ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations
Language English Country United States Media print-electronic
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
PubMed
35863867
PubMed Central
PMC9479739
DOI
10.1261/rna.079266.122
PII: rna.079266.122
Knihovny.cz E-resources
- Keywords
- ADAR, ADARB1, dsRNA, neurons, recoding RNA editing,
- MeSH
- Adenosine Deaminase * metabolism MeSH
- Receptors, AMPA genetics metabolism MeSH
- Antiviral Agents MeSH
- Caenorhabditis elegans genetics MeSH
- Drosophila genetics MeSH
- RNA, Double-Stranded genetics MeSH
- Genetic Therapy MeSH
- Humans MeSH
- Mice MeSH
- RNA-Binding Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- ADARB1 protein, human MeSH Browser
- Adenosine Deaminase * MeSH
- Receptors, AMPA MeSH
- Antiviral Agents MeSH
- RNA, Double-Stranded MeSH
- RNA-Binding Proteins MeSH
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
See more in PubMed
Aizawa H, Sawada J, Hideyama T, Yamashita T, Katayama T, Hasebe N, Kimura T, Yahara O, Kwak S. 2010. TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol 120: 75–84. 10.1007/s00401-010-0678-x PubMed DOI
Aizawa H, Hideyama T, Yamashita T, Kimura T, Suzuki N, Aoki M, Kwak S. 2016. Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUSP525L mutation. J Clin Neurosci 32: 128–129. 10.1016/j.jocn.2015.12.039 PubMed DOI
Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S. 2016. The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6: 28649. 10.1038/srep28649 PubMed DOI PMC
Akbarian S, Smith MA, Jones EG. 1995. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia. Brain Res 699: 297–304. 10.1016/0006-8993(95)00922-D PubMed DOI
Ali IM, Evehe MSB, Netongo PM, Atogho-Tiedeu B, Akindeh-Nji M, Ngora H, Domkam IK, Diakite M, Baldip K, Ranford-Cartwright L, et al. 2014. Host candidate gene polymorphisms and associated clearance of P. falciparum amodiaquine and fansidar resistance mutants in children less than 5 years in Cameroon. Pathog Glob Health 108: 323–333. 10.1179/2047773214Y.0000000159 PubMed DOI PMC
Baker AR, Slack FJ. 2022. ADAR1 and its implications in cancer development and treatment. Trends Genet 38: 821–830. 10.1016/j.tig.2022.03.013 PubMed DOI PMC
Bandele OJ, Wang X, Campbell MR, Pittman GS, Bell DA. 2011. Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements. Nucleic Acids Res 39: 178–189. 10.1093/nar/gkq764 PubMed DOI PMC
Bar Yaacov D. 2022. Functional analysis of ADARs in planarians supports a bilaterian ancestral role in suppressing double-stranded RNA-response. PLoS Pathog 18: e1010250. 10.1371/journal.ppat.1010250 PubMed DOI PMC
Bass BL, Weintraub H. 1987. A developmental regulated activity that unwinds RNA duplexes. Cell 48: 607–613. 10.1016/0092-8674(87)90239-X PubMed DOI
Bass BL, Weintraub H. 1988. An unwinding activity that covalently modifies its double-strand RNA substrate. Cell 55: 1089–1098. 10.1016/0092-8674(88)90253-X PubMed DOI
Bavelloni A, Focaccia E, Piazzi M, Raffini M, Cesarini V, Tomaselli S, Orsini A, Ratti S, Faenza I, Cocco L, et al. 2019. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity. FASEB J 33: 9044–9061. 10.1096/fj.201800490RR PubMed DOI
Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, et al. 2014. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24: 365–376. 10.1101/gr.164749.113 PubMed DOI PMC
Bazzazi H, Ben Johny M, Adams PJ, Soong TW, Yue DT. 2013. Continuously tunable Ca2+ regulation of RNA-edited CaV1.3 channels. Cell Rep 5: 367–377. 10.1016/j.celrep.2013.09.006 PubMed DOI PMC
Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. 2017. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci 130: 745–753. PubMed
Bernard A, Khrestchatisky M. 1994. Assessing the extent of RNA editing in the TMII region of GluR5 and GluR6 kainate receptors during rat brain development. J Neurochem 62: 2057–2060. 10.1046/j.1471-4159.1994.62052057.x PubMed DOI
Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M. 1999. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 11: 604–616. 10.1046/j.1460-9568.1999.00479.x PubMed DOI
Bhalla T, Rosenthal JJC, Holmgren M, Reenan R. 2004. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11: 950–956. 10.1038/nsmb825 PubMed DOI
Bhogal B, Jepson JE, Savva YA, Pepper ASR, Reenan RA, Jongens TA. 2011. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14: 1517–1524. 10.1038/nn.2950 PubMed DOI PMC
Brusa R, Zimmermann F, Koh D-S, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. 1995. Early-onset epilepsy and postnatal lethality associated with editing-deficient GluR-B allele in mice. Science 270: 1677–1680. 10.1126/science.270.5242.1677 PubMed DOI
Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB. 1997. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387: 303–308. 10.1038/387303a0 PubMed DOI
Chen J, Sun Y, Ou Z, Yeh S, Huang C-P, You B, Tsai Y-C, Sheu T-J, Zu X, Chang C. 2020. Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep 21: e48467. PubMed PMC
Cohn WE. 1959. 5-Ribosyl uracil, a carbon-carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim Biophys Acta 32: 569–571. 10.1016/0006-3002(59)90644-4 PubMed DOI
Cohn WE, Volkin E. 1951. Nucleoside-5′-phosphates from ribonucleic acids. Nature 169: 483–484. 10.1038/167483a0 DOI
Daniel C, Wahlstedt H, Ohlson J, Björk P, Öhman M. 2011. Adenosine-to-inosine RNA editing affects trafficking of the γ-aminobutyric acid type A (GABAA) receptor. J Biol Chem 286: 2031–2040. 10.1074/jbc.M110.130096 PubMed DOI PMC
Deng P, Khan A, Jacobson D, Sambrani N, McGurk L, Li X, Jayasree A, Hejatko J, Shohat-Ophir G, O'Connell MA, et al. 2020. Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila. Nat Commun 11: 1580. 10.1038/s41467-020-15435-1 PubMed DOI PMC
Desterro JMP, Keegan LP, Lafarga M, Berciano MT, O'Connell M, Carmo-Fonseca M. 2003. Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116: 1805–1818. 10.1242/jcs.00371 PubMed DOI
Duan Y, Dou S, Luo S, Zhang H, Lu J. 2017. Adaptation of A-to-I RNA editing in Drosophila. PLoS Genet 13: e1006648. 10.1371/journal.pgen.1006648 PubMed DOI PMC
Egebjerg J, Heinemann SF. 1993. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci 90: 755–759. 10.1073/pnas.90.2.755 PubMed DOI PMC
Eisenberg E, Levanon EY. 2018. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet 19: 473–490. 10.1038/s41576-018-0006-1 PubMed DOI
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. 2021. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 56: 54–87. 10.1080/10409238.2020.1856768 PubMed DOI PMC
Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A, Burnashev N, Jensen V, Hvalby O, Sprengel R, et al. 1999. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 2: 57–64. 10.1038/4561 PubMed DOI
Feng Y, Sansam CL, Singh M, Emeson RB. 2006. Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488. 10.1128/MCB.26.2.480-488.2006 PubMed DOI PMC
Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, Bosisio D, Salvi V, Mingardi J, La Via L, et al. 2017. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. RNA Biol 14: 1580–1591. 10.1080/15476286.2017.1338232 PubMed DOI PMC
Filippini A, Bonini D, Giacopuzzi E, La Via L, Gangemi F, Colombi M, Barbon A. 2018. Differential enzymatic activity of rat ADAR2 splicing variants is due to altered capability to interact with RNA in the deaminase domain. Genes (Basel) 9: 79. 10.3390/genes9020079 PubMed DOI PMC
Franzen O, Ermel R, Sukhavasi K, Jain R, Jain A, Betsholtz C, Giannarelli C, Kovacic JC, Ruusalepp A, Skogsberg J, et al. 2018. Global analysis of A-to-I RNA editing reveals association with common disease variants. PeerJ 6: e4466. 10.7717/peerj.4466 PubMed DOI PMC
Freund EC, Sapiro AL, Li Q, Linder S, Moresco JJ, Yates JR III, Li JB. 2020. Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep 31: 107656. 10.1016/j.celrep.2020.107656 PubMed DOI PMC
