Meta-analytical analysis on components released from resin-based dental materials

. 2022 Oct ; 26 (10) : 6015-6041. [epub] 20220723

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35870020
Odkazy

PubMed 35870020
PubMed Central PMC9525379
DOI 10.1007/s00784-022-04625-4
PII: 10.1007/s00784-022-04625-4
Knihovny.cz E-zdroje

OBJECTIVES: Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS: All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS: The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS: Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE: It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.

Zobrazit více v PubMed

Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003;134:87–95. doi: 10.14219/jada.archive.2003.0021. PubMed DOI

Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect monomer elution from an RBC product family. Dent Mater. 2021;37:1601–1614. doi: 10.1016/j.dental.2021.08.011. PubMed DOI

Durner J, Wellner P, Hickel R, Reichl FX. Synergistic interaction caused to human gingival fibroblasts from dental monomers. Dent Mater. 2012;28:818–823. doi: 10.1016/j.dental.2012.04.031. PubMed DOI

Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15:1281–1287. doi: 10.1021/tx025548t. PubMed DOI

Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig. 2008;12:1–8. doi: 10.1007/s00784-007-0162-8. PubMed DOI

He J, Kopperud HM. Preparation and characterization of Bis-GMA-free dental composites with dimethacrylate monomer derived from 9,9-Bis[4-(2-hydroxyethoxy)phenyl]fluorene. Dent Mater. 2018;34:1003–1013. doi: 10.1016/j.dental.2018.03.007. PubMed DOI

Krifka S, Petzel C, Hiller KA, Frank EM, Bosl C, Spagnuolo G, Reichl FX, Schmalz G, Schweikl H. Resin monomer-induced differential activation of MAP kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials. 2010;31:2964–2975. doi: 10.1016/j.biomaterials.2010.01.005. PubMed DOI

Huang FM, Kuan YH, Lee SS, Chang YC. Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation. Environ Toxicol. 2015;30:581–588. doi: 10.1002/tox.21935. PubMed DOI

Huang FM, Chang YC, Lee SS, Yeh CH, Lee KG, Huang YC, Chen CJ, Chen WY, Pan PH, Kuan YH. BisGMA-induced cytotoxicity and genotoxicity in macrophages are attenuated by wogonin via reduction of intrinsic caspase pathway activation. Environ Toxicol. 2016;31:176–184. doi: 10.1002/tox.22032. PubMed DOI

Kuan YH, Huang FM, Lee SS, Li YC, Chang YC. Bisgma stimulates prostaglandin E2 production in macrophages via cyclooxygenase-2, cytosolic phospholipase A2, and mitogen-activated protein kinases family. PLoS ONE. 2013;8:e82942. doi: 10.1371/journal.pone.0082942. PubMed DOI PMC

Kuan YH, Huang FM, Li YC, Chang YC. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway. Food Chem Toxicol. 2012;50:4003–4009. doi: 10.1016/j.fct.2012.08.019. PubMed DOI

Kleinsasser NH, Schmid K, Sassen AW, Harréus UA, Staudenmaier R, Folwaczny M, Glas J, Reichl FX. Cytotoxic and genotoxic effects of resin monomers in human salivary gland tissue and lymphocytes as assessed by the single cell microgel electrophoresis (Comet) assay. Biomaterials. 2006;27:1762–1770. doi: 10.1016/j.biomaterials.2005.09.023. PubMed DOI

Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater. 2019;35:501–510. doi: 10.1016/j.dental.2019.01.011. PubMed DOI

Kermanshahi S, Santerre JP, Cvitkovitch DG, Finer Y. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J Dent Res. 2010;89:996–1001. doi: 10.1177/0022034510372885. PubMed DOI PMC

Schmalz G, Krifka S, Schweikl H. Toll-like receptors, LPS, and dental monomers. Adv Dent Res. 2011;23:302–306. doi: 10.1177/0022034511405391. PubMed DOI

Mousavinasab SM. Biocompatibility of composite resins. Dent Res J (Isfahan) 2011;8:S21–S29. PubMed PMC

Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23:1819–1829. doi: 10.1016/s0142-9612(01)00308-8. PubMed DOI

Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, Scheers H, Godderis L, Hoet P, Van Meerbeek B. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater. 2011;27:723–747. doi: 10.1016/j.dental.2011.05.001. PubMed DOI

da Fonseca Roberti Garcia L, Pontes EC, Basso FG, Hebling J, de Souza Costa CA, Soares DG, Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin Oral Investig. 2016;20:1559–1566. doi: 10.1007/s00784-015-1630-1. PubMed DOI

Ferracane JL. Resin composite–state of the art. Dent Mater. 2011;27:29–38. doi: 10.1016/j.dental.2010.10.020. PubMed DOI

Longo DL, Paula-Silva FW, Faccioli LH, Gatón-Hernández PM, Queiroz AM, Silva LA. Cytotoxicity and cytokine expression induced by silorane and methacrylate-based composite resins. J Appl Oral Sci. 2016;24:338–343. doi: 10.1590/1678-775720150449. PubMed DOI PMC

Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105:97–116. doi: 10.1111/j.1600-0722.1997.tb00188.x. PubMed DOI

Roman A, Páll E, Moldovan M, Rusu D, Şoriţău O, Feştilă D, Lupşe M. Cytotoxicity of experimental resin composites on mesenchymal stem cells isolated from two oral sources. Microsc Microanal. 2016;22:1018–1033. doi: 10.1017/s1431927616011624. PubMed DOI

Miletic VJ, Santini A. Remaining unreacted methacrylate groups in resin-based composite with respect to sample preparation and storing conditions using micro-Raman spectroscopy. J Biomed Mater Res B Appl Biomater. 2008;87:468–474. doi: 10.1002/jbm.b.31128. PubMed DOI

Durner J, Obermaier J, Draenert M, Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater. 2012;28:1146–1153. doi: 10.1016/j.dental.2012.08.006. PubMed DOI

Finer Y, Santerre JP. The influence of resin chemistry on a dental composite’s biodegradation. J Biomed Mater Res A. 2004;69:233–246. doi: 10.1002/jbm.a.30000. PubMed DOI

Atkinson JC, Diamond F, Eichmiller F, Selwitz R, Jones G. Stability of bisphenol A, triethylene-glycol dimethacrylate, and bisphenol A dimethacrylate in whole saliva. Dent Mater. 2002;18:128–135. doi: 10.1016/s0109-5641(01)00031-8. PubMed DOI

Santerre JP, Shajii L, Tsang H. Biodegradation of commercial dental composites by cholesterol esterase. J Dent Res. 1999;78:1459–1468. doi: 10.1177/00220345990780081201. PubMed DOI

Koin PJ, Kilislioglu A, Zhou M, Drummond JL, Hanley L. Analysis of the degradation of a model dental composite. J Dent Res. 2008;87:661–665. doi: 10.1177/154405910808700712. PubMed DOI PMC

Shajii L, Santerre JP. Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials. 1999;20:1897–1908. doi: 10.1016/s0142-9612(99)00087-3. PubMed DOI

Reichl FX, Seiss M, Kleinsasser N, Kehe K, Kunzelmann KH, Thomas P, Spahl W, Hickel R. Distribution and excretion of BisGMA in guinea pigs. J Dent Res. 2008;87:378–380. doi: 10.1177/154405910808700401. PubMed DOI

Gerzina TM, Hume WR. Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent. 1996;24:125–128. doi: 10.1016/0300-5712(95)00036-4. PubMed DOI

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4. PubMed DOI PMC

Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of webplotdigitizer in extracting graphed data. Behav Modif. 2017;41:323–339. doi: 10.1177/0145445516673998. PubMed DOI

Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. doi: 10.1002/jrsm.12. PubMed DOI

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557. PubMed DOI PMC

Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763–1768. doi: 10.1213/ane.0000000000002864. PubMed DOI

Bandarra S, Mascarenhas P, Luís AR, Catrau M, Bekman E, Ribeiro AC, Félix S, Caldeira J, Barahona I. In vitro and in silico evaluations of resin-based dental restorative material toxicity. Clin Oral Investig. 2020;24:2691–2700. doi: 10.1007/s00784-019-03131-4. PubMed DOI

Kopperud HM, Schmidt M, Kleven IS. Elution of substances from a silorane-based dental composite. Eur J Oral Sci. 2010;118:100–102. doi: 10.1111/j.1600-0722.2009.00697.x. PubMed DOI

Phan AC, Tang ML, Nguyen JF, Ruse ND, Sadoun M. High-temperature high-pressure polymerized urethane dimethacrylate-mechanical properties and monomer release. Dent Mater. 2014;30:350–356. doi: 10.1016/j.dental.2013.12.009. PubMed DOI

Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, Leprince JG. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30:594–604. doi: 10.1016/j.dental.2014.02.023. PubMed DOI

Wolff D, Coupek M, Erber R, Krueger T, Krisam J, Staehle HJ, Frese C. Effect of aqueous storage on original and repair bond strength and residual monomer release of fiberreinforced composites. J Adhes Dent. 2016;18:535–543. doi: 10.3290/j.jad.a37360. PubMed DOI

Manojlovic D, Radisic M, Vasiljevic T, Zivkovic S, Lausevic M, Miletic V. Monomer elution from nanohybrid and ormocer-based composites cured with different light sources. Dent Mater. 2011;27:371–378. doi: 10.1016/j.dental.2010.11.017. PubMed DOI

Gul P, Celik N, Ozgeris FB, Demirkaya-Miloglu F, Kiziltunc A, Seven N. Effects of bisphenol A released from composite fillings on reproductive hormone levels in men. Int Dent J. 2021;71:343–351. doi: 10.1016/j.identj.2020.12.008. PubMed DOI PMC

Grenade C, De Pauw-Gillet MC, Pirard C, Bertrand V, Charlier C, Vanheusden A, Mainjot A. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Keratinocytes (HGKs) Dent Mater. 2017;33:333–343. doi: 10.1016/j.dental.2017.01.001. PubMed DOI

