in autistic individuals. In: Gemma C., editor. Neuroinflammation: Pathogenesis, Mechanisms and Management. Nova Publishers; New York, NY, USA: 2012. pp. 423–439.

Flegr J., Šebánková B., Příplatová L., Chvátalová V., Kaňková Š. Lower performance of Toxoplasma-infected, Rh-negative subjects in the weight holding and hand-grip tests. PLoS ONE. 2018;13:e0200346. doi: 10.1371/journal.pone.0200346. PubMed DOI PMC

Daniels G. Human Blood Groups. Blackwell Publishers; Oxford, UK: 2002. pp. 198–200.

Flegr J., Toman J., Hula M., Kankova S. The role of balancing selection in maintaining human RhD blood group polymorphism: A preregistered cross-sectional study. J. Evol. Biol. 2021;34:426–438. doi: 10.1111/jeb.13745. PubMed DOI

Flegr J., Příplatová L., Hlaváčová J., Šebánková B., Žďárský E., Kaňková Š. The importance of being heterozygote: Effects of RHD-genotype-sex interaction on the physical and mental health of a non-clinical population. Sci. Rep. 2021;11:21960. doi: 10.1038/s41598-021-00977-1. PubMed DOI PMC

Flegr J. Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS ONE. 2016;11:e0147955. doi: 10.1371/journal.pone.0147955. PubMed DOI PMC

Flegr J., Hoffmann R., Dammann M. Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS ONE. 2015;10:e0141362. doi: 10.1371/journal.pone.0141362. PubMed DOI PMC

Flegr J., Kuba R., Kopecký R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS ONE. 2020;15:e0236134. doi: 10.1371/journal.pone.0236134. PubMed DOI PMC

Flegr J., Geryk J., Volny J., Klose J., Cernochova D. Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS ONE. 2012;7:e49478. doi: 10.1371/journal.pone.0049478. PubMed DOI PMC

Halmin M., Rostgaard K., Lee B.K., Wikman A., Norda R., Nielsen K.R., Pedersen O.B., Holmqvist J., Hjalgrim H., Edgren G. Length of storage of red blood cells and patient survival after blood transfusion a binational cohort study. Ann. Intern. Med. 2017;166:248–256. doi: 10.7326/M16-1415. PubMed DOI

Saeij J.P.J., Boyle J.P., Boothroyd J.C. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol. 2005;21:476–481. doi: 10.1016/j.pt.2005.08.001. PubMed DOI

Dardé M.L. Toxoplasma gondii, “new” genotypes and virulence. Parasite. 2008;15:366–371. doi: 10.1051/parasite/2008153366. PubMed DOI

Kannan G., Moldovan K., Xiao J.C., Yolken R.H., Jones-Brando L., Pletnikov M.V. Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol. 2010;57:151–155. doi: 10.14411/fp.2010.019. PubMed DOI

Ingram W.M., Goodrich L.M., Robey E.A., Eisen M.B. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS ONE. 2013;8:e75246. doi: 10.1371/journal.pone.0075246. PubMed DOI PMC

Tao Q., Yang D., Qin K., Liu L., Jin M., Zhang F., Zhu J., Wang J., Luo Q., Du J., et al. Studies on the mechanism of Toxoplasma gondii Chinese 1 genotype Wh6 strain causing mice abnormal cognitive behavior. Parasit. Vectors. 2023;16:30. doi: 10.1186/s13071-022-05618-8. PubMed DOI PMC

Jung B.K., Pyo K.H., Shin K.Y., Hwang Y.S., Lim H., Lee S.J., Moon J.H., Lee S.H., Suh Y.H., Chai J.Y., et al. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a Murine Model of Alzheimer’s disease. PLoS ONE. 2012;7:e33312. doi: 10.1371/journal.pone.0033312. PubMed DOI PMC

Cabral C.M., McGovern K.E., MacDonald W.R., Franco J., Koshy A.A. Dissecting amyloid beta deposition using distinct strains of the neurotropic parasite Toxoplasma gondii as a novel tool. ASN Neuro. 2017;9:1759091417724915. doi: 10.1177/1759091417724915. PubMed DOI PMC