Gaisler-Salomon I, Kravitz E, Feiler Y, Safran M, Biegon A, Amariglio N, Rechavi G. 2014. Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer's disease. Neurobiol Aging 35: 1785–1791. 10.1016/j.neurobiolaging.2014.02.018 PubMed DOI
Gallo A, Keegan LP, Ring GM, O'Connell MA. 2003. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. Embo J 22: 3421–3430. 10.1093/emboj/cdg327 PubMed DOI PMC
Gan Z, Zhao L, Yang L, Huang P, Zhao F, Li W, Liu Y. 2006. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and β-cells. J Biol Chem 281: 33386–33394. 10.1074/jbc.M604484200 PubMed DOI
Gerber A, O'Connell MA, Keller W. 1997. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3: 453–463. PubMed PMC
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, et al. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479. 10.1038/nature09715 PubMed DOI PMC
Greger IH, Khatri L, Ziff EB. 2002. RNA editing at Arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34: 759–772. 10.1016/S0896-6273(02)00693-1 PubMed DOI
Greger IH, Khatri L, Kong X, Ziff EB. 2003. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40: 763–774. 10.1016/S0896-6273(03)00668-8 PubMed DOI
Grice LF, Degnan BM. 2015. The origin of the ADAR gene family and animal RNA editing. BMC Evol Biol 15: 4. 10.1186/s12862-015-0279-3 PubMed DOI PMC
Grosskreutz J, Zoerner A, Schlesinger F, Krampfl K, Dengler R, Bufler J. 2003. Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells. Eur J Neurosci 17: 1173–1178. 10.1046/j.1460-9568.2003.02531.x PubMed DOI
Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C. 2002. Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22: 10529–10532. 10.1523/JNEUROSCI.22-24-10529.2002 PubMed DOI PMC
Heraud-Farlow JE, Walkley CR. 2020. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 10: 200085. 10.1098/rsob.200085 PubMed DOI PMC
Herb A, Higuchi M, Sprengel R, Seeburg PH. 1996. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci 93: 1875–1880. 10.1073/pnas.93.5.1875 PubMed DOI PMC
Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH, Takahashi R, Misawa H, Kwak S. 2010. Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 30: 11917–11925. 10.1523/JNEUROSCI.2021-10.2010 PubMed DOI PMC
Hideyama T, Yamashita T, Aizawa H, Tsuji S, Kakita A, Takahashi H, Kwak S. 2012. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis 45: 1121–1128. 10.1016/j.nbd.2011.12.033 PubMed DOI
Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH. 1993. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75: 1361–1370. 10.1016/0092-8674(93)90622-W PubMed DOI
Higuchi M, Maas S, Single F, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg P. 2000. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406: 78–81. 10.1038/35017558 PubMed DOI
Holmgren M, Rosenthal JJ. 2015. Regulation of ion channel and transporter function through RNA editing. Curr Issues Mol Biol 17: 23–36. PubMed PMC
Hoopengardner B, Bhalla T, Staber C, Reenan R. 2003. Nervous system targets of RNA editing identified by comparative genomics. Science 301: 832–836. 10.1126/science.1086763 PubMed DOI
Horsch M, Seeburg PH, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Garrett L, Gotz A, Hans W, Higuchi M, et al. 2011. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J Biol Chem 286: 18614–18622. 10.1074/jbc.M110.200881 PubMed DOI PMC
Hough RF, Bass BL. 1994. Purification of the Xenopus laevis dsRNA adenosine deaminase. J Biol Chem 269: 9933–9939. 10.1016/S0021-9258(17)36972-7 PubMed DOI
Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Köhr G, Higuchi M, et al. 2012. RNA editing of the IQ domain in Cav1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73: 304–316. 10.1016/j.neuron.2011.11.022 PubMed DOI PMC
Irimia M, Denuc A, Ferran JL, Pernaute B, Puelles L, Roy SW, Garcia-Fernàndez J, Marfany G. 2012. Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor Nova1. RNA Biol 9: 12–21. 10.4161/rna.9.1.18387 PubMed DOI
Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, Miller BC, Du PP, Yates KB, Dubrot J, et al. 2019. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565: 43–48. 10.1038/s41586-018-0768-9 PubMed DOI PMC
Iwamoto K, Kato T. 2003. RNA editing of serotonin 2C receptor in human postmortem brains of major mental disorders. Neurosci Lett 346: 169–172. 10.1016/S0304-3940(03)00608-6 PubMed DOI
Iwamoto K, Bundo M, Kato T. 2009. Serotonin receptor 2C and mental disorders: genetic, expression and RNA editing studies. RNA Biol 6: 248–253. 10.4161/rna.6.3.8370 PubMed DOI
Jain M, Mann TD, Stulic M, Rao SP, Kirsch A, Pullirsch D, Strobl X, Rath C, Reissig L, Moreth K, et al. 2018. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J 37: e94813. 10.15252/embj.201694813 PubMed DOI PMC
Jepson JE, Savva YA, Yokose C, Sugden AU, Sahin A, Reenan RA. 2011. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem 286: 8325–8337. 10.1074/jbc.M110.186817 PubMed DOI PMC
Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, McDonald J, Carlen P, et al. 1996. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17: 945–956. 10.1016/S0896-6273(00)80225-1 PubMed DOI
Jin Y, Zhang W, Li Q. 2009. Origins and evolution of ADAR-mediated RNA editing. IUBMB Life 61: 572–578. 10.1002/iub.207 PubMed DOI
Johnson TB, Coghill RD. 1925. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle Bacillus. J Am Chem Soc 47: 2838–2844. 10.1021/ja01688a030 DOI
Kask K, Zamanillo D, Rozov A, Burnashev N, Sprengel R, Seeburg PH. 1998. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proc Natl Acad Sci 95: 13777–13782. 10.1073/pnas.95.23.13777 PubMed DOI PMC
Katrekar D, Yen J, Xiang Y, Saha A, Meluzzi D, Savva Y, Mali P. 2022. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat Biotechnol 40: 938–945. 10.1038/s41587-021-01171-4 PubMed DOI PMC
Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S. 2004. Glutamate receptors: RNA editing and death of motor neurons. Nature 427: 801. 10.1038/427801a PubMed DOI
Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, Bale TL, Blendy JA, Nishikura K. 2008. Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28: 12834–12844. 10.1523/JNEUROSCI.3896-08.2008 PubMed DOI PMC
Keegan LP, Brindle J, Gallo A, Leroy A, Reenan RA, O'Connell MA. 2005. Tuning of RNA editing by ADAR is required in Drosophila. EMBO J 24: 2183–2193. 10.1038/sj.emboj.7600691 PubMed DOI PMC
Keegan LP, McGurk L, Palavicini JP, Brindle J, Paro S, Li X, Rosenthal JJ, O'Connell MA. 2011. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res 39: 7249–7262. 10.1093/nar/gkr423 PubMed DOI PMC
Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F. 2014. Transcript-RNA-templated DNA recombination and repair. Nature 515: 436–439. 10.1038/nature13682 PubMed DOI PMC
Khan A, Paro S, McGurk L, Sambrani N, Hogg MC, Brindle J, Pennetta G, Keegan LP, O'Connell MA. 2020. Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy. BMC Biol 18: 15. 10.1186/s12915-020-0747-0 PubMed DOI PMC
Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, Picardi E, Eisenberg E. 2016. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. RNA 22: 290–302. 10.1261/rna.054627.115 PubMed DOI PMC
Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K. 1994a. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269: 13480–13489. 10.1016/S0021-9258(17)36857-6 PubMed DOI
Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K. 1994b. Molecular cloning of cDNAs for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci 91: 11457–11461. 10.1073/pnas.91.24.11457 PubMed DOI PMC
Kitaura H, Sonoda M, Teramoto S, Shirozu H, Shimizu H, Kimura T, Masuda H, Ito Y, Takahashi H, Kwak S, et al. 2017. Ca2+-permeable AMPA receptors associated with epileptogenesis of hypothalamic hamartoma. Epilepsia 58: e59–e63. 10.1111/epi.13700 PubMed DOI
