Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions

. 2022 Jun 23 ; 12 (7) : . [epub] 20220623

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35884249

Grantová podpora
NU20-06-0024 Czech Health Research Council
21-01090S Czech Science Foundation

We constructed a sensor for the determination of Fe2+ and/or Fe3+ ions that consists of a polyaniline layer as an ion-to-electron transducer; on top of it, chelating molecules are deposited (which can selectively chelate specific ions) and protected with a non-biofouling poly(2-methyl-2-oxazoline)s layer. We have shown that our potentiometric sensing layers show a rapid response to the presence of Fe2+ or Fe3+ ions, do not experience interference with other ions (such as Cu2+), and work in a biological environment in the presence of bovine serum albumin (as a model serum protein). The sensing layers detect iron ions in the concentration range from 5 nM to 50 µM.

Zobrazit více v PubMed

Karimi-Maleh H., Karimi F., Malekmohammadi S., Zakariae N., Esmaeili R., Rostamnia S., Yola M.L., Atar N., Movagharnezhad S., Rajendran S. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq. 2020;310:113185. doi: 10.1016/j.molliq.2020.113185. DOI

Le V.T., Vasseghian Y., Dragoi E.N., Moradi M., Mousavi Khaneghah A. A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem. Toxicol. 2021;148:111931. doi: 10.1016/j.fct.2020.111931. PubMed DOI

Askari E., Naghib S.M., Seyfoori A., Maleki A., Rahmanian M. Ultrasonic-Assisted Synthesis and In Vitro Biological Assessments of a Novel Herceptin-Stabilized Graphene using Three Dimensional Cell Spheroid. Ultrason. Sonochem. 2019;58:104615. doi: 10.1016/j.ultsonch.2019.104615. PubMed DOI

Kalantari E., Naghib S.M. A Comparative Study on Biological Properties of Novel Nanostructured Monticellite-Based Composites with Hydroxyapatite Bioceramic. Mater. Sci. Eng. C. 2019;98:1087–1096. doi: 10.1016/j.msec.2018.12.140. PubMed DOI

Komathi S., Gopalan A., Muthuchamy N., Lee K. Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Adv. 2017;7:15342–15351. doi: 10.1039/C6RA24760A. DOI

Muthuchamy N., Gopalan A., Lee K.-P. Highly selective non-enzymatic electrochemical sensor based on a titanium dioxide nanowire–poly (3-aminophenyl boronic acid)–gold nanoparticle ternary nanocomposite. RSC Adv. 2018;8:2138–2147. doi: 10.1039/C7RA09097H. PubMed DOI PMC

Muthuchamy N., Lee K., Gopalan A. Enhanced photoelectrochemical biosensing performances for graphene (2D)–Titanium dioxide nanowire (1D) heterojunction polymer conductive nanosponges. Biosens. Bioelectron. 2017;89:390–399. doi: 10.1016/j.bios.2016.06.005. PubMed DOI

Itoi H., Hayashi S., Matsufusa H., Ohzawa Y. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors. Chem. Commun. 2017;53:3201–3204. doi: 10.1039/C6CC08822H. PubMed DOI

Li G.R., Feng Z.P., Zhong J.H., Wang Z.L., Tong Y.X. Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules. 2010;43:2178–2183. doi: 10.1021/ma902317k. DOI

Simotwo S.K., DelRe C., Kalra V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline−Carbon Nanotube Nanofibers. CS Appl. Mater. Interfaces. 2016;8:21261–21269. doi: 10.1021/acsami.6b03463. PubMed DOI

Lakhdari D., Guittoum A., Benbrahim N., Belgherbi O., Berkani M., Vasseghian Y., Lakhdari N. A nvel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem. Toxicol. 2021;151:112099. doi: 10.1016/j.fct.2021.112099. PubMed DOI

Wang Q., Li J., Wang D., Niu J., Du P., Liu J., Liu P. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte. Electrochim. Acta. 2020;349:136348. doi: 10.1016/j.electacta.2020.136348. DOI