Bationo R, Jordana F, Boileau MJ, Colat-Parros J. Release of monomers from orthodontic adhesives. Am J Orthod Dentofacial Orthop. 2016;150:491–498. doi: 10.1016/j.ajodo.2016.02.027. PubMed DOI

Durner J, Schrickel K, Watts DC, Ilie N. Determination of homologous distributions of bisEMA dimethacrylates in bulk-fill resin-composites by GC-MS. Dent Mater. 2015;31:473–480. doi: 10.1016/j.dental.2015.02.006. PubMed DOI

Durner J, Spahl W, Zaspel J, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater. 2010;26:91–99. doi: 10.1016/j.dental.2009.08.014. PubMed DOI

Koulaouzidou EA, Roussou K, Sidiropoulos K, Nikolaidis A, Kolokuris I, Tsakalof A, Tsitsimpikou C, Kouretas D. Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol. 2018;120:536–543. doi: 10.1016/j.fct.2018.07.042. PubMed DOI

Janani K, Teja KV, Sandhya R, Alam MK, Al-Qaisi RK, Shrivastava D, Alnusayri MO, Alkhalaf ZA, Sghaireen MG, Srivastava KC (2021) Monomer elution from three resin composites at two different time interval using high performance liquid chromatography-an in-vitro study. Polymers (Basel) 13:4395. 10.3390/polym13244395 PubMed PMC

Roussou K, Nikolaidis AK, Ziouti F, Arhakis A, Arapostathis K, Koulaouzidou EA (2021) Cytotoxic evaluation and determination of organic and inorganic eluates from restorative materials. Molecules 26:4912. 10.3390/molecules26164912 PubMed PMC

Meyer-Lueckel H, Hartwig C, Börner HG, Lausch J. Elution of monomers from an infiltrant compared with different resin-based dental materials. Oral Health Prev Dent. 2020;18:337–341. doi: 10.3290/j.ohpd.a43354. PubMed DOI

Dursun E, Nguyen JF, Tang ML, Attal JP, Sadoun M. HEMA release and degree of conversion from a resin-modified glass ionomer cement after various delays of light activation. Dent Mater. 2016;32:640–645. doi: 10.1016/j.dental.2016.02.003. PubMed DOI

Pelourde C, Bationo R, Boileau MJ, Colat-Parros J, Jordana F. Monomer release from orthodontic retentions: an in vitro study. Am J Orthod Dentofacial Orthop. 2018;153:248–254. doi: 10.1016/j.ajodo.2017.06.021. PubMed DOI

Pongprueksa P, Miletic V, Janssens H, Van Landuyt KL, De Munck J, Godderis L, Van Meerbeek B. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent Mater. 2014;30:695–701. doi: 10.1016/j.dental.2014.03.007. PubMed DOI

Cokic SM, Duca RC, De Munck J, Hoet P, Van Meerbeek B, Smet M, Godderis L, Van Landuyt KL. Saturation reduces in-vitro leakage of monomers from composites. Dent Mater. 2018;34:579–586. doi: 10.1016/j.dental.2018.01.005. PubMed DOI

Durner J, Obermaier J, Ilie N. Investigation of different bleaching conditions on the amount of elutable substances from nano-hybrid composites. Dent Mater. 2014;30:192–199. doi: 10.1016/j.dental.2013.11.003. PubMed DOI

Hussain B, Thieu MKL, Johnsen GF, Reseland JE, Haugen HJ. Can CAD/CAM resin blocks be considered as substitute for conventional resins? Dent Mater. 2017;33:1362–1370. doi: 10.1016/j.dental.2017.09.003. PubMed DOI

Ilie N, Obermaier J, Durner J. Effect of modulated irradiation time on the degree of conversion and the amount of elutable substances from nano-hybrid resin-based composites. Clin Oral Investig. 2014;18:97–106. doi: 10.1007/s00784-013-0934-2. PubMed DOI

Kerezoudi C, Gogos C, Samanidou V, Tziafas D, Palaghias G. Evaluation of monomer leaching from a resin cement through dentin by a novel model. Dent Mater. 2016;32:e297–e305. doi: 10.1016/j.dental.2016.09.027. PubMed DOI

Kerezoudi C, Samanidou VF, Gogos C, Tziafas D, Palaghias G. Evaluation of monomer leaching from a resin cement through dentin. Eur J Prosthodont Restor Dent. 2019;27:10–17. doi: 10.1922/EJPRD_01854Kerezoudi09. PubMed DOI

Rothmund L, Shehata M, Van Landuyt KL, Schweikl H, Carell T, Geurtsen W, Hellwig E, Hickel R, Reichl FX, Högg C. Release and protein binding of components from resin based composites in native saliva and other extraction media. Dent Mater. 2015;31:496–504. doi: 10.1016/j.dental.2015.01.016. PubMed DOI

Putzeys E, Nys S, Cokic SM, Duca RC, Vanoirbeek J, Godderis L, Meerbeek BV, Van Landuyt KL. Long-term elution of monomers from resin-based dental composites. Dent Mater. 2019;35:477–485. doi: 10.1016/j.dental.2019.01.005. PubMed DOI

