An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35802740
PubMed Central
PMC9269936
DOI
10.1371/journal.pone.0271121
PII: PONE-D-21-29896
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- otolitová membrána ultrastruktura MeSH
- ryby * anatomie a histologie klasifikace MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The suborder Gobioidei is among the most diverse groups of vertebrates, comprising about 2310 species. In the fossil record gobioids date back to the early Eocene (c. 50 m.y. ago), and a considerable increase in numbers of described species is evident since the middle Miocene (c. 16 m.y. ago). About 40 skeleton-based gobioid species and > 100 otolith-based species have been described until to date. However, assignment of a fossil gobioid species to specific families has often remained tentative, even if well preserved complete specimens are available. The reasons are that synapomorphies that can be recognized in a fossil skeleton are rare (or absent) and that no phylogenetic framework applicable to gobioid fossils exists. Here we aim to overcome this problem by developing a phylogenetic total evidence framework that is suitable to place a fossil skeleton-based gobioid at family level. Using both literature and newly collected data we assembled a morphological character matrix (48 characters) for 29 extant species, representing all extant gobioid families, and ten fossil gobioid species, and we compiled a multi-gene concatenated alignment (supermatrix; 6271 bp) of published molecular sequence data for the extant species. Bayesian and Maximum Parsimony analyses revealed that our selection of extant species was sufficient to achieve a molecular 'backbone' that fully conforms to previous molecular work. Our data revealed that inclusion of all fossil species simultaneously produced very poorly resolved trees, even for some extant taxa. In contrast, addition of a single fossil species to the total evidence data set of the extant species provided new insight in its possible placement at family level, especially in a Bayesian framework. Five out of the ten fossil species were recovered in the same family as had been suggested in previous works based on comparative morphology. The remaining five fossil species had hitherto been left as family incertae sedis. Now, based on our phylogenetic framework, new and mostly well supported hypotheses to which clades they could belong can be presented. We conclude that the total evidence framework presented here will be beneficial for all future work dealing with the phylogenetic placement of a fossil skeleton-based gobioid and thus will help to improve our understanding of the evolutionary history of these fascinating fishes. Moreover, our data highlight that increased sampling of fossil taxa in a total-evidence context is not universally beneficial, as might be expected, but strongly depends on the study group and peculiarities of the morphological data.
Department of Ecology Charles University Prague Czech Republic
Department of Zoology National Museum Prague Czech Republic
GeoBio Center LMU Ludwig Maximilians Universität München Munich Germany
School of Biological Sciences University of Western Australia Crawley WA Australia
Zobrazit více v PubMed
Nelson JS, Grande TC, Wilson MVH. Fishes of the World, Fifth Edition. Hoboken, New Jersey: John Wiley & Sons, inc.; 2016. 752 p.
Parenti P. A checklist of the gobioid fishes of the world (Percomorpha: Gobiiformes). Iran J Ichthyol. 2021;8:1–480. doi: 10.22034/iji.v8i0.556 DOI
Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews. 2018;93(4):1846–73. Epub May 7. doi: 10.1111/brv.12423 WOS:000446427600008. PubMed DOI
Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG, editors. The biology of gobies. 1 ed. Enfield, New Hampshire: Science Publishers Inc.; 2011.
Tornabene L, Robertson DR, Baldwin CC. Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. ZooKeys. 2016;596:143–56. doi: 10.3897/zookeys.596.8217 WOS:000378055700010; PubMed Central PMCID: PMC4926659. PubMed DOI PMC
Jaafar Z, Murdy EO, editors. Fishes Out of Water: Biology and Ecology of Mudskippers. 1st ed. Raton Boca: Taylor & Francis; 2017.
Keith P. Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J Fish Biol. 2003;63(4):831–47. Epub Sep 26. doi: 10.1046/j.1095-8649.2003.00197.x WOS:000186047000001. DOI
Karplus I, Szlep R, M T. Goby-shrimp partner specificity. I. Distribution in the northern Red Sea and partner specificity. J Exp Mar Biol Ecol. 1981;51(1):1–19. Epub Mar 31, 2003. doi: 10.1016/0022-0981(81)90151-9 DOI
Karplus I, Thompson AR. The partnership between gobiid fishes and burrowing alpheid shrimps. In: Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG, editors. The biology of gobies. Enfield, NH: Science Publishers Inc.; 2011. p. 559–607.