Xiao J.C., Prandovszky E., Kannan G., Pletnikov M.V., Dickerson F., Severance E.G., Yolken R.H. Toxoplasma gondii: Biological parameters of the connection to schizophrenia. Schizophr. Bull. 2018;44:983–992. doi: 10.1093/schbul/sby082. PubMed DOI PMC

Johnson H.J., Koshy A.A. Latent toxoplasmosis effects on rodents and humans: How much is real and how much is media hype? MBio. 2020;11:10-1128. doi: 10.1128/mBio.02164-19. PubMed DOI PMC

Castaño Barrios L., Da Silva Pinheiro A.P., Gibaldi D., Silva A.A., Machado Rodrigues E.S.P., Roffê E., da Costa Santiago H., Tostes Gazzinelli R., Mineo J.R., Silva N.M., et al. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS ONE. 2021;16:e0258199. doi: 10.1371/journal.pone.0258199. PubMed DOI PMC

Evans A.K., Strassmann P.S., Lee I.P., Sapolsky R.M. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain Behav. Immun. 2014;37:122–133. doi: 10.1016/j.bbi.2013.11.012. PubMed DOI PMC

Miyagaki M., Zong Y., Yang M., Zhang J., Zou Y., Ohno-Matsui K., Kamoi K. Ocular toxoplasmosis: Advances in Toxoplasma gondii biology, clinical manifestations, diagnostics, and therapy. Pathogens. 2024;13:898. doi: 10.3390/pathogens13100898. PubMed DOI PMC

de-la-Torre A., Sauer A., Pfaff A.W., Bourcier T., Brunet J., Speeg-Schatz C., Ballonzoli L., Villard O., Ajzenberg D., Sundar N., et al. Severe South American ocular toxoplasmosis is associated with decreased Ifn-γ/Il-17a and increased Il-6/Il-13 intraocular levels. PLoS Negl. Trop. Dis. 2013;7:e2541. doi: 10.1371/journal.pntd.0002541. PubMed DOI PMC

Genot S., Franck J., Forel J.M., Rebaudet S., Ajzenberg D., de Paula A.M., Dardé M.L., Stein A., Ranque S. Severe Toxoplasma gondii I/III recombinant-genotype encephalitis in a human immunodeficiency virus patient. J. Clin. Microbiol. 2007;45:3138–3140. doi: 10.1128/JCM.00021-07. PubMed DOI PMC

Ghosn J., Paris L., Ajzenberg D., Carcelain G., Dardé M.L., Tubiana R., Bossi P., Bricaire F., Katlama C. Atypical toxoplasmic manifestation after discontinuation of maintenance therapy in a human immunodeficiency virus type 1-infected patient with immune recovery. Clin. Infect. Dis. 2003;37:e112–e114. doi: 10.1086/378126. PubMed DOI

Delhaes L., Ajzenberg D., Sicot B., Bourgeot P., Dardé M.L., Dei-Cas E., Houfflin-Debarge V. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: Case report and review. Prenat. Diagn. 2010;30:902–905. doi: 10.1002/pd.2563. PubMed DOI

Stajner T., Vasiljević Z., Vujić D., Marković M., Ristić G., Mićić D., Pasić S., Ivović V., Ajzenberg D., Djurković-Djaković O. Atypical strain of Toxoplasma gondii causing fatal reactivation after hematopoietic stem cell transplantion in a patient with an underlying immunological deficiency. J. Clin. Microbiol. 2013;51:2686–2690. doi: 10.1128/JCM.01077-13. PubMed DOI PMC

Patrat-Delon S., Gangneux J.P., Lavoué S., Lelong B., Guiguen C., le Tulzo Y., Robert-Gangneux F. Correlation of parasite load determined by quantitative PCR to clinical outcome in a heart transplant patient with disseminated toxoplasmosis. J. Clin. Microbiol. 2010;48:2541–2545. doi: 10.1128/JCM.00252-10. PubMed DOI PMC

Xiao J.C., Buka S.L., Cannon T.D., Suzuki Y., Viscidi R.P., Torrey E.F., Yolken R.H. Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect. 2009;11:1011–1018. doi: 10.1016/j.micinf.2009.07.007. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...