Iqbal M.Z., Faisal M.M., Ali S.R., Farid S., Afzal A.M. Co-MOF/polyanilinebased electrode material for high performance asymmetric supercapacitor devices. Electrochim. Acta. 2020;346:136039. doi: 10.1016/j.electacta.2020.136039. DOI

Zhou Q., Yang Y., Xiao J., Fan H. Fabrication and characterisation of magnetic graphene oxide Incorporated Fe3O4 @polyaniline for the removal of Bisphenol A, t-octyl-phenol and α-naphthol from water. Sci. Rep. 2017;7:11316. doi: 10.1038/s41598-017-11831-8. PubMed DOI PMC

Ramachandran A., Prasankumar T., Sivaprakash S., Wiston B.R., Biradar S., Jose S. Removol of elevated level of chromium in Groundwater by the fabricated PANI/Fe3O4 nanocomposites. Environ. Sci. Pollut. Res. Int. 2017;24:7490–7498. doi: 10.1007/s11356-017-8465-z. PubMed DOI

Pal R., Goyal S.L., Rawal I., Sharma S. Efcient room temperature methanol sensors based on polyaniline/ graphene micro/nanocomposites. Iran. Polym. J. 2020;29:591–603. doi: 10.1007/s13726-020-00822-8. DOI

Sriramprabha R., Sekar M., Revathi R., Viswanathan C., Wilson J. Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Anal. Chim. Acta. 2020;1137:103–114. doi: 10.1016/j.aca.2020.09.004. PubMed DOI

Tomšík E., Dallas P., Šeděnková I., Svoboda J., Hrubý M. Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications. RSC Adv. 2021;11:18852–18859. doi: 10.1039/D1RA02325J. PubMed DOI PMC

Chen S., Song N., Mu M., Wang C., Lu X.F. Sacrificial template synthesis of ultrathin polyaniline nanosheets and their application in highly sensitive electrochemical dopamine detection. Mater. Today Chem. 2021;20:100479. doi: 10.1016/j.mtchem.2021.100479. DOI

Mashhadizadeh M.H., Shoaei I.S., Monadi N. A novel ion selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II) Talanta. 2004;64:1048–1052. doi: 10.1016/j.talanta.2004.05.005. PubMed DOI

Gholivand M.B., Raheedayat F. Chromium(III) Ion Selective Electrode Based on Oxalic AcidBis(Cyclohexylidene Hydrazide. Electroanalysis. 2004;16:1330–1335. doi: 10.1002/elan.200302956. DOI

Gholivand M.B., Sharif F. Chromium(III) ion selective electrode based on glyoxal bis(2-hydroxyanil) Talanta. 2003;60:707–713. doi: 10.1016/S0039-9140(03)00130-9. PubMed DOI

Srivastava S.K., Gupta A.V.K., Jain S. PVC-Based 2,2,2-Cryptand Sensor for Zinc Ions. Anal. Chem. 1996;68:1272–1275. doi: 10.1021/ac9507000. PubMed DOI

Zamani H.A., Imani A., Arvinfar A., Rahimi F., Ganjali M.R., Faridbod F., Meghdadi S. Neodymium(III)–PVC membrane sensor based on a new four dentate ionophore. Mater. Sci. Eng. C. 2011;31:588–592. doi: 10.1016/j.msec.2010.11.016. DOI

Zamani H.A., Faridbod F., Ganjali M.R. Dysprosium selective potentiometric membrane sensor. Mater. Sci. Eng. C. 2013;33:608–612. doi: 10.1016/j.msec.2012.10.004. PubMed DOI

Shamsipur M., Mizani F., Saboury A.A., Sharghi H., Khalifeh R. Highly Selective and Sensitive Membrane Sensors for Copper(II)Ion Based on a New Benzo-Substituted Macrocyclic Diamide 6,7,8,9,10-Hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopenta-decine-3,11(4H,12H)-dione. Electroanalysis. 2007;19:587–596. doi: 10.1002/elan.200603768. DOI

