Retrospective OSL Dosimetry With Common Pharmaceuticals and Food Supplements
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35784234
PubMed Central
PMC9243327
DOI
10.3389/fpubh.2022.908016
Knihovny.cz E-zdroje
- Klíčová slova
- food supplements, optically stimulated luminescence, pharmaceuticals, radiation triage, retrospective dosimetry,
- MeSH
- dávka záření MeSH
- dozimetrie opticky stimulovanou luminiscencí * metody MeSH
- léčivé přípravky MeSH
- potravní doplňky MeSH
- retrospektivní studie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- léčivé přípravky MeSH
Several common pharmaceuticals such as ibuprofen, paracetamol, aspirin, oral contraceptives, drugs for the prevention of motion sickness and food supplements such as table vitamins and minerals have been studied for the purposes of retrospective dosimetry using optically stimulated luminescence (OSL). The essence is that the tablets with these drug substances contain additive crystalline materials which, after irradiation and stimulation, may exhibit luminescence. For most of the pharmaceuticals and food supplements, a radiation-induced dose-dependent OSL signal was detected. Subsequently, basic dosimetric characteristics of the materials were studied, specifically sensitivity changes during repeated OSL readings, dose response, zero-dose, minimum detectable dose (MDD) and fading. The most radiation sensitive materials were food supplements with Mg providing zero-dose and MDD values at the level of several mGy. For Mg supplements, considerable sensitivity changes in OSL signal were observed. Despite this, they could be corrected using a Single-Aliquot Regenerative-dose (SAR) protocol. The OSL signals of the other materials were relatively weak but they were well reproducible and exhibited linear dose response. The MDD values were variable among the materials and ranged from 0.1 to several Gy. However, for some of the pharmaceuticals, a very high and variable zero-dose of more than 3 Gy was observed that would rule out the possibility of dose reconstruction for triage purposes. The OSL signal exhibited a significant fading rate for most of the materials. The measurements for dose reconstruction should be performed as soon as possible after irradiation, i.e. within a maximum of a few days.
Zobrazit více v PubMed
International Commission on Radiation Units & Measurements . ICRU report 94: methods for initial-phase assessment of individual doses following acute exposures to ionizing radiation. J ICRU. (2019) 19:3–162.
Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, et al. . Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat Prot Dosimetry. (2011) 147:572–92. 10.1093/rpd/ncq499 PubMed DOI
Kulka U, Abend M, Ainsbury E, Badie C, Barquiero JF, Barrios L, et al. . RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol. (2017) 93:2–14. 10.1080/09553002.2016.1230239 PubMed DOI
Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M et al. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons. Int J Radiat Biol. (2017) 93:99–109. 10.1080/09553002.2016.1206233 PubMed DOI
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini MC, et al. . Retrospective radiation dosimetry using OSL of electronic components: results of an inter-laboratory comparison. Radiat Meas. (2014) 71:475–9. 10.1016/j.radmeas.2014.03.016 DOI
Discher M, Woda C. Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry. Radiat Meas. (2013) 53:12–21. 10.1016/j.radmeas.2013.04.002 DOI
Kim H, Discher M, Kim MC, Woda C. Lee J. Thermally assisted optically stimulated luminescence protocol of mobile phone substrate glasses for accident dosimetry. Radiat Meas. (2021) 146:106625. 10.1016/j.radmeas.2021.106625 DOI
Ekendahl D, Cemusová Z, Judas L. Retrospective dose reconstruction with mobile phones and chip cards. Radiat Prot Dosimetry. (2019) 186:206–10. 10.1093/rpd/ncz203 PubMed DOI
Ekendahl D, Cemusová Z, Reimitz D, Vávra J. Retrospective physical dosimetry in the Czech Republic: an overview of already established methods and recent research. Int J Radiat Biol. (2022) 98:890–9. 10.1080/09553002.2021.1988181 PubMed DOI
Veronese I, Galli A, Cantone MC, Martini M, Vernizzi F, Guzzi G. Study of TSL and OSL properties of dental ceramics for accidental dosimetry applications. Radiat Meas. (2010) 45:35–41. 10.1016/j.radmeas.2009.11.005 DOI