Putzeys E, Vercruyssen C, Duca RC, Saha PS, Godderis L, Vanoirbeek J, Peumans M, Van Meerbeek B, Van Landuyt KL. Monomer release from direct and indirect adhesive restorations: a comparative in vitro study. Dent Mater. 2020;36:1275–1281. doi: 10.1016/j.dental.2020.06.001. PubMed DOI

Yang Y, Reichl FX, Shi J, He X, Hickel R, Högg C. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites. Dent Mater. 2018;34:201–208. doi: 10.1016/j.dental.2017.10.002. PubMed DOI

Alamoush RA, Sung R, Satterthwaite JD, Silikas N. The effect of different storage media on the monomer elution and hardness of CAD/CAM composite blocks. Dent Mater. 2021;37:1202–1213. doi: 10.1016/j.dental.2021.04.009. PubMed DOI

Aldhafyan M, Silikas N, Watts DC. Influence of curing modes on monomer elution, sorption and solubility of dual-cure resin-cements. Dent Mater. 2022;38:978–988. doi: 10.1016/j.dental.2022.03.004. PubMed DOI

De Nys S, Putzeys E, Duca RC, Vervliet P, Covaci A, Boonen I, Elskens M, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL. Long-term elution of bisphenol A from dental composites. Dent Mater. 2021;37:1561–1568. doi: 10.1016/j.dental.2021.08.005. PubMed DOI

Kincses D, Böddi K, Őri Z, Lovász BV, Jeges S, Szalma J, Kunsági-Máté S, Lempel E (2021) Pre-heating effect on monomer elution and degree of conversion of contemporary and thermoviscous bulk-fill resin-based dental composites. Polymers (Basel) 13:3599. 10.3390/polym13203599 PubMed PMC

Shahabi S, Sayyari M, Sadrai S, Valizadeh S, Hajizamani H, Sadr A. Effect of volume and renewal of the storage media on the release of monomer from dental composites. Int J Dent. 2021;2021:9769947. doi: 10.1155/2021/9769947. PubMed DOI PMC

Hatipoǧlu Ö, Karadaş M, Er H, Turumtay EA. Effect of thermocycling on the amount of monomer released from bulk fill composite resins. Dent Mater J. 2019;38:1019–1025. doi: 10.4012/dmj.2018-377. PubMed DOI

Durner J, Stojanovic M, Urcan E, Hickel R, Reichl FX. Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater. 2011;27:631–636. doi: 10.1016/j.dental.2011.03.003. PubMed DOI

Durner J, Schrickel K, Watts DC, Becker M, Hickel R, Draenert ME. An alternate methodology for studying diffusion and elution kinetics of dimethacrylate monomers through dentinal tubules. Dent Mater. 2020;36:479–490. doi: 10.1016/j.dental.2020.02.008. PubMed DOI

Polydorou O, Rogatti P, Bolek R, Wolkewitz M, Kümmerer K, Hellwig E. Elution of monomers from three different bonding systems and their antibacterial effect. Odontology. 2013;101:170–176. doi: 10.1007/s10266-012-0071-4. PubMed DOI

Purushothaman D, Kailasam V, Chitharanjan AB. Bisphenol A release from orthodontic adhesives and its correlation with the degree of conversion. Am J Orthod Dentofacial Orthop. 2015;147:29–36. doi: 10.1016/j.ajodo.2014.09.013. PubMed DOI

Sunitha C, Kailasam V, Padmanabhan S, Chitharanjan AB. Bisphenol A release from an orthodontic adhesive and its correlation with the degree of conversion on varying light-curing tip distances. Am J Orthod Dentofacial Orthop. 2011;140:239–244. doi: 10.1016/j.ajodo.2010.02.037. PubMed DOI

Tak O, Usumez A. Diffusion of HEMA from resin cements through different dentin thicknesses in vitro. Am J Dent. 2015;28:285–291. PubMed

Khalid H, Syed MR, Rahbar MI, Iqbal H, Ahmad S, Kaleem M, Matinlinna JP, Khan AS. Effect of nano-bioceramics on monomer leaching and degree of conversion of resin-based composites. Dent Mater J. 2018;37:940–949. doi: 10.4012/dmj.2017-338. PubMed DOI

Song L, Sarikaya R, Ye Q, Misra A, Tamerler C, Spencer P. Multifunctional monomer acts as co-initiator and crosslinker to provide autonomous strengthening with enhanced hydrolytic stability in dental adhesives. Dent Mater. 2020;36:284–295. doi: 10.1016/j.dental.2019.11.007. PubMed DOI PMC

Barutcigil K, Dündar A, Batmaz SG, Yıldırım K, Barutçugil Ç (2020) Do resin-based composite CAD/CAM blocks release monomers? Clin Oral Investig 25:329–336. 10.1007/s00784-020-03377-3 PubMed

Hope E, Reed DR, Moilanen LH. Potential confounders of bisphenol-a analysis in dental materials. Dent Mater. 2016;32:961–967. doi: 10.1016/j.dental.2016.05.001. PubMed DOI

