Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-0024
Czech Health Research Council
21-01090S
Czech Science Foundation
PubMed
35884249
PubMed Central
PMC9313018
DOI
10.3390/bios12070446
PII: bios12070446
Knihovny.cz E-zdroje
- Klíčová slova
- analysis, non-biofouling layer, poly(2-methyl-2-oxazoline)s, potentiometry, sensor of Fe2+ or Fe3+ ions,
- MeSH
- aniliny MeSH
- chelátory * MeSH
- elektrody MeSH
- iontově selektivní elektrody * MeSH
- ionty MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aniliny MeSH
- chelátory * MeSH
- ionty MeSH
- polyaniline MeSH Prohlížeč
We constructed a sensor for the determination of Fe2+ and/or Fe3+ ions that consists of a polyaniline layer as an ion-to-electron transducer; on top of it, chelating molecules are deposited (which can selectively chelate specific ions) and protected with a non-biofouling poly(2-methyl-2-oxazoline)s layer. We have shown that our potentiometric sensing layers show a rapid response to the presence of Fe2+ or Fe3+ ions, do not experience interference with other ions (such as Cu2+), and work in a biological environment in the presence of bovine serum albumin (as a model serum protein). The sensing layers detect iron ions in the concentration range from 5 nM to 50 µM.
Zobrazit více v PubMed
Karimi-Maleh H., Karimi F., Malekmohammadi S., Zakariae N., Esmaeili R., Rostamnia S., Yola M.L., Atar N., Movagharnezhad S., Rajendran S. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq. 2020;310:113185. doi: 10.1016/j.molliq.2020.113185. DOI
Le V.T., Vasseghian Y., Dragoi E.N., Moradi M., Mousavi Khaneghah A. A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem. Toxicol. 2021;148:111931. doi: 10.1016/j.fct.2020.111931. PubMed DOI
Askari E., Naghib S.M., Seyfoori A., Maleki A., Rahmanian M. Ultrasonic-Assisted Synthesis and In Vitro Biological Assessments of a Novel Herceptin-Stabilized Graphene using Three Dimensional Cell Spheroid. Ultrason. Sonochem. 2019;58:104615. doi: 10.1016/j.ultsonch.2019.104615. PubMed DOI
Kalantari E., Naghib S.M. A Comparative Study on Biological Properties of Novel Nanostructured Monticellite-Based Composites with Hydroxyapatite Bioceramic. Mater. Sci. Eng. C. 2019;98:1087–1096. doi: 10.1016/j.msec.2018.12.140. PubMed DOI
Komathi S., Gopalan A., Muthuchamy N., Lee K. Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Adv. 2017;7:15342–15351. doi: 10.1039/C6RA24760A. DOI
Muthuchamy N., Gopalan A., Lee K.-P. Highly selective non-enzymatic electrochemical sensor based on a titanium dioxide nanowire–poly (3-aminophenyl boronic acid)–gold nanoparticle ternary nanocomposite. RSC Adv. 2018;8:2138–2147. doi: 10.1039/C7RA09097H. PubMed DOI PMC
Muthuchamy N., Lee K., Gopalan A. Enhanced photoelectrochemical biosensing performances for graphene (2D)–Titanium dioxide nanowire (1D) heterojunction polymer conductive nanosponges. Biosens. Bioelectron. 2017;89:390–399. doi: 10.1016/j.bios.2016.06.005. PubMed DOI
Itoi H., Hayashi S., Matsufusa H., Ohzawa Y. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors. Chem. Commun. 2017;53:3201–3204. doi: 10.1039/C6CC08822H. PubMed DOI
Li G.R., Feng Z.P., Zhong J.H., Wang Z.L., Tong Y.X. Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules. 2010;43:2178–2183. doi: 10.1021/ma902317k. DOI
Simotwo S.K., DelRe C., Kalra V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline−Carbon Nanotube Nanofibers. CS Appl. Mater. Interfaces. 2016;8:21261–21269. doi: 10.1021/acsami.6b03463. PubMed DOI
Lakhdari D., Guittoum A., Benbrahim N., Belgherbi O., Berkani M., Vasseghian Y., Lakhdari N. A nvel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem. Toxicol. 2021;151:112099. doi: 10.1016/j.fct.2021.112099. PubMed DOI
Wang Q., Li J., Wang D., Niu J., Du P., Liu J., Liu P. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte. Electrochim. Acta. 2020;349:136348. doi: 10.1016/j.electacta.2020.136348. DOI