Abdallah N.A. Novel Potentiometric Solid-contact Electrode for the Determination of Fe2+ Ions via MWCNTs-Gemifloxacin Composite. Electroanalysis. 2021;33:1283–1289. doi: 10.1002/elan.202060319. DOI

Ali T.A., Farag A.A., Mohamed G.G. Potentiometric determination of iron in polluted water samples using new modified Fe(III)-screen printed ion selective electrode. J. Ind. Eng. Chem. 2014;20:2394–2400. doi: 10.1016/j.jiec.2013.10.019. DOI

Mizani F., Ganjali M.R., Faridbod F., Esmaeilnia S. A Novel Iron(III) Selective Potentiometric Sensor Based on 9- Ethylacenaphtho [1, 2-B] Quinoxaline. Int. J. Electrochem. Sci. 2013;8:10473–10486.

Lorson T., Lubtow M.M., Wegener E., Haider M.S., Borova S., Nahm D., Jordan R., Sokolski-Papkov M., Kabanov A.V., Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI

Trachsel L., Zenobi-Wong M., Benetti E.M. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater. Sci. 2021;9:2874–2886. doi: 10.1039/D0BM02217A. PubMed DOI

Adams N., Schubert S.U. Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Deliv. Rev. 2007;59:1504–1520. doi: 10.1016/j.addr.2007.08.018. PubMed DOI

Pelegri-O’Day E.M., Lin E.W., Maynard H.D. Therapeutic protein-polymer conjugates: Advancing beyond PEGylation. J. Am. Chem. Soc. 2014;136:14323–14332. doi: 10.1021/ja504390x. PubMed DOI

Urbánek T., Ivanko I., Svoboda J., Tomšík E., Hrubý M. Selective potentiometric detection of reactive oxygen species (ROS) in biologically relevant concentrations by a modified metalized polyporphyrine sensing layer coated with nonbiofouling poly(2-alkyl-2oxazoline)s. Sens. Actuators B Chem. 2022;363:131827. doi: 10.1016/j.snb.2022.131827. DOI

Hruby M., Martinez I.V.S., Stephan H., Pouckova P., Benes J., Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymer. 2021;13:3969. doi: 10.3390/polym13223969. PubMed DOI PMC

Jirak D., Svoboda J., Filipova M., Pop-Georgievski O., Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Comm. 2021;57:4718–4723. doi: 10.1039/D1CC00642H. PubMed DOI

Pop-Georgievski O., Štěpán P., Houska M., Chvostoá D., Proks V., Rypáček F. Poly(ethylene oxide) Layers Grafted to Dopamine-melanin Anchoring Layer: Stability and Resistance to Protein Adsorption. Biomacromolecules. 2011;12:3232–3242. doi: 10.1021/bm2007086. PubMed DOI

Al-Attar H.A., Al-Alawina Q.H., Monkman A.P. Spectroscopic ellipsometry of electrochemically prepared thin filmpolyaniline. Thin Solid Film. 2003;429:286–294. doi: 10.1016/S0040-6090(03)00279-7. DOI

Tomsik E., Kohut O., Ivanko I., Pikarek M., Bieloshapka I., Dallas P. Assembly and Interaction of Polyaniline Chains: Impact on Electro- and Physical–Chemical Behavior. J. Phys. Chem. C. 2018;122:8022–8030. doi: 10.1021/acs.jpcc.8b01948. DOI

Trung T., Trung T.H., Ha C.S. Preparation and cyclic voltammetry studies on nickel-nanoclusters containing polyaniline composites having layer-by-layer structures. Electrochim. Acta. 2005;51:984–990. doi: 10.1016/j.electacta.2005.04.074. DOI

Masuoka J., Saltman P. Zinc (II) and Copper (II) Binding to Serum Albumin. J. Biol. Chem. 1994;269:25557–25561. doi: 10.1016/S0021-9258(18)47285-7. PubMed DOI

Ueno H.M., Urazono H., Kobayashi T. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem. 2014;145:90–94. doi: 10.1016/j.foodchem.2013.07.143. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...