Yılmaz MN, Gul P. Monomer release from dental restorative materials containing dimethacrylate resin after bleaching. Clin Oral Investig. 2022;26:4647–4662. doi: 10.1007/s00784-022-04446-5. PubMed DOI

Schuster L, Reichl FX, Rothmund L, He X, Yang Y, Van Landuyt KL, Kehe K, Polydorou O, Hickel R, Högg C. Effect of Opalescence(®) bleaching gels on the elution of bulk-fill composite components. Dent Mater. 2016;32:127–135. doi: 10.1016/j.dental.2015.11.033. PubMed DOI

Schuster L, Rothmund L, He X, Van Landuyt KL, Schweikl H, Hellwig E, Carell T, Hickel R, Reichl FX, Högg C. Effect of Opalescence® bleaching gels on the elution of dental composite components. Dent Mater. 2015;31:745–757. doi: 10.1016/j.dental.2015.03.016. PubMed DOI

Tuna EB, Aktoren O, Oshida Y, Gencay K. Elution of residual monomers from dental composite materials. Eur J Paediatr Dent. 2010;11:110–114. PubMed

Mavishna MV, Venkatesh KV, Sihivahanan D. The effect of leachable components of resin cements and its resultant bond strength with lithium disilicate ceramics. Indian J Dent Res. 2020;31:470–474. doi: 10.4103/ijdr.IJDR_398_19. PubMed DOI

Tabatabaei MH, Arami S, Zandi S, Bassir SH. Evaluation of Bis-GMA/TEGDMA monomers leaching from a hybrid dental composite resin. Minerva Stomatol. 2011;60:159–165. PubMed

Atabek D, Aydintug I, Alaçam A, Berkkan A. The effect of temperature on bisphenol: an elution from dental resins. J Contemp Dent Pract. 2014;15:576–580. doi: 10.5005/jp-journals-10024-1582. PubMed DOI

Bezgin T, Cimen C, Ozalp N. Evaluation of residual monomers eluted from pediatric dental restorative materials. Biomed Res Int. 2021;2021:6316171. doi: 10.1155/2021/6316171. PubMed DOI PMC

Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015;31:e141–e149. doi: 10.1016/j.dental.2015.04.008. PubMed DOI

Reichl FX, Löhle J, Seiss M, Furche S, Shehata MM, Hickel R, Müller M, Dränert M, Durner J. Elution of TEGDMA and HEMA from polymerized resin-based bonding systems. Dent Mater. 2012;28:1120–1125. doi: 10.1016/j.dental.2012.06.010. PubMed DOI

Susila AV, Balasubramanian V. Correlation of elution and sensitivity of cell lines to dental composites. Dent Mater. 2016;32:e63–72. doi: 10.1016/j.dental.2015.11.011. PubMed DOI

Mourouzis P, Andreasidou E, Samanidou V, Tolidis K. Short-term and long-term release of monomers from newly developed resin-modified ceramics and composite resin CAD-CAM blocks. J Prosthet Dent. 2020;123:339–348. doi: 10.1016/j.prosdent.2019.01.012. PubMed DOI

Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent Mater. 2015;31:1587–1598. doi: 10.1016/j.dental.2015.10.006. PubMed DOI

Furche S, Hickel R, Reichl FX, van Landuyt K, Shehata M, Durner J. Quantification of elutable substances from methacrylate based sealers and their cytotoxicity effect on with human gingival fibroblasts. Dent Mater. 2013;29:618–625. doi: 10.1016/j.dental.2013.03.009. PubMed DOI

Högg C, Maier M, Dettinger-Maier K, He X, Rothmund L, Kehe K, Hickel R, Reichl FX. Effect of various light curing times on the elution of composite components. Clin Oral Investig. 2016;20:2113–2121. doi: 10.1007/s00784-015-1698-7. PubMed DOI

Rothmund L, Reichl FX, Hickel R, Styllou P, Styllou M, Kehe K, Yang Y, Högg C. Effect of layer thickness on the elution of bulk-fill composite components. Dent Mater. 2017;33:54–62. doi: 10.1016/j.dental.2016.10.006. PubMed DOI

Yang Y, Reichl FX, Ilie N, Shi J, Dhein J, Hickel R, Högg C. Antioxidants as a novel dental resin-composite component: effect on elution and degree of conversion. Dent Mater. 2019;35:650–661. doi: 10.1016/j.dental.2019.02.003. PubMed DOI

Hatipoğlu Ö, Turumtay EA, Saygın AG. Evaluation of monomer elution, microhardness, and roughness of experimental dental composite resins prepared from Bis-EFMA, a novel monomer system. Polym Compos. 2022;43:584–592. doi: 10.1002/pc.26401. DOI

De Nys S, Putzeys E, Vervliet P, Covaci A, Boonen I, Elskens M, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL, Duca RC. A novel high sensitivity UPLC-MS/MS method for the evaluation of bisphenol A leaching from dental materials. Sci Rep. 2018;8:6981. doi: 10.1038/s41598-018-24815-z. PubMed DOI PMC

