Full Assessment of Lung Mechanics Using Computer-Controlled, Forced Oscillation Technique

. 2022 Jul ; 2 (7) : e488.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35834677

Grantová podpora
RVO 68378050 Czech Academy of Sciences
Ministry of Education, Youth, and Sports of the Czech Republic

The forced oscillation technique (FOT) is a powerful and accurate method to quantify the mechanical properties of the airways and tissues of the respiratory system. Here we provide a detailed protocol for the measurement of mouse respiratory mechanical parameters. We present a procedure for mouse endotracheal intubation using a handcrafted intubation platform and confirmation module. The FlexiVentFX™ system (Scireq Inc.) is utilized for the thorough assessment of lung function with the FlexiWare™ software serving as a unit for the planning, experimentation, and analysis. The protocol has been standardized and adapted for use by our center for lung-function phenotyping of mouse models generated for the International Mouse Phenotyping Consortium (IMPC). The simplified steps, technical considerations, and integrated hardware-software demonstration make this protocol adaptable and implementable for researchers interested in using FOT for lung-function evaluation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Support Protocol 1: Assembly of the FlexiVentFX™ system for measurements Support Protocol 2: FlexiWare database management Support Protocol 3: A guide for the construction of intubation platform and confirmation module Basic Protocol 1: Mouse endotracheal intubation Basic Protocol 2: Assessment of mouse basal lung function.

Zobrazit více v PubMed

Bates, J. H. (2009). Lung Mechanics: An Inverse Modeling Approach. Cambridge: Cambridge University Press.

Bates, J. H., & Irvin, C. G. (2003). Measuring lung function in mice: The phenotyping uncertainty principle. Journal of Applied Physiology, 94(4), 1297-1306. doi: 10.1152/japplphysiol.00706.2002

Bates, J. H., Irvin, C. G., Farre, R., & Hantos, Z. (2011). Oscillation mechanics of the respiratory system. Comprehensive Physiology, 1(3), 1233-1272. doi: 10.1002/cphy.c100058

Bethany, B. M., Lawson, W. E., Oury, T. D., Sisson, T. H., Raghavendran, K., & Hogaboam, C. M. (2013). Animal models of fibrotic lung disease. American Journal of Respiratory Cell and Molecular Biology, 49(2), 167-179. doi: 10.1165/rcmb.2013-0094TR

Brusselle, G. G., Bracke, K. R., Maes, T., D'Hulst, A. I., Moerloose, K. B., Joos, G. F., & Pauwels, R. A. (2006). Murine models of COPD. Pulmonary Pharmacology & Therapeutics, 19(3), 155-165. doi: 10.1016/j.pupt.2005.06.001

Claridge, J. A., Enelow, R. I., & Young, J. S. (2000). Hemorrhage and resuscitation induce delayed inflammation and pulmonary dysfunction in mice. Journal of Surgical Research, 92(2), 206-213. doi: 10.1006/jsre.2000.5899

De Vleeschauwer, S. I., Rinaldi, M., De Vooght, V., Vanoirbeek, J. A., Vanaudenaerde, B. M., Verbeken, E. K., … Janssens, W. (2011). Repeated invasive lung function measurements in intubated mice: An approach for longitudinal lung research. Laboratory Animals, 45(2), 81-89. doi: 10.1258/la.2010.010111

Donovan, J., & Brown, P. (2006). Parenteral injections. Current Protocols in Immunology, 73, 1.6.1-1.6.10. doi: 10.1002/0471142735.im0106s73

Flesch, J. D., & Dine, C. J. (2012). Lung volumes: Measurement, clinical use, and coding. Chest, 142(2), 506-510. doi: 10.1378/chest.11-2964

Gertler, R. (2021). Respiratory mechanics. Anesthesiology Clinics, 39(3), 415-440. doi: 10.1016/j.anclin.2021.04.003

Glaab, T., Mitzner, W., Braun, A., Ernst, H., Korolewitz, R., Hohlfeld, J. M., … Hoymann, H. G. (2004). Repetitive measurements of pulmonary mechanics to inhaled cholinergic challenge in spontaneously breathing mice. Journal of Applied Physiology, 97(3), 1104-1111. doi: 10.1152/japplphysiol.01182.2003

Kaczka, D. W., & Dellaca, R. L. (2011). Oscillation mechanics of the respiratory system: Applications to lung disease. Critical Reviews in Biomedical Engineering, 39(4), 337-359. doi: 10.1615/critrevbiomedeng.v39.i4.60

Kumar, R. K. (1995). Experimental models in pulmonary pathology. Pathology, 27(2), 130-132. doi: 10.1080/00313029500169722

Kwak, I., Tsai, S. Y., & DeMayo, F. J. (2004). Genetically engineered mouse models for lung cancer. Annual Review of Physiology, 66, 647-663. doi: 10.1146/annurev.physiol.66.032102.134301

Lutfi, M. F. (2017). The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine, 12, 3. doi: 10.1186/s40248-017-0084-5

MacDonald, K. D., Chang, H. Y., & Mitzner, W. (2009). An improved simple method of mouse lung intubation. Journal of Applied Physiology, 106(3), 984-987. doi: 10.1152/japplphysiol.91376.2008

Robichaud, A., Fereydoonzad, L., Urovitch, I. B., & Brunet, J. D. (2015). Comparative study of three flexiVent system configurations using mechanical test loads. Experimental Lung Research, 41(2), 84-92. doi: 10.3109/01902148.2014.971921

Similowski, T., & Bates, J. H. (1991). Two-compartment modelling of respiratory system mechanics at low frequencies: Gas redistribution or tissue rheology? European Respiratory Journal, 4(3), 353-358. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1864351

Su, C. S., Lai, H. C., Wang, C. Y., Lee, W. L., Wang, K. Y., Yang, Y. L., … Liu, T. J. (2016). Efficacious and safe orotracheal intubation for laboratory mice using slim torqueable guidewire-based technique: Comparisons between a modified and a conventional method. BMC Anesthesiology, 16, 5. doi: 10.1186/s12871-016-0173-6

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...