Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Grant No. 081UK-4/2021
KEGA grant agency of the Ministry of Education, Science, Re-search, and Sport of the Slovak Republic
PubMed
35885796
PubMed Central
PMC9320442
DOI
10.3390/healthcare10071269
PII: healthcare10071269
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, deep learning, dentistry, endodontics, evidence-based practice, forensic odontology, maxillofacial surgery, orthodontics, periodontics, prosthodontics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This literature research had two main objectives. The first objective was to quantify how frequently artificial intelligence (AI) was utilized in dental literature from 2011 until 2021. The second objective was to distinguish the focus of such publications; in particular, dental field and topic. The main inclusion criterium was an original article or review in English focused on dental utilization of AI. All other types of publications or non-dental or non-AI-focused were excluded. The information sources were Web of Science, PubMed, Scopus, and Google Scholar, queried on 19 April 2022. The search string was "artificial intelligence" AND (dental OR dentistry OR tooth OR teeth OR dentofacial OR maxillofacial OR orofacial OR orthodontics OR endodontics OR periodontics OR prosthodontics). Following the removal of duplicates, all remaining publications were returned by searches and were screened by three independent operators to minimize the risk of bias. The analysis of 2011-2021 publications identified 4413 records, from which 1497 were finally selected and calculated according to the year of publication. The results confirmed a historically unprecedented boom in AI dental publications, with an average increase of 21.6% per year over the last decade and a 34.9% increase per year over the last 5 years. In the achievement of the second objective, qualitative assessment of dental AI publications since 2021 identified 1717 records, with 497 papers finally selected. The results of this assessment indicated the relative proportions of focal topics, as follows: radiology 26.36%, orthodontics 18.31%, general scope 17.10%, restorative 12.09%, surgery 11.87% and education 5.63%. The review confirms that the current use of artificial intelligence in dentistry is concentrated mainly around the evaluation of digital diagnostic methods, especially radiology; however, its implementation is expected to gradually penetrate all parts of the profession.
Zobrazit více v PubMed
Obermeyer Z., Emanuel E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016;375:1216. doi: 10.1056/NEJMp1606181. PubMed DOI PMC
Gharavi S.M.H., Faghihimehr A. Clinical Application of Artificial Intelligence in PET Imaging of Head and Neck Cancer. PET Clin. 2022;17:65–76. doi: 10.1016/j.cpet.2021.09.004. PubMed DOI
Patil S., Albogami S., Hosmani J., Mujoo S., Kamil M.A., Mansour M.A., Abdul H.N., Bhandi S., Ahmed S.S.S.J. Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls. Diagnostics. 2022;12:1029. doi: 10.3390/diagnostics12051029. PubMed DOI PMC
Rasteau S., Ernenwein D., Savoldelli C., Bouletreau P. Artificial Intelligence for Oral and Maxillo-Facial Surgery: A Narrative Review. J. Stomatol. Oral Maxillofac. Surg. 2022;123:276–282. doi: 10.1016/j.jormas.2022.01.010. PubMed DOI
Monterubbianesi R., Tosco V., Vitiello F., Orilisi G., Fraccastoro F., Putignano A., Orsini G. Augmented, Virtual and Mixed Reality in Dentistry: A Narrative Review on the Existing Platforms and Future Challenges. Appl. Sci. 2022;12:877. doi: 10.3390/app12020877. DOI
Oshida Y. Artificial Intelligence for Medicine. Artif. Intell. Med. 2021 doi: 10.1515/9783110717853/HTML. DOI
Carrillo-Perez F., Pecho O.E., Morales J.C., Paravina R.D., della Bona A., Ghinea R., Pulgar R., del Mar Pérez M., Herrera L.J. Applications of Artificial Intelligence in Dentistry: A Comprehensive Review. J. Esthet. Restor. Dent. 2022;34:259–280. doi: 10.1111/jerd.12844. PubMed DOI
Pethani F. Promises and Perils of Artificial Intelligence in Dentistry. Aust. Dent. J. 2021;66:124–135. doi: 10.1111/adj.12812. PubMed DOI
Nguyen T.T. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J. Can. Dent. Assoc. 2021 PubMed