Thacker CE, Satoh TP, Katayama E, Harrington RC, Eytan RI, Near TJ. Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular phylogenetics and evolution. 2015;93:172–9. Epub Aug. doi: 10.1016/j.ympev.2015.08.001 MEDLINE:26265255; PubMed Central PMCID: PMC26265255. PubMed DOI
Reichenbacher B, Přikryl T, Cerwenka AF, Keith P, Gierl C, Dohrmann M. Freshwater gobies 30 million years ago: New insights into character evolution and phylogenetic relationships of †Pirskeniidae (Gobioidei, Teleostei). PloS one. 2020;15(8):e0237366. Epub Aug 24. doi: 10.1371/journal.pone.0237366 WOS:000565550400035. PubMed DOI PMC
Agorreta A, San Mauro D, Schliewen U, Van Tassell JL, Kovačić M, Zardoya R, et al.. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular phylogenetics and evolution. 2013;69(3):619–33. doi: 10.1016/j.ympev.2013.07.017 MEDLINE:23911892. PubMed DOI
McCraney WT, Thacker CE, Alfaro ME. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Molecular phylogenetics and evolution. 2020;151:106862. Epub May 28. doi: 10.1016/j.ympev.2020.106862 PubMed DOI
Akihito, Iwata A, Kobayashi T, Ikeo K, Imanishi T, Ono H, et al.. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene. 2000;259(1–2):5–15. doi: 10.1016/s0378-1119(00)00488-1 ISI:000166338300003. PubMed DOI
Gill AC, Mooi RD. Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha). Zootaxa. 2012;3266(1):41–52. doi: 10.11646/zootaxa.3266.1.3 DOI
Thacker CE. Biogeography of goby lineages (Gobiiformes: Gobioidei): origin, invasions and extinction throughout the Cenozoic. J Biogeogr. 2015;42(9):1615–25. Epub Jun 13. doi: 10.1111/jbi.12545 WOS:000359376600004. DOI
McAllister DE. Evolution of the branchiostegals and classification of teleostome fishes. Bull natn Mus Can (Biol Ser). 1968;77:1–239.
Carpenter KE, Niem VH. The living marine resources of the Western Central Pacific. Volume 5. Bony fishes part 3 (Menidae to Pomacentridae). Rome: Food and Agriculture Organization of the United Nations (FAO); 2001. 2791–3380 p.
Fraser TH. Comparative osteology of the shallow water cardinal fishes (Perciformes: Apogonidae) with reference to the systematics and evolution of the family. Ichthyological Bulletin of the J L B Smith Institute of Ichthyology. 1972;34:1–105.
Regan CT. The osteology and classification of the gobioid fishes. The Annals and Magazine of Natural History [Eighth Series]. 1911;8(48):729–33.
Van Tassell JL, Tornabene L, Taylor MS. A history of gobioid morphological systematics. In: Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG, editors. The biology of gobies. Enfield, NH: Science Publishers Inc.; 2011. p. 3–22.
Akihito. A systematic examination of the gobiid fishes based on the Mesopterygoid, Postcleithra, Branchiostegals, pelvic fins, Scapula, and Suborbital. Jpn J Ichthyol. 1969;16(3):93–104. Epub Jun 28, 2010. doi: 10.11369/jji1950.16.93 BCI:BCI197051058231. DOI
Hoese DF. Gobioidei: relationships. In: Moser HG, Richards WJ, Cohen DM, Fahay MP, Kendall J A. W.,Richardson SL, editors. Ontogeny and systematics of fishes. Gainesville, Florida: American Society of Ichthyologists and Herpetologists; 1984. p. 588–91.
