• This record comes from PubMed

Full Assessment of Lung Mechanics Using Computer-Controlled, Forced Oscillation Technique

. 2022 Jul ; 2 (7) : e488.

Language English Country United States Media print

Document type Journal Article

Grant support
RVO 68378050 Czech Academy of Sciences
Ministry of Education, Youth, and Sports of the Czech Republic

The forced oscillation technique (FOT) is a powerful and accurate method to quantify the mechanical properties of the airways and tissues of the respiratory system. Here we provide a detailed protocol for the measurement of mouse respiratory mechanical parameters. We present a procedure for mouse endotracheal intubation using a handcrafted intubation platform and confirmation module. The FlexiVentFX™ system (Scireq Inc.) is utilized for the thorough assessment of lung function with the FlexiWare™ software serving as a unit for the planning, experimentation, and analysis. The protocol has been standardized and adapted for use by our center for lung-function phenotyping of mouse models generated for the International Mouse Phenotyping Consortium (IMPC). The simplified steps, technical considerations, and integrated hardware-software demonstration make this protocol adaptable and implementable for researchers interested in using FOT for lung-function evaluation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Support Protocol 1: Assembly of the FlexiVentFX™ system for measurements Support Protocol 2: FlexiWare database management Support Protocol 3: A guide for the construction of intubation platform and confirmation module Basic Protocol 1: Mouse endotracheal intubation Basic Protocol 2: Assessment of mouse basal lung function.

See more in PubMed

Bates, J. H. (2009). Lung Mechanics: An Inverse Modeling Approach. Cambridge: Cambridge University Press.

Bates, J. H., & Irvin, C. G. (2003). Measuring lung function in mice: The phenotyping uncertainty principle. Journal of Applied Physiology, 94(4), 1297-1306. doi: 10.1152/japplphysiol.00706.2002

Bates, J. H., Irvin, C. G., Farre, R., & Hantos, Z. (2011). Oscillation mechanics of the respiratory system. Comprehensive Physiology, 1(3), 1233-1272. doi: 10.1002/cphy.c100058

Bethany, B. M., Lawson, W. E., Oury, T. D., Sisson, T. H., Raghavendran, K., & Hogaboam, C. M. (2013). Animal models of fibrotic lung disease. American Journal of Respiratory Cell and Molecular Biology, 49(2), 167-179. doi: 10.1165/rcmb.2013-0094TR

Brusselle, G. G., Bracke, K. R., Maes, T., D'Hulst, A. I., Moerloose, K. B., Joos, G. F., & Pauwels, R. A. (2006). Murine models of COPD. Pulmonary Pharmacology & Therapeutics, 19(3), 155-165. doi: 10.1016/j.pupt.2005.06.001

Claridge, J. A., Enelow, R. I., & Young, J. S. (2000). Hemorrhage and resuscitation induce delayed inflammation and pulmonary dysfunction in mice. Journal of Surgical Research, 92(2), 206-213. doi: 10.1006/jsre.2000.5899

De Vleeschauwer, S. I., Rinaldi, M., De Vooght, V., Vanoirbeek, J. A., Vanaudenaerde, B. M., Verbeken, E. K., … Janssens, W. (2011). Repeated invasive lung function measurements in intubated mice: An approach for longitudinal lung research. Laboratory Animals, 45(2), 81-89. doi: 10.1258/la.2010.010111

Donovan, J., & Brown, P. (2006). Parenteral injections. Current Protocols in Immunology, 73, 1.6.1-1.6.10. doi: 10.1002/0471142735.im0106s73

Flesch, J. D., & Dine, C. J. (2012). Lung volumes: Measurement, clinical use, and coding. Chest, 142(2), 506-510. doi: 10.1378/chest.11-2964

Gertler, R. (2021). Respiratory mechanics. Anesthesiology Clinics, 39(3), 415-440. doi: 10.1016/j.anclin.2021.04.003

Glaab, T., Mitzner, W., Braun, A., Ernst, H., Korolewitz, R., Hohlfeld, J. M., … Hoymann, H. G. (2004). Repetitive measurements of pulmonary mechanics to inhaled cholinergic challenge in spontaneously breathing mice. Journal of Applied Physiology, 97(3), 1104-1111. doi: 10.1152/japplphysiol.01182.2003

Kaczka, D. W., & Dellaca, R. L. (2011). Oscillation mechanics of the respiratory system: Applications to lung disease. Critical Reviews in Biomedical Engineering, 39(4), 337-359. doi: 10.1615/critrevbiomedeng.v39.i4.60

Kumar, R. K. (1995). Experimental models in pulmonary pathology. Pathology, 27(2), 130-132. doi: 10.1080/00313029500169722

Kwak, I., Tsai, S. Y., & DeMayo, F. J. (2004). Genetically engineered mouse models for lung cancer. Annual Review of Physiology, 66, 647-663. doi: 10.1146/annurev.physiol.66.032102.134301

Lutfi, M. F. (2017). The physiological basis and clinical significance of lung volume measurements. Multidisciplinary Respiratory Medicine, 12, 3. doi: 10.1186/s40248-017-0084-5

MacDonald, K. D., Chang, H. Y., & Mitzner, W. (2009). An improved simple method of mouse lung intubation. Journal of Applied Physiology, 106(3), 984-987. doi: 10.1152/japplphysiol.91376.2008

Robichaud, A., Fereydoonzad, L., Urovitch, I. B., & Brunet, J. D. (2015). Comparative study of three flexiVent system configurations using mechanical test loads. Experimental Lung Research, 41(2), 84-92. doi: 10.3109/01902148.2014.971921

Similowski, T., & Bates, J. H. (1991). Two-compartment modelling of respiratory system mechanics at low frequencies: Gas redistribution or tissue rheology? European Respiratory Journal, 4(3), 353-358. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1864351

Su, C. S., Lai, H. C., Wang, C. Y., Lee, W. L., Wang, K. Y., Yang, Y. L., … Liu, T. J. (2016). Efficacious and safe orotracheal intubation for laboratory mice using slim torqueable guidewire-based technique: Comparisons between a modified and a conventional method. BMC Anesthesiology, 16, 5. doi: 10.1186/s12871-016-0173-6

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...