Thurzo A., Jančovičová V., Hain M., Thurzo M., Novák B., Kosnáčová H., Lehotská V., Moravanský N., Varga I. Human Remains Identification Using Micro-CT, Spectroscopic and A.I. Methods in Forensic Experimental Reconstruction of Dental Patterns After Concentrated Acid Significant Impact. Molecules. 2022;27:4035. doi: 10.3390/molecules27134035. PubMed DOI PMC
Thurzo A., Kosnáčová H.S., Kurilová V., Kosmeľ S., Beňuš R., Moravanský N., Kováč P., Kuracinová K.M., Palkovič M., Varga I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare. 2021;9:1545. doi: 10.3390/healthcare9111545. PubMed DOI PMC
Obermeyer Z., Powers B., Vogeli C., Mullainathan S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science (1979) 2019;366:447–453. doi: 10.1126/science.aax2342. PubMed DOI
Zhang Y., Weng Y., Lund J., Faust O., Su L., Acharya R. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics. 2022;12:237. doi: 10.3390/diagnostics12020237. PubMed DOI PMC
Kavya R., Christopher J., Panda S., Lazarus Y.B. Machine Learning and XAI Approaches for Allergy Diagnosis. Biomed. Signal Process. Control. 2021;69:102681. doi: 10.1016/j.bspc.2021.102681. DOI
Barredo Arrieta A., Díaz-Rodríguez N., del Ser J., Bennetot A., Tabik S., Barbado A., Garcia S., Gil-Lopez S., Molina D., Benjamins R., et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion. 2020;58:82–115. doi: 10.1016/j.inffus.2019.12.012. DOI
Wolf T.G., Campus G. Changing Dental Profession—Modern Forms and Challenges in Dental Practice. Int. J. Environ. Res. Public Health. 2021;18:1945. doi: 10.3390/ijerph18041945. PubMed DOI PMC
Neville P., van der Zande M. Dentistry, e-Health and Digitalisation: A Critical Narrative Review of the Dental Literature on Digital Technologies with Insights from Health and Technology Studies. Community Dent. Health. 2020;37:51–58. doi: 10.1922/CDH_4664NEVILLE08. PubMed DOI
Tele-Orthodontics and the Future of Dental Digitalization|Dentistry IQ. [(accessed on 1 November 2021)]. Available online: https://www.dentistryiq.com/practice-management/practice-management-software/article/14035741/teleorthodontics-and-the-future-of-dental-digitalization.
Putra R.H., Doi C., Yoda N., Astuti E.R., Sasaki K. Current Applications and Development of Artificial Intelligence for Digital Dental Radiography. Dentomaxillofac. Radiol. 2022;51:51. doi: 10.1259/dmfr.20210197. PubMed DOI PMC
Alauddin M.S., Baharuddin A.S., Ghazali M.I.M. The Modern and Digital Transformation of Oral Health Care: A Mini Review. Healthcare. 2021;9:118. doi: 10.3390/healthcare9020118. PubMed DOI PMC
Joda T., Bornstein M.M., Jung R.E., Ferrari M., Waltimo T., Zitzmann N.U. Recent Trends and Future Direction of Dental Research in the Digital Era. Int. J. Environ. Res. Public Health. 2020;17:1987. doi: 10.3390/ijerph17061987. PubMed DOI PMC
Revilla-León M., Gómez-Polo M., Barmak A.B., Inam W., Kan J.Y.K., Kois J.C., Akal O. Artificial Intelligence Models for Diagnosing Gingivitis and Periodontal Disease: A Systematic Review. J. Prosthet. Dent. 2022 doi: 10.1016/j.prosdent.2022.01.026. PubMed DOI
Baniulyte G., Ali K. Artificial Intelligence—Can It Be Used to Outsmart Oral Cancer? Evid. Based Dent. 2022;23:12–13. doi: 10.1038/s41432-022-0238-y. PubMed DOI
Heo M.S., Kim J.E., Hwang J.J., Han S.S., Kim J.S., Yi W.J., Park I.W. Dmfr 50th Anniversary: Review Article Artificial Intelligence in Oral and Maxillofacial Radiology: What Is Currently Possible? Dentomaxillofac. Radiol. 2020;50:50. doi: 10.1259/DMFR.20200375/ASSET/IMAGES/LARGE/DMFR.20200375.G009.JPEG. PubMed DOI PMC
Schwendicke F., Samek W., Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020;99:769–774. doi: 10.1177/0022034520915714. PubMed DOI PMC
Ferro A.S., Nicholson K., Koka S. Innovative Trends in Implant Dentistry Training and Education: A Narrative Review. J. Clin. Med. 2019;8:1618. doi: 10.3390/jcm8101618. PubMed DOI PMC
Prados-Privado M., Villalón J.G., Martínez-Martínez C.H., Ivorra C. Dental Images Recognition Technology and Applications: A Literature Review. Appl. Sci. 2020;10:2856. doi: 10.3390/app10082856. DOI
Hung M., Hon E.S., Ruiz-Negron B., Lauren E., Moffat R., Su W., Xu J., Park J., Prince D., Cheever J., et al. Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning. Int. J. Environ. Res. Public Health. 2020;17:7286. doi: 10.3390/ijerph17197286. PubMed DOI PMC
Prados-Privado M., Villalón J.G., Martínez-Martínez C.H., Ivorra C., Prados-Frutos J.C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. J. Clin. Med. 2020;9:3579. doi: 10.3390/jcm9113579. PubMed DOI PMC
