Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35478627
PubMed Central
PMC9033481
DOI
10.1039/d1ra02325j
PII: d1ra02325j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Highly hydrophobic perfluorinated polyaniline thin films with water contact angle of ∼140° and low internal resistance properties are prepared through electrochemical polymerization. UV-visible spectroscopy demonstrates a gradual evolution of the polaron band which indicates the electronic conductive properties of the polymers. Simultaneous possession of the water-repelling property and electron conductivity for superhydrophobic perfluorinated polyaniline leads to a unique polymer that is suitable as a solid contact in ion-selective electrodes for in situ monitoring of pH changes during early stages of inflammation and septic shock. The superhydrophobic properties should suppress interactions with interfering salts and proteins, and the sensitivity towards protons could be monitored by measuring the phase boundary potential, which depends on the H+ concentration. The potentiometric measurements demonstrate a fast response with a slope of 44.4 ± 0.2 mV per unit pH. The presence of interfering ions and/or human serum albumin does not have any significant effect on the performance of the perfluorinated film. Moreover, it is demonstrated that the response of the perfluorinated film is reversible within the biomedically relevant pH range from 4.0 to 8.5, and stable over time.
Zobrazit více v PubMed
Huang J. Virji S. Kaner R. B. Weiller B. H. Chem. - Eur. J. 2004;10:1314. doi: 10.1002/chem.200305211. PubMed DOI
Zhou X. Ma P. Wang A. Yu C. Qian T. Wu W. Shen J. Biosens. Bioelectron. 2015;64:404. doi: 10.1016/j.bios.2014.09.038. PubMed DOI
Nuraje N. Su K. Yang N. L. Matsui H. ACS Nano. 2008;2(3):502. doi: 10.1021/nn7001536. PubMed DOI PMC
He N. Papp S. Lindfors T. Hofler L. Latonen R.-M. Gyurcsanyi R. E. Anal. Chem. 2017;89:2598. doi: 10.1021/acs.analchem.6b04885. PubMed DOI
Xu L. B. Chen W. Mulchandani A. Yan Y. S. Angew. Chem., Int. Ed. 2005;44:6009. doi: 10.1002/anie.200500868. PubMed DOI
Guzinski M. Jarvis J. M. D’Orazio P. Izadyar A. Pendley B. D. Lindner E. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate “Water Layer” Test. Anal. Chem. 2017;89:8468. doi: 10.1021/acs.analchem.7b02009. PubMed DOI
Jarvis J. M. Guzinski M. Pendley B. D. Lindner E. J. Solid State Electrochem. 2016;20:3033. doi: 10.1007/s10008-016-3340-2. DOI
Dallas P. Rasovic I. Porfyrakis K. J. Phys. Chem. B. 2016;120(13):3441. doi: 10.1021/acs.jpcb.6b00739. PubMed DOI
Dallas P. Rasovic I. Puchtler T. Taylor R. A. Porfyrakis K. Chem. Commun. 2017;53:2602. doi: 10.1039/C7CC00471K. PubMed DOI
Uen T. Tsuchiy H. Mizogami M. Takakura K. J. Inflammation Res. 2008;I:41. PubMed PMC
Woo Y. C. Park S. S. Subieta A. R. Brennan T. J. Anesthesiology. 2004;101:468. doi: 10.1097/00000542-200408000-00029. PubMed DOI