Miller PJ. The osteology and adaptive features of Rhyacichthys aspro (Teleostei: Gobioidei) and the classification of gobioid fishes. Journal of Zoology. 1973;171(3):397–434. doi: 10.1111/j.1469-7998.1973.tb05347.x DOI
Thacker CE, Hardman MA. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular phylogenetics and evolution. 2005;37(3):858–71. Epub 2005/06/25. doi: 10.1016/j.ympev.2005.05.004 . PubMed DOI
Harrison IJ. Specialization of the gobioid palatopterygoquadrate complex and its relevance to gobioid systematics. Journal of Natural History. 1989;23(2):325–53. doi: 10.1080/00222938900770211 DOI
Pezold F. Evidence for a monophyletic Gobiinae. Copeia. 1993;1993(3):634–43. doi: 10.2307/1447224 BCI:BCI199396109145. DOI
Hoese DF, Gill AC. Phylogenetic relationships of eleotridid fishes (Perciformes, Gobioidei). B Mar Sci. 1993;52(1):415–40. ISI:A1993KX23000015.
Thacker CE. Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia. 2009;2009(1):93–104. doi: 10.1643/Ci-08-004 ISI:000263748000013. DOI
Larson HK. A revision of the gobiid fish genus Mugilogobius (Teleostei: Gobioidei), and its systematic placement. Rec West Aust Mus. 2001;62:1–233. doi: 10.18195/issn.0313-122x.62.2001.001–233 DOI
Murdy EO. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Rec West Aust Mus Suppl. 1989;11:1–93. Epub Jun 16, 2009. doi: 10.3853/j.0812-7387.11.1989.93 BCI:BCI199089035472. DOI
Harold AS, Winterbottom R, Munday PL, Chapman RW. Phylogenetic relationships of Indo-Pacific coral gobies of the genus Gobiodon (Teleostei: Gobiidae), based on morphological and molecular data. B Mar Sci. 2008;82(1):119–36. WOS:000252842600008.
Lord C, Bellec L, Dettaï A, Bonillo C, Keith P. Does your lip stick? Evolutionary aspects of the mouth morphology of the Indo-Pacific clinging goby of the Sicyopterus genus (Teleostei: Gobioidei: Sicydiinae) based on mitogenome phylogeny. Journal of Zoological Systematics and Evolutionary Research. 2019;57(4):910–25. Epub May 30. doi: 10.1111/jzs.12291 DOI
Pezold F. Phylogenetic analysis of the genus Gobionellus (Teleostei: Gobiidae). Copeia. 2004;2004(2):260–80. doi: 10.1643/CI-02-218R3 WOS:000221336700006. DOI
Tornabene L, Deis B, Erdmann MV. Evaluating the phylogenetic position of the goby genus Kelloggella (Teleostei: Gobiidae), with notes on osteology of the genus and description of a new species from Niue in the South Central Pacific Ocean. Zool J Linn Soc. 2018;183(1):143–62. Epub Dec 16, 2017. doi: 10.1093/zoolinnean/zlx060 WOS:000432303500006. DOI
Tornabene L, Greenfield DW, Erdmann MV. A review of the Eviota zebrina complex, with descriptions of four new species (Teleostei, Gobiidae). ZooKeys. 2021;1057:149–84. doi: 10.3897/zookeys.1057.66675 PubMed DOI PMC
Gaudant J. Sur les conditions de gisement de l’ichthyofaune oligocène d’Aix-en-Provence (Bouches-du-Rhône): Essai de définition d’un modèle paléoécologique et paléogéographique. Géobios. 1978;11(3):393–7. doi: 10.1016/S0016-6995(78)80039-4 DOI
Gaudant J, Quayle WJ. New palaeontological studies on the Chapelcorner fish bed (Upper Eocene, Isle of Wight). Bull Br Mus nat Hist (Geol). 1988;44(1):15–39.
Gaudant J. Nouvelles observations sur les poissons oligocènes de Monteviale (Vicenza—Italie). Mem Sci Geol. 1978;32:1–9.