Knight SW, Bass BL. 2002. The role of RNA editing by ADARs in RNAi. Mol Cell 10: 809–817. 10.1016/S1097-2765(02)00649-4 PubMed DOI
Köhler M, Burnashev N, Sakmann B, Seeburg PH. 1993. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10: 491–500. 10.1016/0896-6273(93)90336-P PubMed DOI
Koike M, Tsukada S, Tsuzuki K, Kijima H, Ozawa S. 2000. Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J Neurosci 20: 2166–2174. 10.1523/JNEUROSCI.20-06-02166.2000 PubMed DOI PMC
Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B. 2020. A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 13: 27. 10.1186/s13041-020-0545-1 PubMed DOI PMC
Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J. 2002. Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 15: 51–62. 10.1046/j.0953-816x.2001.01841.x PubMed DOI
Lai F, Chen C-X, Carter KC, Nishikura K. 1997. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol 17: 2413–2424. 10.1128/MCB.17.5.2413 PubMed DOI PMC
Lee CJ, Kong H, Manzini MC, Albuquerque C, Chao MV, MacDermott AB. 2001. Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci 21: 4572–4581. 10.1523/JNEUROSCI.21-13-04572.2001 PubMed DOI PMC
Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechavi G, Jantsch MF, Eisenberg E. 2005. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33: 1162–1168. 10.1093/nar/gki239 PubMed DOI PMC
Li X, Overton IM, Baines RA, Keegan LP, O'Connell MA. 2014. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster. Nucleic Acids Res 42: 1139–1151. 10.1093/nar/gkt909 PubMed DOI PMC
Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR. 2015. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349: 1115–1120. 10.1126/science.aac7049 PubMed DOI PMC
Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH. 1994. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266: 1709–1713. 10.1126/science.7992055 PubMed DOI
Maas S, Gommans WM. 2009a. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res 37: 5822–5829. 10.1093/nar/gkp599 PubMed DOI PMC
Maas S, Gommans WM. 2009b. Novel exon of mammalian ADAR2 extends open reading frame. PLoS One 4: e4225. 10.1371/journal.pone.0004225 PubMed DOI PMC
Maas S, Melcher T, Herb A, Seeburg PH, Keller W, Krause S, Higuchi M, O'Connell MA. 1996. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem 271: 12221–12226. 10.1074/jbc.271.21.12221 PubMed DOI
Macbeth MR, Lingam AT, Bass BL. 2004. Evidence for auto-inhibition by the N terminus of hADAR2 and activation by dsRNA binding. RNA 10: 1563–1571. 10.1261/rna.7920904 PubMed DOI PMC
Macbeth MR, Schubert HL, VanDemark AF, Lingam AT, Hill CP, Bass BL. 2005. Structural biology: inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309: 1534–1539. 10.1126/science.1113150 PubMed DOI PMC
Maldonado C, Alicea D, Gonzalez M, Bykhovskaia M, Marie B. 2013. Adar is essential for optimal presynaptic function. Mol Cell Neurosci 52: 173–180. 10.1016/j.mcn.2012.10.009 PubMed DOI PMC
Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellåker C, Vesely C, Ponting CP, McLaughlin PJ, et al. 2014. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9: 1482–1494. 10.1016/j.celrep.2014.10.041 PubMed DOI PMC
Marcucci R, Brindle J, Paro S, Casadio A, Hempel S, Morrice N, Bisso A, Keegan LP, Del Sal G, O'Connell MA. 2011. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J 30: 4211–4222. 10.1038/emboj.2011.303 PubMed DOI PMC
Marion S, Weiner DM, Caron MG. 2004. RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 279: 2945–2954. 10.1074/jbc.M308742200 PubMed DOI
Maroofian R, Sedmik J, Mazaheri N, Scala M, Zaki MS, Keegan LP, Azizimalamiri R, Issa M, Shariati G, Sedaghat A, et al. 2021. Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. J Med Genet 58: 495–504. 10.1136/jmedgenet-2020-107048 PubMed DOI PMC
Matthews MM, Thomas JM, Zheng Y, Tran K, Phelps KJ, Scott AI, Havel J, Fisher AJ, Beal PA. 2016. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol 23: 426–433. 10.1038/nsmb.3203 PubMed DOI PMC
Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH. 1996a. RED2, a brain specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271: 31795–31798. 10.1074/jbc.271.50.31795 PubMed DOI
Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. 1996b. A mammalian RNA editing enzyme. Nature 379: 460–464. 10.1038/379460a0 PubMed DOI
Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, Oiki E, Nagatomo I, Yamashita Y, Abe T, Nishikura K, et al. 2016. CAPS1 RNA editing promotes dense core vesicle exocytosis. Cell Rep 17: 2004–2014. 10.1016/j.celrep.2016.10.073 PubMed DOI PMC
Montiel-Gonzalez MF, Diaz Quiroz JF, Rosenthal JJC. 2019. Current strategies for site-directed RNA editing using ADARs. Methods 156: 16–24. 10.1016/j.ymeth.2018.11.016 PubMed DOI PMC
Moore S, Alsop E, Lorenzini I, Starr A, Rabichow BE, Mendez E, Levy JL, Burciu C, Reiman R, Chew J, et al. 2019. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 138: 49–65. 10.1007/s00401-019-01999-w PubMed DOI PMC
Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17: 83–96. 10.1038/nrm.2015.4 PubMed DOI PMC
Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. 1999. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274: 9472–9478. 10.1074/jbc.274.14.9472 PubMed DOI
O'Connell MA, Keller W. 1994. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci 91: 10596–10600. 10.1073/pnas.91.22.10596 PubMed DOI PMC
O'Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W. 1995. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15: 1389–1397. 10.1128/MCB.15.3.1389 PubMed DOI PMC
O'Connell MA, Gerber A, Keller W. 1997. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J Biol Chem 272: 473–478. 10.1074/jbc.272.1.473 PubMed DOI
Ohlson J, Pedersen JS, Haussler D, Ohman M. 2007. Editing modifies the GABAA receptor subunit α3. RNA 13: 698–703. 10.1261/rna.349107 PubMed DOI PMC
Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. 2000a. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6: 1004–1018. 10.1017/S1355838200000248 PubMed DOI PMC
Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. 2000b. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102: 437–449. 10.1016/S0092-8674(00)00049-0 PubMed DOI
Patterson JB, Samuel CE. 1995. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15: 5376–5388. 10.1128/MCB.15.10.5376 PubMed DOI PMC
Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S, Liu F, Lu Y. 2006. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49: 719–733. 10.1016/j.neuron.2006.01.025 PubMed DOI
Picardi E, Manzari C, Mastropasqua F, Aiello I, D'Erchia AM, Pesole G. 2015. Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5: 14941. 10.1038/srep14941 PubMed DOI PMC
Pinto Y, Cohen H, Levanon E. 2014. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15: R5. 10.1186/gb-2014-15-1-r5 PubMed DOI PMC
Popitsch N, Huber CD, Buchumenski I, Eisenberg E, Jantsch M, von Haeseler A, Gallach M. 2020. A-to-I RNA editing uncovers hidden signals of adaptive genome evolution in animals. Genome Biol Evol 12: 345–357. 10.1093/gbe/evaa046 PubMed DOI PMC
Porath HT, Hazan E, Shpigler H, Cohen M, Band M, Ben-Shahar Y, Levanon EY, Eisenberg E, Bloch G. 2019. RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 10: 1605. 10.1038/s41467-019-09543-w PubMed DOI PMC
Price RD, Weiner DM, Chang MS, Sanders-Bush E. 2001. RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276: 44663–44668. 10.1074/jbc.M106745200 PubMed DOI
Pullirsch D, Jantsch MF. 2010. Proteome diversification by adenosine to inosine RNA-editing. RNA Biol 7: 205–212. 10.4161/rna.7.2.11286 PubMed DOI
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. 2021. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem Sci 46: 758–771. 10.1016/j.tibs.2021.02.002 PubMed DOI