Goldie I. Nachemson A. Acta Orthop. Scand. 1970;41:354. doi: 10.3109/17453677008991521. PubMed DOI
White H. D., Vazquez-Sandoval A., Quiroga P. F., Song J., Jones S. F. and Arroliga A. C., Utility of venous blood gases in severe sepsis and septic shock, Baylor University Medical Center Proceedings, 2018, vol. 31, pp. 269–275 PubMed PMC
Krapf R., Seldin D. W. and Alpern R. J., Clinical Syndromes of Metabolic Acidosis, The Kidney, 5th edn, 2013
Maciel A. T. Noritomi D. T. Park M. Endocr., Metab. Immune Disord.: Drug Targets. 2010;10:1. doi: 10.2174/187153010790827993. PubMed DOI
Khan L. B. Read H. M. Ritchie S. R. Proft T. J. Microbiol. Biol. Educ. 2017;18(2):18. PubMed PMC
Tomšík E. Kohut O. Ivanko I. Pekárek M. Bieloshapka I. Dallas P. J. Phys. Chem. C. 2018;122:8022. doi: 10.1021/acs.jpcc.8b01948. DOI
Focke W. W. Wnek G. E. Wei Y. J. Phys. Chem. 1987;91:5813. doi: 10.1021/j100306a059. DOI
Macdiarmid A. G. Chiang J.-C. Halpern M. Huang W.-S. Mu S.-L. Somasiri N. L. D. Wu W. Yaninger S. I. Mol. Cryst. Liq. Cryst. 1985;121:173. doi: 10.1080/00268948508074857. DOI
Gospodinova N. Tomšík E. Omelchenko O. J. Phys. Chem. B. 2014;118:8901. doi: 10.1021/jp505150j. PubMed DOI
Cihaner A. Önal A. M. Polym. Int. 2002;51:680. doi: 10.1002/pi.956. DOI
Saidani N. Morallon E. Huerta F. Besbes-Hentati S. Montilla F. Electrochim. Acta. 2020;348:136329. doi: 10.1016/j.electacta.2020.136329. DOI
Cihaner A. Onal A. M. Eur. Polym. J. 2001;37:1767. doi: 10.1016/S0014-3057(01)00062-3. DOI
Cao Y. Dev Sayala K. Gamage P. L. Kumar R. Tsarevsky N. V. Macromolecules. 2020;53(18):8020. doi: 10.1021/acs.macromol.0c00617. DOI
Tomsik E. Ivanko I. Kohut O. Hromadkova J. ChemElectroChem. 2017;4:2884. doi: 10.1002/celc.201700793. DOI
Gupta V. Miura N. Electrochim. Acta. 2006;52:1721. doi: 10.1016/j.electacta.2006.01.074. DOI
Wang X. Deng J. Duan X. Liu D. Guo J. Liu P. J. Mater. Chem. A. 2014;2:12323. doi: 10.1039/C4TA02231A. DOI
Wang Y.-G. Li H.-Q. Xia Y.-Y. Adv. Mater. 2006;18:2619. doi: 10.1002/adma.200600445. DOI
Jabeen N. Xia Q. Yang M. Xia H. ACS Appl. Mater. Interfaces. 2016;8:6093. doi: 10.1021/acsami.6b00207. PubMed DOI
Horng Y.-Y. Lu Y.-C. Hsu Y.-K. Chen C. C. Chen L.-C. Chen K.-H. J. Power Sources. 2010;195:4418. doi: 10.1016/j.jpowsour.2010.01.046. DOI
Conway B. E. Pell W. G. J. Power Sources. 2002;105:169. doi: 10.1016/S0378-7753(01)00936-3. DOI
Lung G. Inzelt G. Electrochim. Acta. 1991:847. doi: 10.1016/0013-4686(91)85284-E. DOI
Rahimi R. Ochoa M. Tamayol A. Khalili S. Khademhosseini A. Ziaie B. ACS Appl. Mater. Interfaces. 2017;9:9015. doi: 10.1021/acsami.6b16228. PubMed DOI
Mello H. J. N. P. D. Mulato M. Thin Solid Films. 2018;656:14. doi: 10.1016/j.tsf.2018.04.022. DOI
Song R. Xiong Q. Wu T. Ning X. Zhang F. Want Q. He P. Anal. Bioanal. Chem. 2020;412:3737. doi: 10.1007/s00216-020-02625-5. PubMed DOI
Li Y. Li N. Ge J. Xue Y. Niu W. Chen M. Du Y. Ma P. X. Lei B. Biomaterials. 2019;201:68. doi: 10.1016/j.biomaterials.2019.02.013. PubMed DOI