Tichy A, Simkova M, Vrbova R, Roubickova A, Duskova M, Bradna P (2021) Bisphenol A release from dental composites and resin-modified glass ionomers under two polymerization conditions. Polymers (Basel) 14:46. 10.3390/polym14010046 PubMed PMC

Kurt A, Altintas SH, Kiziltas MV, Tekkeli SE, Guler EM, Kocyigit A, Usumez A. Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent Mater J. 2018;37:40–48. doi: 10.4012/dmj.2016-380. PubMed DOI

Durner J, Stojanovic M, Urcan E, Spahl W, Haertel U, Hickel R, Reichl FX. Effect of hydrogen peroxide on the three-dimensional polymer network in composites. Dent Mater. 2011;27:573–580. doi: 10.1016/j.dental.2011.02.013. PubMed DOI

Gul P, Alp HH, Özcan M. Monomer release from bulk-fill composite resins in different curing protocols. J Oral Sci. 2020;62:288–292. doi: 10.2334/josnusd.19-0221. PubMed DOI

Kwon YR, Son KJ, Pandit S, Kim JE, Chang KW, Jeon JG. Bioactivity-guided separation of anti-acidogenic substances against Streptococcus mutans UA 159 from Polygonum cuspidatum. Oral Dis. 2010;16:204–209. doi: 10.1111/j.1601-0825.2009.01636.x. PubMed DOI

Nocca G, Iori A, Rossini C, Martorana GE, Ciasca G, Arcovito A, Cordaro M, Lupi A, Marigo L. Effects of barriers on chemical and biological properties of two dual resin cements. Eur J Oral Sci. 2015;123:208–214. doi: 10.1111/eos.12178. PubMed DOI

Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal. 2018;147:590–611. doi: 10.1016/j.jpba.2017.05.006. PubMed DOI

Honour JW. Gas chromatography-mass spectrometry. Methods Mol Biol. 2006;324:53–74. doi: 10.1385/1-59259-986-9:53. PubMed DOI

Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013;34:4555–4563. doi: 10.1016/j.biomaterials.2013.03.019. PubMed DOI

Kanerva L, Henriks-Eckerman ML, Jolanki R, Estlander T. Plastics/acrylics: material safety data sheets need to be improved. Clin Dermatol. 1997;15:533–546. doi: 10.1016/s0738-081x(97)00006-0. PubMed DOI

Schedle A, Ortengren U, Eidler N, Gabauer M, Hensten A. Do adverse effects of dental materials exist? What are the consequences, and how can they be diagnosed and treated? Clin Oral Implants Res. 2007;18(Suppl 3):232–256. doi: 10.1111/j.1600-0501.2007.01481.x. PubMed DOI

Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res. 2002;62:447–456. doi: 10.1002/jbm.10364. PubMed DOI

Putzeys E, Duca RC, Coppens L, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL. In-vitro transdentinal diffusion of monomers from adhesives. J Dent. 2018;75:91–97. doi: 10.1016/j.jdent.2018.05.023. PubMed DOI

Ahmed MH, Yoshihara K, Yao C, Okazaki Y, Van Landuyt K, Peumans M, Van Meerbeek B. Multiparameter evaluation of acrylamide HEMA alternative monomers in 2-step adhesives. Dent Mater. 2021;37:30–47. doi: 10.1016/j.dental.2020.10.002. PubMed DOI

Ginzkey C, Zinnitsch S, Steussloff G, Koehler C, Hackenberg S, Hagen R, Kleinsasser NH, Froelich K. Assessment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes. Dent Mater. 2015;31:865–876. doi: 10.1016/j.dental.2015.04.009. PubMed DOI

Massaro H, Zambelli LFA, Britto AA, Vieira RP, Ligeiro-de-Oliveira AP, Andia DC, Oliveira MT, Lima AF (2019) Solvent and HEMA increase adhesive toxicity and cytokine release from dental pulp cells. Materials (Basel) 12:2750. 10.3390/ma12172750 PubMed PMC

Schweikl H, Gallorini M, Pöschl G, Urmann V, Petzel C, Bolay C, Hiller KA, Cataldi A, Buchalla W. Functions of transcription factors NF-κB and Nrf2 in the inhibition of LPS-stimulated cytokine release by the resin monomer HEMA. Dent Mater. 2018;34:1661–1678. doi: 10.1016/j.dental.2018.08.292. PubMed DOI

Söderholm KJ, Mariotti A. BIS-GMA--based resins in dentistry: are they safe? J Am Dent Assoc. 1999;130:201–9. doi: 10.14219/jada.archive.1999.0169. PubMed DOI

Gonçalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur J Oral Sci. 2009;117:442–446. doi: 10.1111/j.1600-0722.2009.00636.x. PubMed DOI

Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006;22:1143–1149. doi: 10.1016/j.dental.2005.10.009. PubMed DOI

Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Périanin A. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A. 2003;66:476–482. doi: 10.1002/jbm.a.10600. PubMed DOI