Iqbal M.Z., Faisal M.M., Ali S.R., Farid S., Afzal A.M. Co-MOF/polyanilinebased electrode material for high performance asymmetric supercapacitor devices. Electrochim. Acta. 2020;346:136039. doi: 10.1016/j.electacta.2020.136039. DOI
Zhou Q., Yang Y., Xiao J., Fan H. Fabrication and characterisation of magnetic graphene oxide Incorporated Fe3O4 @polyaniline for the removal of Bisphenol A, t-octyl-phenol and α-naphthol from water. Sci. Rep. 2017;7:11316. doi: 10.1038/s41598-017-11831-8. PubMed DOI PMC
Ramachandran A., Prasankumar T., Sivaprakash S., Wiston B.R., Biradar S., Jose S. Removol of elevated level of chromium in Groundwater by the fabricated PANI/Fe3O4 nanocomposites. Environ. Sci. Pollut. Res. Int. 2017;24:7490–7498. doi: 10.1007/s11356-017-8465-z. PubMed DOI
Pal R., Goyal S.L., Rawal I., Sharma S. Efcient room temperature methanol sensors based on polyaniline/ graphene micro/nanocomposites. Iran. Polym. J. 2020;29:591–603. doi: 10.1007/s13726-020-00822-8. DOI
Sriramprabha R., Sekar M., Revathi R., Viswanathan C., Wilson J. Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Anal. Chim. Acta. 2020;1137:103–114. doi: 10.1016/j.aca.2020.09.004. PubMed DOI
Tomšík E., Dallas P., Šeděnková I., Svoboda J., Hrubý M. Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications. RSC Adv. 2021;11:18852–18859. doi: 10.1039/D1RA02325J. PubMed DOI PMC
Chen S., Song N., Mu M., Wang C., Lu X.F. Sacrificial template synthesis of ultrathin polyaniline nanosheets and their application in highly sensitive electrochemical dopamine detection. Mater. Today Chem. 2021;20:100479. doi: 10.1016/j.mtchem.2021.100479. DOI
Mashhadizadeh M.H., Shoaei I.S., Monadi N. A novel ion selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II) Talanta. 2004;64:1048–1052. doi: 10.1016/j.talanta.2004.05.005. PubMed DOI
Gholivand M.B., Raheedayat F. Chromium(III) Ion Selective Electrode Based on Oxalic AcidBis(Cyclohexylidene Hydrazide. Electroanalysis. 2004;16:1330–1335. doi: 10.1002/elan.200302956. DOI
Gholivand M.B., Sharif F. Chromium(III) ion selective electrode based on glyoxal bis(2-hydroxyanil) Talanta. 2003;60:707–713. doi: 10.1016/S0039-9140(03)00130-9. PubMed DOI
Srivastava S.K., Gupta A.V.K., Jain S. PVC-Based 2,2,2-Cryptand Sensor for Zinc Ions. Anal. Chem. 1996;68:1272–1275. doi: 10.1021/ac9507000. PubMed DOI
Zamani H.A., Imani A., Arvinfar A., Rahimi F., Ganjali M.R., Faridbod F., Meghdadi S. Neodymium(III)–PVC membrane sensor based on a new four dentate ionophore. Mater. Sci. Eng. C. 2011;31:588–592. doi: 10.1016/j.msec.2010.11.016. DOI
Zamani H.A., Faridbod F., Ganjali M.R. Dysprosium selective potentiometric membrane sensor. Mater. Sci. Eng. C. 2013;33:608–612. doi: 10.1016/j.msec.2012.10.004. PubMed DOI
Shamsipur M., Mizani F., Saboury A.A., Sharghi H., Khalifeh R. Highly Selective and Sensitive Membrane Sensors for Copper(II)Ion Based on a New Benzo-Substituted Macrocyclic Diamide 6,7,8,9,10-Hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopenta-decine-3,11(4H,12H)-dione. Electroanalysis. 2007;19:587–596. doi: 10.1002/elan.200603768. DOI
Abdallah N.A. Novel Potentiometric Solid-contact Electrode for the Determination of Fe2+ Ions via MWCNTs-Gemifloxacin Composite. Electroanalysis. 2021;33:1283–1289. doi: 10.1002/elan.202060319. DOI
Ali T.A., Farag A.A., Mohamed G.G. Potentiometric determination of iron in polluted water samples using new modified Fe(III)-screen printed ion selective electrode. J. Ind. Eng. Chem. 2014;20:2394–2400. doi: 10.1016/j.jiec.2013.10.019. DOI
Mizani F., Ganjali M.R., Faridbod F., Esmaeilnia S. A Novel Iron(III) Selective Potentiometric Sensor Based on 9- Ethylacenaphtho [1, 2-B] Quinoxaline. Int. J. Electrochem. Sci. 2013;8:10473–10486.