Gaudant J. Sur la présence de Gobiidae (Poissons téléostéens) dans l’Oligocène inférieur de Rouffach (Haut-Rhin). Sci Géol Bull. 1979;32(3):131–7. doi: 10.3406/sgeol.1979.1560 DOI
Bradić-Milinović K, Ahnelt H, Rundić L, Schwarzhans W. The lost freshwater goby fish fauna (Teleostei, Gobiidae) from the early Miocene of Klinci (Serbia). Swiss Journal of Palaeontology. 2019;138(2):285–315. Epub June 1. doi: 10.1007/s13358-019-00194-4 DOI
Gierl C, Reichenbacher B. A new fossil genus of Gobiiformes from the Miocene characterized by a mosaic set of characters. Copeia. 2015;103(4):792–805. Epub Nov 12. doi: 10.1643/ci-14-146 WOS:000366679700006. DOI
Gierl C, Reichenbacher B. Revision of so-called Pomatoschistus (Gobiiformes, Teleostei) from the late Eocene and early Oligocene. Palaeontologia Electronica. 2017;20.2.33A:1–17. doi: 10.26879/721 WOS:000405188500014. DOI
Gierl C, Reichenbacher B, Gaudant J, Erpenbeck D, Pharisat A. An extraordinary gobioid fish fossil from southern France. PloS one. 2013;8(5):e64117. Epub May 15. doi: 10.1371/journal.pone.0064117 ; PubMed Central PMCID: PMC3655028. PubMed DOI PMC
Reichenbacher B, Bannikov AF. Diversity of gobioid fishes in the late middle Miocene of northern Moldova, Eastern Paratethys–part I: an extinct clade of Lesueurigobius look-alikes. PalZ. 2022;96:67–112. Epub Aug 26, 2021. doi: 10.1007/s12542-021-00573-8 DOI
Reichenbacher B, Gregorová R, Holcová K, Šanda R, Vukić J, Přikryl T. Discovery of the oldest Gobius (Teleostei, Gobiiformes) from a marine ecosystem of Early Miocene age. Journal of Systematic Palaeontology. 2018;16(6):493–513. Epub May 2, 2017. doi: 10.1080/14772019.2017.1313323 WOS:000424810000002. DOI
Schwarzhans W, Ahnelt H, Carnevale G, Japundžić S, Bradić K, Bratishko A. Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: tales from the cradle of the Ponto-Caspian gobies. Swiss Journal of Palaeontology. 2017;136(1):45–92. Epub Nov 10, 2016. doi: 10.1007/s13358-016-0120-7 DOI
Gaudant J. Mise en évidence des plus anciens Gobioidei (Poissons téléostéens) connus dans le Lutétien inférieur marin de Catalogne (Espagne). Comptes rendus de l’Académie des sciences Série II, Sciences de la terre et des planètes. 1996;322(1):71–6. ISI:A1996TT86800009.
Obrhelová N. Vergleichende Osteologie der tertiären Süsswasserfische Böhmens (Gobioidei). Sbornik Paläont. 1961;26:103–92.
Schwarzhans W, Brzobohatý R, Radwańska U. Goby otoliths from the Badenian (middle Miocene) of the Central Paratethys from the Czech Republic, Slovakia and Poland: A baseline for the evolution of the European Gobiidae (Gobiiformes; Teleostei). Bollettino della Società Paleontologica Italiana. 2020;59(2):125–73. doi: 10.4435/bspi.2020.10 WOS:000562503100004. DOI
Schwarzhans W, Agiadi K, Carnevale G. Late Miocene-Early Pliocene evolution of Mediterranean gobies and their environmental and biogeographic significance. Riv It Paleont Strat. 2020;126(3):657–724. WOS:000584561400003.
Keith P. Threatened fishes of the world: Rhyacichthys guilberti Dingerkus & Séret, 1992 (Rhyacichthyidae). Environ Biol Fish. 2002;63(1):40–. doi: 10.1023/a:1013827820971 WOS:000173466700006. DOI
Lord C, Keith P. Threatened fishes of the world: Protogobius attiti Watson & Pöllabauer, 1998 (Rhyacichthyidae). Environ Biol Fish. 2006;77(1):101–2. doi: 10.1007/s10641-006-9060-1 WOS:000239741100010. DOI
Akihito. Some morphological characters considered to be important in gobiid phylogeny. In: Matsuura K, editor. Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. Tokyo: Ichthyological Society of Japan; 1986. p. 629–39.