Sholom S, McKeever SW. Emergency OSL dosimetry with commonplace materials. Radiat Meas. (2014) 61:33–51. 10.1016/j.radmeas.2013.12.008 DOI
Woda C, Fiedler I, Spöttl T. On the use of OSL of chip card modules with molding for retrospective and accident dosimetry. Radiat Meas. (2012) 47:1068–73. 10.1016/j.radmeas.2012.08.012 DOI
Bortolin E, Boniglia C, Della Monaca S, Gargiulo R, Onori S. Fattibene P. Is dust a suitable material for retrospective personal dosimetry? Radiat Meas. (2010) 45:967–70. 10.1016/j.radmeas.2009.12.029 DOI
Ademola JA, Woda C, Bortolin E. Thermoluminescence investigations on tobacco dust as an emergency dosimeter. Radiat Meas. (2017) 106:443–9. 10.1016/j.radmeas.2017.01.007 DOI
Bossin L, Bailiff IK, Terry I. Luminescence characteristics of some common polyester fabrics: application to emergency dosimetry. Radiat Meas. (2017) 106:436–42. 10.1016/j.radmeas.2017.05.017 DOI
Bernhardsson C, Christiansson M, Mattsson S, Rääf CL. Household salt as a retrospective dosemeter using optically stimulated luminescence. Radiat Environ Biophys. (2009) 48:21–8. 10.1007/s00411-008-0191-y PubMed DOI
Maltar-Strmečki N, Vidotto M, Della Monaca S, Erceg I, Fattibene P., Vojnic Kotnic M, et al. . Salty crackers as fortuitous dosimeters: a novel PSL method for rapid radiation triage. Front Public Health. (2021) 9:661376. 10.3389/fpubh.2021.661376 PubMed DOI PMC
Aliksieva K, Yordanov ND. EPR investigation of some gamma-irradiated excipients. Radiat Eff Defect Solids. (2012) 167:685-9. 10.1080/10420150.2012.684062 PubMed DOI
Cozar O, Chris V, David L, Damian G, Barbur I. ESR investigation of gamma-irradiated aspirin. J Radioanal Nucl Chem. (1997) 220:241–4.
Juárez-Calderón JM, Negrón-Mendoza A, Gómez-Vidales V, Ramos-Bernal S. Study of dosimetric properties of acetylsalicylic acid in pharmaceutical preparations by EPR spectroscopy. J Radioanal Nucl Chem. (2009) 280:245–9.
Kazakis NA, Tsirliganis NC, Kitis G. Preliminary thermoluminescence and optically stimulated luminescence investigation of commercial pharmaceutical preparations towards the drug sterilization dosimetry. Appl Radiat Isot. (2014) 91:79–91. 10.1016/j.apradiso.2014.05.012 PubMed DOI
Sholom S, McKeever SWS. Emergency EPR and OSL dosimetry with table vitamins and minerals. Radiat Prot Dosimetry. (2016) 172:139–44. 10.1093/rpd/ncw177 PubMed DOI
Katdare A, Chaubal MV. Excipient Development for Pharmaceutical, Biotechnology and Drug Delivery Systems. New York, NY: Informa Healthcare USA; (2006).
Bøtter-Jensen L., McKeever SWS, Wintle AG. Optically Stimulated Luminescence Dosimetry. Amsterdam: Elsevier Science B.V. (2003). p. 285.
Zhang JF, Yan C, Zhou LP. Feasibility of optical dating using halite. J Lumin. (2005) 114:234–40. 10.1016/j.lumin.2005.01.009 DOI
Technical University of Denmark . The Risø software suite. Available online at: https://www.fysik.dtu.dk/english/research/radphys/research/radiation-instruments/tl_osl_reader/software/suite. (Accessed April 27, 2022).
McKeever SWS, Moscovitch M, Townsend PD. Thermoluminescence Dosimetry Materials: Properties and Uses. Ashford: Nuclear Technology Publishing; (1995). p. 31.
Sanderson DCW, Kerr C, Carmichael L. A Short Investigation of the Luminescence Properties of Talc. (2002). Available online at: http://eprints.gla.ac.uk/58388/ (Accessed March 28, 2022).
Nikiforov SV, Kortov VS, Petrov MO. Luminescent and dosimetric properties of ultrafine magnesium oxide ceramics after high dose irradiation. Radiat Meas. (2016) 90:252–6. 10.1016/j.radmeas.2015.12.018 DOI
Oliveira LC, Yukihara EG, Baffa O. MgO:Li,Ce,Sm as a high-sensitivity material for optically stimulated luminescence dosimetry. Sci Rep. (2016) 6:24348. 10.1038/srep24348 PubMed DOI PMC
Bos AJ, Prokić M, Brouwe JC. Optically and thermally stimulated luminescence characteristics of MgO:Tb3+. Radiat Prot Dosimetry. (2006) 119:130–3. 10.1093/rpd/nci641 PubMed DOI
Pal M, Pal U, Chernov V, Melénderez R, Barboza-Flores M. Thermoluminescence and optically stimulated luminescence properties of beta-irradiated TiO[[sb]]2[[/s]]:Yb nanoparticles. J Nanosci Nanotechnol. (2009) 9:1851–7. 10.1166/jnn.2009.369 PubMed DOI