Special Issue: Who makes the decisions? Uncovering the evolutionary implications and clinical applications of Toxoplasma gondii's Fatal Feline Attraction
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články, osobní vyprávění
PubMed
40458021
DOI
10.14411/fp.2025.016
PII: 2025.016
Knihovny.cz E-zdroje
- Klíčová slova
- Toxoplasmosis, behaviour, definitive host, intermediate host, manipulation, rats,
- MeSH
- biologická evoluce * MeSH
- interakce hostitele a parazita MeSH
- kočky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- nemoci koček * parazitologie přenos epidemiologie MeSH
- Toxoplasma * fyziologie genetika MeSH
- toxoplazmóza zvířat * parazitologie přenos epidemiologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- osobní vyprávění MeSH
Here I recount my research journey on the coccidian protist Toxoplasma gondii (Nicolle et Manceaux, 1908), a ubiquitous parasite capable of infecting all warm-blooded animals as intermediate or secondary host, but with only members of the Felidae as its definitive host. I describe my initial studies into its epidemiology and persistence within the UK, and how this led on to a series of biologically and ethically appropriate studies into T. gondii's apparent specific manipulation of its rat intermediate host to facilitate transmission to its feline definitive host. I then describe how this prompted searches into the potential mechanisms of action behind such manipulation and what this raises in terms of behavioural changes, from the subtle to severe, across other secondary hosts including humans.
Zobrazit více v PubMed
Adamo S., Webster J.P. 2013: Neural parasitology: how parasites alter host behaviour. J. Exp. Biol. 216: 1-2. DOI
Afonso C., Paixão V.B., Klaus A., Lunghi M., Piro F., Emiliani C., Di Critina M., Rui M. 2017: Toxoplasma-induced changes in host risk behaviour are independent of parasite-derived AaaH2 tyrosine hydroxylase. Sci. Rep. 7: 13822. DOI
Berdoy M., Webster J.P., Macdonald D.W. 1995: Parasite altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology 111: 403-409. DOI
Berdoy M., Webster J.P., Macdonald D.W. 2000: Fatal attraction in Toxoplasma-infected rats: a case of parasite manipulation of its mammalian host. Proc. Biol. Sci. 267: 1591-1594. DOI
Dubey J.P. 1995: Duration of immunity to shedding of Toxoplasma gondii oocysts by cats. J. Parasitol. 81: 410-415. DOI
File S.E., Zangrossi H., Andrews N. 1993: Novel environment and cat odor change GABA and 5-HT release and uptake in the rat. Pharmacol. Biochem. Behav. 45: 931-934. DOI
Flegr J. 2025: Thirty years of studying latent toxoplasmosis: behavioural, physiological, and health insights. Special Issue on Toxoplasmosis. Folia Parasitol. 72: 005. DOI
Flegr J., Lenochova P., Hodny Z., Vondrova M. 2011: Fatal attraction phenomenon in humans: cat odour attractiveness increased for Toxoplasma-infected men while decreased for infected women. PLoS Negl. Trop. Dis. 5: e1389. DOI
Flegr J., Preiss M., Klose J., Havlíček J., Vitáková M., Kodym P. 2003: Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii. Biol. Psychol. 63: 253-268. DOI
Gaskell E.A., Smith J.E., Pinney J.W., Westhead D.R., McConkey G.A. 2009: A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 4: e4801. DOI
Hogg S., File S.E. 1994: Regional differences in rat benzodiazepine binding in response to novelty and cat odour. Neuropharmacology 33: 865-868. DOI
Holmes J.C., Bethel W.M. 1972: Modification of intermediate behaviour by parasites. In: E.U. Canning and C.A. Wright (Eds.), Behavioural Aspects of Parasite Transmission. Academic Press, New York, pp. 123-149.