Iwata A, Jeon S-R, Mizuno N, Choi K-C. A revision of the eleotrid goby genus Odontobutis in Japan, Korea and China. Jpn J Ichthyol. 1985;31(4):373–88. Epub Feb 23, 2011. doi: 10.11369/jji1950.31.373 WOS:A1985ADJ0200005. DOI
Sparks JS, Chakrabarty P. Revision of the endemic Malagasy Cavefish genus Typhleotris (Teleostei: Gobiiformes: Milyeringidae) with discussion of its phylogenetic placement and description of a new species. American Museum Novitates. 2012;3764:1–28. doi: 10.1206/3764.2 WOS:000312236300001. DOI
Hoese DF, Larson HK. New Australian fishes. Part 11. A new genus and species of eleotridid (Gobioidei) from Southern Australia with a discussion of relationships. Memoirs of the Museum of Victoria. 1987;48(1):43–50. BCI:BCI198987014125.
Schwarzhans W. Reconstruction of the Fossil Marine Bony Fish Fauna (Teleostei) from the Eocene to Pleistocene of New Zealand by Means of Otoliths: With Studies of Recent Congroid, Morid and Trachinoid Otoliths. Milano: Museo Civico di Storia Naturale di Milano; 2019. 390 p.
Hoese DF, Roberts CD. A new species of the eleotrid genus Thalasseleotris (Teleostei: Gobioidei) from New Zealand coastal waters. J Roy Soc New Zeal. 2005;35(4):417–31. doi: 10.1080/03014223.2005.9517793 ISI:000234492300004. DOI
Birdsong RS, Murdy EO, Pezold FL. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. B Mar Sci. 1988;42(2):174–214. ISI:A1988N503000003.
Kindermann G, Miljković N, Ahnelt H, Stevenson DE. The osteology of Eucyclogobius newberryi and Quietula guaymasiae (Teleostei: Gobiidae), two closely related Gobionellines from the East Pacific. Annalen des Naturhistorischen Museums in Wien Serie B Botanik und Zoologie. 2007;108:13–56. BCI:BCI200700465922.
Gierl C. Articulated gobioid skeletons from the Frankfurt-Formation (Lower Miocene). München: Ludwig-Maximilians-Universität München; 2012.
Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, et al.. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci U S A. 2013;110(31):12738–43. doi: 10.1073/pnas.1304661110 ; PubMed Central PMCID: PMC3732986. PubMed DOI PMC
Bannikov AF, Carnevale G. †Carlomonnius quasigobius gen. et sp. nov.: the first gobioid fish from the Eocene of Monte Bolca, Italy. Bulletin of Geosciences. 2016;91(1):13–22. Epub Dec 2, 2015. doi: 10.3140/bull.geosci.1577 WOS:000372546600002. DOI
Gaudant J. Présence du genre Lepidocottus Sauvage, 1875 (Teleostei, Gobioidei) dans l’Oligocène inférieur des environs de Céreste (Alpes-de-Haute-Provence, France). Geodiversitas. 2015;37(2):229–35. doi: 10.5252/g2015n2a4 WOS:000357401300004. DOI
Reichenbacher B, Gaudant J. On Prolebias meyeri (Agassiz) (Teleostei, Cyprinodontiformes) from the Oligo-Miocene of the Upper Rhinegraben area, with the establishment of a new genus and a new species. Eclogae Geologicae Helvetiae. 2003;96(3):509–20. doi: 10.1007/s00015-003-1098-x WOS:000189178600014. DOI
Přikryl T. A new species of the sleeper goby (Gobioidei, Eleotridae) from the České Středohoří Mountains (Czech Republic, Oligocene) and analysis of the validity of the family Pirskeniidae. Paläontol Z. 2014;88(2):187–96. Epub Jun 28, 2013. doi: 10.1007/s12542-013-0188-y DOI
La Mesa M, Arneri E, Caputo V, Iglesias M. The transparent goby, Aphia minuta: review of biology and fisheries of a paedomorphic European fish. Rev Fish Biol Fisheries. 2005;15(1–2):89–109. doi: 10.1007/s11160-005-1613-4 WOS:000233725400006. DOI
Rojo AL. Osteología del chanquete, Aphya minuta (Risso, 1810) (Pisces: Gobiidae). Bol Inst Esp Oceanogr. 1985;2(1):165–79. BCI:BCI198681089950.