De Angelis F, Mandatori D, Schiavone V, Melito FP, Valentinuzzi S, Vadini M, Di Tomo P, Vanini L, Pelusi L, Pipino C, Del Boccio P, D'Arcangelo C, Pandolfi A (2021) Cytotoxic and genotoxic effects of composite resins on cultured human gingival fibroblasts. Materials (Basel) 14:5225. 10.3390/ma14185225 PubMed PMC

Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. Bisphenol A and related compounds in dental materials. Pediatrics. 2010;126:760–768. doi: 10.1542/peds.2009-2693. PubMed DOI PMC

Schmalz G, Preiss A, Arenholt-Bindslev D. Bisphenol-A content of resin monomers and related degradation products. Clin Oral Investig. 1999;3:114–119. doi: 10.1007/s007840050088. PubMed DOI

Arenholt-Bindslev D, Breinholt V, Preiss A, Schmalz G. Time-related bisphenol-A content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin Oral Investig. 1999;3:120–125. doi: 10.1007/s007840050089. PubMed DOI

Kadoma Y, Tanaka M. Acid and base-catalyzed hydrolysis of bisphenol A-related compounds. Dent Mater J. 2000;19:139–152. doi: 10.4012/dmj.19.139. PubMed DOI

Pfeifer CS, Shelton ZR, Braga RR, Windmoller D, Machado JC, Stansbury JW. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites. Eur Polym J. 2011;47:162–170. doi: 10.1016/j.eurpolymj.2010.11.007. PubMed DOI PMC

De Nys S, Duca RC, Vervliet P, Covaci A, Boonen I, Elskens M, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL. Bisphenol A as degradation product of monomers used in resin-based dental materials. Dent Mater. 2021;37:1020–1029. doi: 10.1016/j.dental.2021.03.005. PubMed DOI

Sun J, Wang L, Ding S, Sun X, Xu L. Solubility behavior and thermodynamic analysis of bisphenol A in 14 different pure solvents. J Chem Eng Data. 2020;65:2846–2858. doi: 10.1021/acs.jced.0c00166. DOI

Paula AB, Toste D, Marinho A, Amaro I, Marto CM, Coelho A, Marques-Ferreira M, Carrilho E (2019) Once resin composites and dental sealants release bisphenol-a, how might this affect our clinical management?-a systematic review. Int J Environ Res Public Health 16:1627. 10.3390/ijerph16091627 PubMed PMC

Huang RP, Liu ZH, Yuan SF, Yin H, Dang Z, Wu PX. Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000–2016) and its risk analysis. Environ Pollut. 2017;230:143–152. doi: 10.1016/j.envpol.2017.06.026. PubMed DOI

Rezg R, El-Fazaa S, Gharbi N, Mornagui B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int. 2014;64:83–90. doi: 10.1016/j.envint.2013.12.007. PubMed DOI

Sabanayagam C, Teppala S, Shankar A. Relationship between urinary bisphenol A levels and prediabetes among subjects free of diabetes. Acta Diabetol. 2013;50:625–631. doi: 10.1007/s00592-013-0472-z. PubMed DOI

Huang YQ, Wong CK, Zheng JS, Bouwm an H, Barra R, Wahlström B, Neretin L, Wong MH. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–99. doi: 10.1016/j.envint.2011.04.010. PubMed DOI

Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol. 2016;50:5438–5453. doi: 10.1021/acs.est.5b05387. PubMed DOI

Marzouk T, Sathyanarayana S, Kim AS, Seminario AL, McKinney CM. A systematic review of exposure to bisphenol A from dental treatment. JDR Clin Trans Res. 2019;4:106–115. doi: 10.1177/2380084418816079. PubMed DOI PMC

Olea N, Pulgar R, Pérez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, Pedraza V, Soto AM, Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996;104:298–305. doi: 10.1289/ehp.96104298. PubMed DOI PMC

Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: a review of in vitro, in vivo and epidemiological studies. J Appl Toxicol. 2018;38:51–80. doi: 10.1002/jat.3480. PubMed DOI

Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett. 2020;20:19–32. doi: 10.3892/ol.2020.11566. PubMed DOI PMC

Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13:161–173. doi: 10.1038/nrendo.2016.186. PubMed DOI PMC

Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132–155. doi: 10.1016/j.reprotox.2013.08.008. PubMed DOI

Usman A, Ahmad M. From BPA to its analogues: is it a safe journey? Chemosphere. 2016;158:131–142. doi: 10.1016/j.chemosphere.2016.05.070. PubMed DOI

Ejaredar M, Lee Y, Roberts DJ, Sauve R, Dewey D. Bisphenol A exposure and children’s behavior: A systematic review. J Expo Sci Environ Epidemiol. 2017;27:175–183. doi: 10.1038/jes.2016.8. PubMed DOI

Eladak S, Grisin T, Moison D, Guerquin MJ, N'Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R. A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril. 2015;103:11–21. doi: 10.1016/j.fertnstert.2014.11.005. PubMed DOI