Hrdá Š., Votýpka J., Kodym P., Flegr J. 2000: Transient nature of Toxoplasma gondii-induced behavioural changes in mice. J. Parasitol. 86: 657-663. DOI
Hubel D.H., Wiesel T.N. 1962. Receptive fields, binocular interaction and functional archictecture in the cat's visual cortex. J. Physiol. 160: 106-154. DOI
Jones-Brando L., Torrey F., Yolken R. 2003: Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr. Res. 62: 237-244. DOI
Kannan G., Moldovan K., Xiao J.-C., Yolken R.H., Jones-Brando L., Pletnikov M.V. 2010: Parasite strain-dependent effects of Toxoplasma gondii on mouse behaviour. Folia Parasitol. 57: 151-155. DOI
Kaushik M., Knowles S.C.L., Webster J.P. 2014: What makes a feline fatal in Toxoplasma gondii's fatal feline attraction? Infected rats choose wild cats. Integr. Comp. Biol. 542: 118-128. DOI
Kaushik M., Lamberton P.H.L.,Webster J.P. 2012: The role of parasites and pathogens in influencing generalized anxiety and predation-related fear in the mammalian central nervous system. Horm. Behav. 62: 191-201. DOI
Lamberton P.H.L., Donnelly C.A., Webster J.P. 2008: Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology 135: 1143-1150. DOI
Leweke F.M., Gerth C.W., Koethe D., Klosterkötter J., Ruslanova I., Krivogorsky B., Torrey E.F., Yolken R.H. 2004: Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 254: 4-8. DOI
McConkey G.A., Gaskell E., Bristow G.C.,Webster J.P. 2013: Toxoplasma gondii brain infection and behaviour: location, location, location? J. Exp. Biol. 216: 113-119. DOI
McFarland R., Wang Z., Jouroukhin Y., Li Y., Mychko O., Coppens I., Xiao J., Jones-Brando L., Yolken R., Sibley L., Pletnikov M. 2018: AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behav. Brain Res. 347: 193-200. DOI
McGregor I.S., Schrama L., Ambermoon P., Dielenberg R.A. 2002: Not all 'predator odours' are equal: cat odour but not 2,4,5 trimethylthiazoline (TMT; fox odour) elicits specific defensive behaviours in rats. Behav. Brain Res. 129: 1-16. DOI
Miller M.A., Grigg M.E., Kreuder C., James E.R., Melli A.C., Crosbie P.R., Jessup D.A., Boothroyd J.C., Brownstein D., Conrad P.A. 2004: An unusual genotype of Toxoplasma gondii is common in California sea otters (Enhydra lutris nereis) and is a cause of mortality. Int. J. Parasitol. 34: 275-284. DOI
Milne G., Fujimoto C., Bean T., Peters H.J., Hemmington M., Tayor C., Fowkes R., Martineau H., Hamilton C., Walker M., Mitchell J., Leger E., Priestnall S.L.,Webster J.P. 2020a: Infectious causation of abnormal host behaviour: Toxoplasma gondii and its potential association with Dopey Fox Syndrome. Front. Psychiatry 11: 513536. DOI
Milne G., Webster J.P., Walker M. 2020b: Toxoplasma gondii: an underestimated threat? Trends Parasitol. 36: 959-969. DOI
Milne G., Webster J.P., Walker M. 2020c: Towards improving interventions against toxoplasmosis by identifying routes of transmission using sporozoite-specific serological tools. Clin. Infect. Dis. 71: e686-e693. DOI
Milne G.M., Webster J.P., Walker M. 2023: Is the incidence of congenital toxoplasmosis declining? Trends Parasitol. 39: 26-37. DOI
Mirzaeipour M., Mikaeili F., Asgari Q., Nohtani M., Rashidi S., Bahreini M.S. 2021: Evaluation of the tyrosine and dopamine serum levels in experimental infected BALB/c mice with chronic toxoplasmosis. J. Parasitol. Res. 2021: 5511516. DOI
Moore J., Adamo S., Thomas F. 2005: Manipulation: expansion of the paradigm. Behav. Processes 68: 283-287. DOI
Moore J., Gotelli N.J. 1990: A phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In: C. J. Barnard and J. M. Behnke (Eds.), Parasitism and Host Behaviour. Taylor and Francis, London, pp. 193-332.