Van Tassell JL, Miller PJ, Brito A. A revision of Vanneaugobius (Teleostei: Gobiidae), with description of a new species. Journal of Natural History. 1988;22(2):545–67. Epub Feb 17, 2007. doi: 10.1080/00222938800770371 DOI
Hoese DF, Fourmanoir P. Discordipinna griessingeri, a new genus and species of gobiid fish from tropical Indo-West Pacific. Jpn J Ichthyol. 1978;25(1):19–24. doi: 10.11369/jji1950.25.19 ISI:A1978FG43000003. DOI
Esmaeili HR, Baghbani S, Zareian H, Shahryari F. Scale morphology of tank goby Glossogobius giuris (Hamilton-Buchanan, 1822) (Perciformes: Gobiidae) using scanning electron microscope. Journal of Biological Sciences. 2009;9(8):899–903. doi: 10.3923/jbs.2009.899.903 DOI
McKay SI, Miller PJ. The affinities of European sand gobies (Teleostei: Gobiidae). Journal of Natural History. 1997;31(10):1457–82. doi: 10.1080/00222939700770791 ISI:A1997XZ44500001. DOI
Miller PJ. Gobiidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E, editors. Fishes of the north-eastern Atlantic and the Mediterranean (FNAM). III. Paris: UNESCO; 1986. p. 1019–85.
Randall JE, Hoese DF. Revision of the Indo-Pacific dartfishes, genus Ptereleotris (Perciformes: Gobioidei). Indo-Pacific Fishes. 1985;7:1–36.
Miller PJ. Affinities, origin and adaptive features of the Australian Desert Goby Chlamydogobius eremius (Zietz, 1896) (Teleostei: Gobiidae). Journal of Natural History. 1987;21(3):687–705. Epub Feb 17, 2007. doi: 10.1080/00222938700770391 WOS:A1987H259500009. DOI
Mestermann K, Zander CD. Vergleichende osteologische Untersuchungen an Pomatoschistus-Arten (Gobioidei, Pisces). Zool Jb Anat. 1984;111:501–42.
Whitley GP. New fishes from Australia and New Zealand. Proceedings of the Royal Zoological Society of New South Wales. 1956;for the Year 1954–55:34–8.
McDowall RM. Descriptive and taxonomic notes on Grahamichthys radiatus (Valenciennes), Eleotridae. Trans Roy Soc NZ, Zool. 1965;7(2):51–6.
Schwarzhans W. Reconstruction of the fossil marine bony fish fauna (Teleostei) from the Eocene to Pleistocene of New Zealand by means of otoliths. Memorie della Società Italiana di Scienze Naturali e del Museo di Storia Naturale di Milano. 2019;46:1–326.
Systematics Wongrat P., comparative anatomy, and phylogeny of eleotrine gobies (Teleostei: Gobioidei): University of Bristol; 1977.
Larson HK, Foster R, Humphreys WF, Stevens MI. A new species of the blind cave gudgeon Milyeringa (Pisces: Gobioidei, Eleotridae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa. 2013;3616(2):135–50. doi: 10.11646/zootaxa.3616.2.3 WOS:000315021500003; PubMed Central PMCID: PMC24758799. PubMed DOI
Iwata A, Sakai H. Odontobutis hikimius n. sp.: A new freshwater goby from Japan, with a key to species of the genus. Copeia. 2002;2002(1):104–10. doi: 10.1643/0045-8511(2002)002[0104:ohnsan]2.0.co;2 BCI:BCI200200185878. DOI
Shibukawa K, Iwata A, Viravong S. Terateleotris, a new gobioid fish genus from the Laos (Teleostei, Perciformes), with comments on its relationships. Bulletin of the National Science Museum Series A (Zoology). 2001;27(4):229–57. BCI:BCI200200292381.
Bergman LMR. The cephalic lateralis system of cardinalfishes (Perciformes: Apogonidae) and its application to the taxonomy and systematics of the family: University of Hawaii at Manoa; 2004.
McAllister DE. Mandibular pore pattern in the sculpin family Cottidae. Nat Mus Can Bull. 1968;223:58–69. BCI:BCI19684900097393.
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.61 https://www.mesquiteproject.org. 3.61 ed2019.
