Vertex Deletion into Bipartite Permutation Graphs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35880199
PubMed Central
PMC9304081
DOI
10.1007/s00453-021-00923-7
PII: 923
Knihovny.cz E-zdroje
- Klíčová slova
- Comparability graphs, Graph modification problems, Partially ordered set, Permutation graphs,
- Publikační typ
- časopisecké články MeSH
A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ℓ 1 and ℓ 2 , one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP -complete by the classical result of Lewis and Yannakakis [20]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time O ( 9 k · n 9 ) , and also give a polynomial-time 9-approximation algorithm.
Faculty of Mathematics and Information Science Warsaw University of Technology Warsaw Poland
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Faculty of Mathematics Informatics and Mechanics University of Warsaw Warsaw Poland
Zobrazit více v PubMed
Baker KA, Fishburn PC, Roberts FS. Partial orders of dimension 2. Networks. 1972;2(1):11–28. doi: 10.1002/net.3230020103. DOI
Bożyk, L., Derbisz, J., Krawczyk, T., Novotná, J., Okrasa, K.: Vertex Deletion into Bipartite Permutation Graphs. In: 15th International Symposium on Parameterized and Exact Computation (IPEC 2020), Leibniz International Proceedings in Informatics (LIPIcs), vol. 180, pp. 5:1–5:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). 10.4230/LIPIcs.IPEC.2020.5. https://drops.dagstuhl.de/opus/volltexte/2020/13308
Brandstädt, A., Kratsch, D.: On the restriction of some
Cai L. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 1996;58(4):171–176. doi: 10.1016/0020-0190(96)00050-6. DOI
Cao, Y.: Linear recognition of almost interval graphs. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pp. 1096–1115. SIAM (2016). 10.1137/1.9781611974331.ch77
Cao Y. Unit interval editing is fixed-parameter tractable. Inf. Comput. 2017;253:109–126. doi: 10.1016/j.ic.2017.01.008. DOI
Cao Y, Marx D. Chordal editing is fixed-parameter tractable. Algorithmica. 2016;75(1):118–137. doi: 10.1007/s00453-015-0014-x. DOI
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. pp. 51–229 (2006)
Deogun JS, Steiner G. Polynomial algorithms for hamiltonian cycle in cocomparability graphs. SIAM J. Comput. 1994;23(3):520–552. doi: 10.1137/S0097539791200375. DOI
Derbisz, J.: A polynomial kernel for vertex deletion into bipartite permutation graphs. CoRR arXiv:2111.14005 (2021) PubMed PMC
Edmonds J, Karp RM. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM (JACM) 1972;19(2):248–264. doi: 10.1145/321694.321699. DOI
Gallai T. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica. 1967;18(1–2):25–66. doi: 10.1007/BF02020961. DOI
Golumbic MC, Rotem D, Urrutia J. Comparability graphs and intersection graphs. Discret. Math. 1983;43(1):37–46. doi: 10.1016/0012-365X(83)90019-5. DOI
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer (1988). 10.1007/978-3-642-97881-4
Heggernes P, van ’t Hof P, Jansen BMP, Kratsch S, Villanger Y. Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci. 2013;511:172–180. doi: 10.1016/j.tcs.2012.03.013. DOI
Heggernes P, van ’t Hof P, Lokshtanov D, Nederlof J. Computing the cutwidth of bipartite permutation graphs in linear time. SIAM J. Discret. Math. 2012;26(3):1008–1021. doi: 10.1137/110830514. DOI
Kanesh, L., Madathil, J., Sahu, A., Saurabh, S., Verma, S.: A Polynomial Kernel for Bipartite Permutation Vertex Deletion. In: Golovach, P.A., Zehavi, M. (eds.) 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 214, pp. 23:1–23:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). 10.4230/LIPIcs.IPEC.2021.23. https://drops.dagstuhl.de/opus/volltexte/2021/15406
Kelly D. The 3-irreducible partially ordered sets. Can. J. Math. 1977;29:367–383. doi: 10.4153/CJM-1977-040-3. DOI
Lekkeikerker C, Boland J. Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae. 1962;51(1):45–64. doi: 10.4064/fm-51-1-45-64. DOI
Lewis JM, Yannakakis M. The node-deletion problem for hereditary properties is DOI
Lokshtanov, D.: Wheel-free deletion is
Mancini, F.: Graph modification problems related to graph classes. PhD degree dissertation, University of Bergen Norway 2 (2008)
Marx D. Chordal deletion is fixed-parameter tractable. Algorithmica. 2010;57(4):747–768. doi: 10.1007/s00453-008-9233-8. DOI
Pnueli A, Lempel A, Even S. Transitive orientation of graphs and identification of permutation graphs. Can. J. Math. 1971;23(1):160–175. doi: 10.4153/CJM-1971-016-5. DOI
Spinrad JP, Brandstädt A, Stewart L. Bipartite permutation graphs. Discret. Appl. Math. 1987;18(3):279–292. doi: 10.1016/S0166-218X(87)80003-3. DOI
Trotter WT, Jr, Moore JI., Jr Characterization problems for graphs, partially ordered sets, lattices, and families of sets. Discret. Math. 1976;16(4):361–381. doi: 10.1016/S0012-365X(76)80011-8. DOI
van ’t Hof P, Villanger Y. Proper interval vertex deletion. Algorithmica. 2013;65(4):845–867. doi: 10.1007/s00453-012-9661-3. DOI
Villanger Y, Heggernes P, Paul C, Telle JA. Interval completion is fixed parameter tractable. SIAM J. Comput. 2009;38(5):2007–2020. doi: 10.1137/070710913. DOI