Rajendren S, Manning AC, Al-Awadi H, Yamada K, Takagi Y, Hundley HA. 2018. A protein–protein interaction underlies the molecular basis for substrate recognition by an adenosine-to-inosine RNA-editing enzyme. Nucleic Acids Res 46: 9647–9659. 10.1093/nar/gky800 PubMed DOI PMC
Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'Connell MA, Li JB. 2013. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10: 128–132. 10.1038/nmeth.2330 PubMed DOI PMC
Reautschnig P, Wahn N, Wettengel J, Schulz AE, Latifi N, Vogel P, Kang T-W, Pfeiffer LS, Zarges C, Naumann U. 2022. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat Biotechnol 40: 759–768. 10.1038/s41587-021-01105-0 PubMed DOI
Rebagliati MR, Melton DA. 1987. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48: 599–605. 10.1016/0092-8674(87)90238-8 PubMed DOI
Reenan RA. 2005. Molecular determinants and guided evolution of species-specific RNA editing. Nature 434: 409–413. 10.1038/nature03364 PubMed DOI
Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA. 2012. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44: 1243–1248. 10.1038/ng.2414 PubMed DOI PMC
Robinson J, Paluch J, Dickman D, Joiner W. 2016. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat Commun 7: 10512. 10.1038/ncomms10512 PubMed DOI PMC
Rueter SM, Dawson TR, Emeson RB. 1999. Regulation of alternative splicing by RNA editing. Nature 399: 75–80. 10.1038/19992 PubMed DOI
Rula EY, Lagrange AH, Jacobs MM, Hu N, Macdonald RL, Emeson RB. 2008. Developmental modulation of GABAA receptor function by RNA editing. J Neurosci 28: 6196–6201. 10.1523/JNEUROSCI.0443-08.2008 PubMed DOI PMC
Salpietro V, Dixon CL, Guo H, Bello OD, Vandrovcova J, Efthymiou S, Maroofian R, Heimer G, Burglen L, Valence S, et al. 2019. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun 10: 3094. 10.1038/s41467-019-10910-w PubMed DOI PMC
Sans N, Vissel B, Petralia RS, Wang Y-X, Chang K, Royle GA, Wang C-Y, O'Gorman S, Heinemann SF, Wenthold RJ. 2003. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J Neurosci 23: 9367–9373. 10.1523/JNEUROSCI.23-28-09367.2003 PubMed DOI PMC
Sansam CL, Wells KS, Emeson RB. 2003. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci 100: 14018–14023. 10.1073/pnas.2336131100 PubMed DOI PMC
Savva Y, Rieder L, Reenan R. 2012a. The ADAR protein family. Genome Biol 13: 252. 10.1186/gb-2012-13-12-252 PubMed DOI PMC
Savva YA, Jepson JEC, Sahin A, Sugden AU, Dorsky JS, Alpert L, Lawrence C, Reenan RA. 2012b. Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nat Commun 3: 790. 10.1038/ncomms1789 PubMed DOI PMC
Savva YA, Jepson JE, Chang Y-J, Whitaker R, Jones BC, St Laurent G, Tackett MR, Kapranov P, Jiang N, Du G. 2013. RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat Commun 4: 2745. 10.1038/ncomms3745 PubMed DOI PMC
Shelton PM, Duran A, Nakanishi Y, Reina-Campos M, Kasashima H, Llado V, Ma L, Campos A, García-Olmo D, García-Arranz M, et al. 2018. The secretion of miR-200s by a PKCζ/ADAR2 signaling axis promotes liver metastasis in colorectal cancer. Cell Rep 23: 1178–1191. 10.1016/j.celrep.2018.03.118 PubMed DOI PMC
Slavov D, Gardiner K. 2002. Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns. Gene 299: 83–94. 10.1016/S0378-1119(02)01016-8 PubMed DOI
Sommer B, Köhler M, Sprengel R, Seeburg PH. 1991. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67: 11–19. 10.1016/0092-8674(91)90568-J PubMed DOI
Song B, Shiromoto Y, Minakuchi M, Nishikura K. 2022. The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA 13: e1665. 10.1002/wrna.1665 PubMed DOI PMC
Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB, et al. 2010. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143: 225–237. 10.1016/j.cell.2010.09.026 PubMed DOI PMC
Streit AK, Matschke LA, Dolga AM, Rinné S, Decher N. 2014. RNA editing in the central cavity as a mechanism to regulate surface expression of the voltage-gated potassium channel Kv1.1. J Biol Chem 289: 26762–26771. 10.1074/jbc.M113.545731 PubMed DOI PMC
Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, Liu KI, Zhang R, Ramaswami G, Ariyoshi K, et al. 2017. Dynamic landscape and regulation of RNA editing in mammals. Nature 550: 249–254. 10.1038/nature24041 PubMed DOI PMC
Tan TY, Sedmik J, Fitzgerald MP, Halevy RS, Keegan LP, Helbig I, Basel-Salmon L, Cohen L, Straussberg R, Chung WK, et al. 2020. Bi-allelic ADARB1 variants associated with microcephaly, intellectual disability, and seizures. Am J Hum Genet 106: 467–483. 10.1016/j.ajhg.2020.02.015 PubMed DOI PMC
Tariq A, Garncarz W, Handl C, Balik A, Pusch O, Jantsch MF. 2013. RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Res 41: 2581–2593. 10.1093/nar/gks1353 PubMed DOI PMC
Terajima H, Yoshitane H, Ozaki H, Suzuki Y, Shimba S, Kuroda S, Iwasaki W, Fukada Y. 2017. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 49: 146–151. 10.1038/ng.3731 PubMed DOI
Thuy-Boun AS, Thomas JM, Grajo HL, Palumbo CM, Park S, Nguyen LT, Fisher AJ, Beal PA. 2020. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res 48: 7958–7972. 10.1093/nar/gkaa532 PubMed DOI PMC
Tonkin LA, Bass BL. 2003. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302: 1725. 10.1126/science.1091340 PubMed DOI PMC
Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, Nguyen TB, Hsiao YE, Lee C, Pratt GA, et al. 2019. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 22: 25–36. 10.1038/s41593-018-0287-x PubMed DOI PMC
Ulbricht RJ, Emeson RB. 2014. One hundred million adenosine-to-inosine RNA editing sites: hearing through the noise. Bioessays 36: 730–735. 10.1002/bies.201400055 PubMed DOI PMC
Vissel B, Royle GA, Christie BR, Schiffer HH, Ghetti A, Tritto T, Perez-Otano I, Radcliffe RA, Seamans J, Sejnowski T, et al. 2001. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29: 217–227. 10.1016/S0896-6273(01)00192-1 PubMed DOI
Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaille J, Huttenhofer A. 2005. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169: 745–753. 10.1083/jcb.200411129 PubMed DOI PMC
Wang Y, Beal PA. 2016. Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method. Nucleic Acids Res 44: 9872–9880. 10.1093/nar/gkw799 PubMed DOI PMC
Wang Y, Park S, Beal PA. 2018. Selective recognition of RNA substrates by ADAR deaminase domains. Biochemistry 57: 1640–1651. 10.1021/acs.biochem.7b01100 PubMed DOI PMC
Wu D, Lamm AT, Fire AZ. 2011. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat Struct Mol Biol 18: 1094–1101. 10.1038/nsmb.2129 PubMed DOI PMC
Wyatt GR. 1950. Occurrence of 5-methylcytosine in nucleic acids. Nature 166: 237–238. 10.1038/166237b0 PubMed DOI
Yamashita T, Kwak S. 2019. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS. Neurosci Res 144: 4–13. 10.1016/j.neures.2018.06.004 PubMed DOI
Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N, Saido TC, Kwak S. 2012. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3: 1307. 10.1038/ncomms2303 PubMed DOI
Yang L, Huang P, Li F, Zhao L, Zhang Y, Li S, Gan Z, Lin A, Li W, Liu Y. 2012. c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells. PLoS One 7: e48611. 10.1371/journal.pone.0048611 PubMed DOI PMC
Yi Z, Qu L, Tang H, Liu Z, Liu Y, Tian F, Wang C, Zhang X, Feng Z, Yu Y. 2022. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 40: 946–955. 10.1038/s41587-021-01180-3 PubMed DOI
Yi-Brunozzi HY, Stephens OM, Beal PA. 2001. Conformational changes that occur during an RNA editing adenosine deamination reaction. J Biol Chem 276: 37827–37833. 10.1074/jbc.M106299200 PubMed DOI
Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, Galiani D, Dekel N, Li JB, Gaisler-Salomon I. 2018. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 19: 28. 10.1186/s12864-017-4409-8 PubMed DOI PMC
Zhang Y, Qian H, Xu J, Gao W. 2019. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. Ann Transl Med 7: 686. 10.21037/atm.2019.11.06 PubMed DOI PMC