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8. Epub Aug 5. doi: 10.1093/bioinformatics/btu531 WOS:000344774600022; PubMed Central PMCID: PMC4221126. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 WOS:000220487200025; PubMed Central PMCID: PMC390337. PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular biology and evolution. 2010;27(2):221–4. doi: 10.1093/molbev/msp259 WOS:000273704400003. PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al.. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61(3):539–42. doi: 10.1093/sysbio/sys029 WOS:000303336200013; PubMed Central PMCID: PMC3329765. PubMed DOI PMC
Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics. 2008;24(5):774–86. doi: 10.1111/J.1096-0031.2008.00217.X WOS:000259611200009. DOI
Goloboff PA, Catalano SA. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics. 2016;32(3):221–38. Epub Apr 25. doi: 10.1111/cla.12160 WOS:000376269000001. PubMed DOI
Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology. 2001;50(6):913–25. doi: 10.1080/106351501753462876 PubMed DOI
Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal of Molecular Evolution. 1994;39(3):306–14. Epub Sep 1. doi: 10.1007/BF00160154 . PubMed DOI
Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution. 1984;20(1):86–93. doi: 10.1007/BF02101990 WOS:A1984SN04000011. PubMed DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. 2018;67(5):901–4. Epub 2018/05/03. doi: 10.1093/sysbio/syy032 WOS:000443580600012; PubMed Central PMCID: PMC6101584. PubMed DOI PMC
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39(4):783–91. doi: 10.1111/j.1558-5646.1985.tb00420.x WOS:A1985APJ8100007. PubMed DOI
Rambaut A. FigTree. Tree Figure Drawing Tool version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/. 1.4.4 ed. Edinburgh: University of Edinburgh; 2018.
Weiler W. Die Fischfauna des Tertiärs im oberrheinischen Graben, des Mainzer Beckens, des unteren Maintals und der Wetterau, unter besonderer Berücksichtigung des Untermiozäns. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft. 1963;504:1–75.
Marramà G, Bannikov AF, Tyler JC, Zorzin R, Carnevale G. Controlled excavations in the Pesciara and Monte Postale sites provide new insights about the palaeoecology and taphonomy of the fish assemblages of the Eocene Bolca Konservat-Lagerstätte, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology. 2016;454:228–45.
Pandolfi L, Carnevale G, Costeur L, Del Favero L, Fornasiero M, Ghezzo E, et al.. Reassessing the earliest Oligocene vertebrate assemblage of Monteviale (Vicenza, Italy). Journal of Systematic Palaeontology. 2017;15(2):83–127. Epub Mar 16, 2016. doi: 10.1080/14772019.2016.1147170 DOI
Brzobohatý R, Gaudant J. Gobius brevis (Agassiz, 1839), a gobiid fish with otoliths in situ (Pisces, Teleostei) in the Karpatian (Lower Miocene) of the Vienna Basin. Annalen des Naturhistorischen Museums in Wien—Serie A (Mineralogie und Petrographie, Geologie und Paläontologie, Archäozoologie, Anthropologie und Prähistorie). 2009;111:245–55. BCI:BCI200900349722.
Jost J, Kälin D, Börner S, Vasilyan D, Lawver D, Reichenbacher B. Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology. 2015;426:22–33. doi: 10.1016/j.palaeo.2015.02.028 WOS:000353603000003. DOI
Jost J, Kälin D, Schulz-Mirbach T, Reichenbacher B. Late Early Miocene lake deposits near Mauensee, central Switzerland: fish fauna (otoliths, teeth), accompanying biota and palaeoecology. Eclogae Geologicae Helvetiae. 2006;99(3):309–26. Epub Jan 12, 2007. doi: 10.1007/s00015-006-1198-5 DOI
Mandic O, Hajek-Tadesse V, Bakrač K, Reichenbacher B, Grizelj A, Miknić M. Multiproxy reconstruction of the middle Miocene Požega palaeolake in the Southern Pannonian Basin (NE Croatia) prior to the Badenian transgression of the Central Paratethys Sea. Palaeogeography, Palaeoclimatology, Palaeoecology. 2019;516:203–19. Epub Dec 7, 2018. doi: 10.1016/j.palaeo.2018.12.003 WOS:000456903000018. DOI