Lorson T., Lubtow M.M., Wegener E., Haider M.S., Borova S., Nahm D., Jordan R., Sokolski-Papkov M., Kabanov A.V., Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI
Trachsel L., Zenobi-Wong M., Benetti E.M. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater. Sci. 2021;9:2874–2886. doi: 10.1039/D0BM02217A. PubMed DOI
Adams N., Schubert S.U. Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Deliv. Rev. 2007;59:1504–1520. doi: 10.1016/j.addr.2007.08.018. PubMed DOI
Pelegri-O’Day E.M., Lin E.W., Maynard H.D. Therapeutic protein-polymer conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014;136:14323–14332. doi: 10.1021/ja504390x. PubMed DOI
Urbánek T., Ivanko I., Svoboda J., Tomšík E., Hrubý M. Selective potentiometric detection of reactive oxygen species (ROS) in biologically relevant concentrations by a modified metalized polyporphyrine sensing layer coated with nonbiofouling poly(2-alkyl-2oxazoline)s. Sens. Actuators B Chem. 2022;363:131827. doi: 10.1016/j.snb.2022.131827. DOI
Hruby M., Martinez I.V.S., Stephan H., Pouckova P., Benes J., Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymer. 2021;13:3969. doi: 10.3390/polym13223969. PubMed DOI PMC
Jirak D., Svoboda J., Filipova M., Pop-Georgievski O., Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Comm. 2021;57:4718–4723. doi: 10.1039/D1CC00642H. PubMed DOI
Pop-Georgievski O., Štěpán P., Houska M., Chvostoá D., Proks V., Rypáček F. Poly(ethylene oxide) Layers Grafted to Dopamine-melanin Anchoring Layer: Stability and Resistance to Protein Adsorption. Biomacromolecules. 2011;12:3232–3242. doi: 10.1021/bm2007086. PubMed DOI
Al-Attar H.A., Al-Alawina Q.H., Monkman A.P. Spectroscopic ellipsometry of electrochemically prepared thin filmpolyaniline. Thin Solid Film. 2003;429:286–294. doi: 10.1016/S0040-6090(03)00279-7. DOI
Tomsik E., Kohut O., Ivanko I., Pikarek M., Bieloshapka I., Dallas P. Assembly and Interaction of Polyaniline Chains: Impact on Electro- and Physical–Chemical Behavior. J. Phys. Chem. C. 2018;122:8022–8030. doi: 10.1021/acs.jpcc.8b01948. DOI
Trung T., Trung T.H., Ha C.S. Preparation and cyclic voltammetry studies on nickel-nanoclusters containing polyaniline composites having layer-by-layer structures. Electrochim. Acta. 2005;51:984–990. doi: 10.1016/j.electacta.2005.04.074. DOI
Masuoka J., Saltman P. Zinc (II) and Copper (II) Binding to Serum Albumin. J. Biol. Chem. 1994;269:25557–25561. doi: 10.1016/S0021-9258(18)47285-7. PubMed DOI
Ueno H.M., Urazono H., Kobayashi T. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem. 2014;145:90–94. doi: 10.1016/j.foodchem.2013.07.143. PubMed DOI