Omidian M., Asgari Q., Bahreini M.S., Moshki S., Sedaghat B., Adnani Sadati S.J. 2022: Acute toxoplasmosis can increase serum dopamine level. J. Parasit. Dis. 46: 337-342. DOI
Poulin R. 1994: The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology 109 (Suppl.): 109-118. DOI
Prandovszky E., Gaskell E., Dubey J.P., Webster J.P., McConkey G.A. 2011: The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One 6: e23866. DOI
Stibbs H.H. 1985: Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann. Trop. Med. Parasitol. 79: 153-157. DOI
Torrey E.F. 2024: The linking of toxoplasmosis and schizophrenia. Special Issue on Toxoplasmosis. Folia Parasitol. 71: 016 DOI
Torrey E.F., Rawlings R., Yolken R.H. 2000: The antecedents of psychoses: a case-control study of selected risk factors. Schizophr. Res. 46: 17-23. DOI
Torrey E.F., Yolken R.H. 2003: Toxoplasma gondii and schizophrenia. Emerg. Infect. Dis. 9: 1375-1380. DOI
Vyas A. 2024: Nuts and bolts of the behavioural manipulation by Toxoplasma gondii. Special Issue on Toxoplasmosis. Folia Parasitol. 71: 017. DOI
Wang Z.T., Verma S.K., Dubey J.P., Sibley L.D. 2015: Reassessment of the role of aromatic amino acid hydroxylases and the effect of infection by Toxoplasma gondii on host dopamine. Infect. Immun. 83: 1039-1047. DOI
Webster J.P. 1994a: Prevalence and transmission of Toxoplasma gondii in wild brown rats, Rattus norvegicus. Parasitology 108: 407-411. DOI
Webster J.P. 1994b: The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 109: 583-589. DOI
Webster J.P., Borlase A.M., Rudge J.W. 2017: Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372: 20160091. DOI
Webster J.P., Brunton C.F.A., Macdonald D.W. 1994: Effect of Toxoplasma gondii on neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology 109: 37-43. DOI
Webster J.P., Ellis W.A., Macdonald D.W. 1995: Prevalence of Leptospira in wild brown rats (Rattus norvegicus) on UK farmsteads. Epidemiol. Infect. 113: 195-201. DOI
Webster J.P., Kaushik M., Bristow G.C., McConkey G.A. 2013: Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J. Exp. Biol. 216: 99-112. DOI
Webster J.P., Lamberton P.H.L., Donnelly C.A., Torrey E.F. 2006: Parasites as causative agents of human affective disorders? The impact of anti-psychotic and anti-protozoan medication on Toxoplasma gondii's ability to alter host behaviour. Proc. Biol. Sci. 273: 1023-1030. DOI
Webster J.P., Lamberton P.H.L., McConkey G.A. 2015: The Toxoplasma gondii model for schizophrenia. In: M. Pletnikov and J. Waddington (Eds.), Handbook of Behavioral Neuroscience Series: Modelling the Psychopathological Dimensions of Schizophrenia and Related Psychoses: from Molecules to Behavior. Elsevier, Oxford, pp. 225-237. DOI
Webster J.P., Macdonald D.W. 1995: Survey of the parasites and pathogens carried by wild brown rats, Rattus norvegicus, on UK farmsteads. Parasitology 111: 247-255. DOI
Webster J.P., McConkey G.A. 2010: Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. Folia Parasitol. 57: 95-104. DOI
Zangrossi H. Jr., File S.E. 1992: Behavioral consequences in animal tests of anxiety and exploration of exposure to cat odor. Brain Res. Bull. 29: 381-388. DOI