Papakonstantinou AE, Eliades T, Cellesi F, Watts DC, Silikas N. Evaluation of UDMA’s potential as a substitute for Bis-GMA in orthodontic adhesives. Dent Mater. 2013;29:898–905. doi: 10.1016/j.dental.2013.05.007. PubMed DOI

Wacławczyk A, Postek-Stefańska L, Pietraszewska D, Birkner E, Zalejska-Fiolka J, Wysoczańska-Jankowicz I. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps. Adv Clin Exp Med. 2018;27:469–476. doi: 10.17219/acem/68382. PubMed DOI

Luo S, Zhu W, Liu F, He J (2016) Preparation of a Bis-GMA-free dental resin system with synthesized fluorinated dimethacrylate monomers. Int J Mol Sci 17:2014. 10.3390/ijms17122014 PubMed PMC

He J, Söderling E, Lassila LV, Vallittu PK. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater. 2014;30:968–976. doi: 10.1016/j.dental.2014.05.013. PubMed DOI

Alrahlah A, Al-Odayni AB, Al-Mutairi HF, Almousa BM, Alsubaie FS, Khan R, Saeed WS (2021) A low-viscosity BisGMA derivative for resin composites: synthesis, characterization, and evaluation of its rheological properties. Materials (Basel) 14:338. 10.3390/ma14020338 PubMed PMC

Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998;14:51–56. doi: 10.1016/s0109-5641(98)00009-8. PubMed DOI

Becher R, Wellendorf H, Sakhi AK, Samuelsen JT, Thomsen C, Bølling AK, Kopperud HM. Presence and leaching of bisphenol a (BPA) from dental materials. Acta Biomater Odontol Scand. 2018;4:56–62. doi: 10.1080/23337931.2018.1476869. PubMed DOI PMC

Maserejian NN, Trachtenberg FL, Wheaton OB, Calafat AM, Ranganathan G, Kim HY, Hauser R. Changes in urinary bisphenol A concentrations associated with placement of dental composite restorations in children and adolescents. J Am Dent Assoc. 2016;147:620–630. doi: 10.1016/j.adaj.2016.02.020. PubMed DOI PMC

Fugolin AP, de Paula AB, Dobson A, Huynh V, Consani R, Ferracane JL, Pfeifer CS. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36:884–892. doi: 10.1016/j.dental.2020.04.009. PubMed DOI PMC

Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R. Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol. 2006;80:370–377. doi: 10.1007/s00204-005-0044-2. PubMed DOI

Costa CA, Hebling J, Hanks CT. Current status of pulp capping with dentin adhesive systems: a review. Dent Mater. 2000;16:188–197. doi: 10.1016/s0109-5641(00)00008-7. PubMed DOI

Murray PE, Hafez AA, Windsor LJ, Smith AJ, Cox CF. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J Dent. 2002;30:213–222. doi: 10.1016/s0300-5712(02)00021-0. PubMed DOI

Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR, Navarro MF, Santos CF. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci. 2009;17:544–554. doi: 10.1590/s1678-77572009000600002. PubMed DOI PMC

Manojlovic D, Radisic M, Lausevic M, Zivkovic S, Miletic V. Mathematical modeling of cross-linking monomer elution from resin-based dental composites. J Biomed Mater Res B Appl Biomater. 2013;101:61–67. doi: 10.1002/jbm.b.32815. PubMed DOI

Pongprueksa P, De Munck J, Duca RC, Poels K, Covaci A, Hoet P, Godderis L, Van Meerbeek B, Van Landuyt KL. Monomer elution in relation to degree of conversion for different types of composite. J Dent. 2015;43:1448–1455. doi: 10.1016/j.jdent.2015.10.013. PubMed DOI

Kopperud HM, Johnsen GF, Lamolle S, Kleven IS, Wellendorf H, Haugen HJ. Effect of short LED lamp exposure on wear resistance, residual monomer and degree of conversion for Filtek Z250 and Tetric EvoCeram composites. Dent Mater. 2013;29:824–834. doi: 10.1016/j.dental.2013.04.022. PubMed DOI

Komurcuoglu E, Olmez S, Vural N. Evaluation of residual monomer elimination methods in three different fissure sealants in vitro. J Oral Rehabil. 2005;32:116–121. doi: 10.1111/j.1365-2842.2004.01405.x. PubMed DOI

Lee MJ, Kim MJ, Kwon JS, Lee SB, Kim KM (2017) Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials (Basel) 10:288. 10.3390/ma10030288 PubMed PMC

Jp-P J, Jakubik A, Przeklasa-Bierowiec A, Muszynska B. Artificial saliva and its use in biological experiments. J Physiol Pharmacol. 2017;68:807–813. PubMed

Mandel ID. Relation of saliva and plaque to caries. J Dent Res. 1974;53:246–266. doi: 10.1177/00220345740530021201. PubMed DOI

Bationo R, Rouamba A, Diarra A, Beugré-Kouassi MLA, Beugré JB, Jordana F (2020) Cytotoxicity evaluation of dental and orthodontic light-cured composite resins. Clin Exp Dent Res 7:40–48. 10.1002/cre2.337 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...