Müller A., Mertens S.M., Göstemeyer G., Krois J., Schwendicke F. Barriers and Enablers for Artificial Intelligence in Dental Diagnostics: A Qualitative Study. J. Clin. Med. 2021;10:1612. doi: 10.3390/jcm10081612. PubMed DOI PMC
Moran M., Faria M., Giraldi G., Bastos L., Oliveira L., Conci A. Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks. Sensors. 2021;21:5192. doi: 10.3390/s21155192. PubMed DOI PMC
Hassani H., Andi P.A., Ghodsi A., Norouzi K., Komendantova N., Unger S. Shaping the Future of Smart Dentistry: From Artificial Intelligence (AI) to Intelligence Augmentation (IA) IoT. 2021;2:510–523. doi: 10.3390/iot2030026. DOI
Roongruangsilp P., Khongkhunthian P. The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study. Appl. Sci. 2021;11:10159. doi: 10.3390/app112110159. DOI
Gajic M., Vojinovic J., Kalevski K., Pavlovic M., Kolak V., Vukovic B., Mladenovic R., Aleksic E. Analysis of the Impact of Oral Health on Adolescent Quality of Life Using Standard Statistical Methods and Artificial Intelligence Algorithms. Children. 2021;8:1156. doi: 10.3390/children8121156. PubMed DOI PMC
Zaborowicz M., Zaborowicz K., Biedziak B., Garbowski T. Deep Learning Neural Modelling as a Precise Method in the Assessment of the Chronological Age of Children and Adolescents Using Tooth and Bone Parameters. Sensors. 2022;22:637. doi: 10.3390/s22020637. PubMed DOI PMC
Zadrożny Ł., Regulski P., Brus-Sawczuk K., Czajkowska M., Parkanyi L., Ganz S., Mijiritsky E. Artificial Intelligence Application in Assessment of Panoramic Radiographs. Diagnostics. 2022;12:224. doi: 10.3390/diagnostics12010224. PubMed DOI PMC
De Angelis F., Pranno N., Franchina A., di Carlo S., Brauner E., Ferri A., Pellegrino G., Grecchi E., Goker F., Stefanelli L.V. Artificial Intelligence: A New Diagnostic Software in Dentistry: A Preliminary Performance Diagnostic Study. Int. J. Environ. Res. Public Health. 2022;19:1728. doi: 10.3390/ijerph19031728. PubMed DOI PMC
Mudrak J. Artificial Intelligence and Deep Learning in Dental Radiology. [(accessed on 28 December 2021)]. Available online: https://www.oralhealthgroup.com/features/artificial-intelligence-and-deep-learning-in-dental-radiology-a-way-forward-in-point-of-care-radiology/
Ezhov M., Gusarev M., Golitsyna M., Yates J.M., Kushnerev E., Tamimi D., Aksoy S., Shumilov E., Sanders A., Orhan K. Clinically Applicable Artificial Intelligence System for Dental Diagnosis with CBCT. Sci. Rep. 2021;11:15006. doi: 10.1038/s41598-021-94093-9. PubMed DOI PMC
Van Rijn R.R., de Luca A. Three Reasons Why Artificial Intelligence Might Be the Radiologist’s Best Friend. Radiology. 2020;296:159–160. doi: 10.1148/radiol.2020200855. PubMed DOI
Bose S., Sur J., Khan F., Tuzoff D. The Scope of Artificial Intelligence in Oral Radiology- A Review. Int. J. Med. Health Sci. 2020;9:67–72.
Orhan K., Bayrakdar I.S., Ezhov M., Kravtsov A., Özyürek T. Evaluation of Artificial Intelligence for Detecting Periapical Pathosis on Cone-Beam Computed Tomography Scans. Int. Endod. J. 2020;53:680–689. doi: 10.1111/iej.13265. PubMed DOI
Makaremi M., Lacaule C., Mohammad-Djafari A. Deep Learning and Artificial Intelligence for the Determination of the Cervical Vertebra Maturation Degree from Lateral Radiography. Entropy. 2019;21:1222. doi: 10.3390/e21121222. DOI
Tanikawa C., Yamashiro T. Development of Novel Artificial Intelligence Systems to Predict Facial Morphology after Orthognathic Surgery and Orthodontic Treatment in Japanese Patients. Sci. Rep. 2021;11:15853. doi: 10.1038/s41598-021-95002-w. PubMed DOI PMC
Zhang C., Chen Z., Liu J., Wu M., Yang J., Zhu Y., Lu W.W., Ruan C. 3D-Printed Pre-Tapped-Hole Scaffolds Facilitate One-Step Surgery of Predictable Alveolar Bone Augmentation and Simultaneous Dental Implantation. Compos. Part B Eng. 2021;229:109461. doi: 10.1016/j.compositesb.2021.109461. DOI
Bayrakdar S.K., Orhan K., Bayrakdar I.S., Bilgir E., Ezhov M., Gusarev M., Shumilov E. A Deep Learning Approach for Dental Implant Planning in Cone-Beam Computed Tomography Images. BMC Med. Imaging. 2021;21:1–9. doi: 10.1186/S12880-021-00618-Z/TABLES/3. PubMed DOI PMC
Mashouri P., Skreta M., Phillips J., McAllister D., Roy M., Senkaiahliyan S., Brudno M., Singh D. 3D Photography Based Neural Network Craniosynostosis Triaging System. Proc. Mach. Learn. Res. 2020;136:226–237.
Ajmera D.H., Singh P., Leung Y.Y., Gu M. Three-Dimensional Evaluation of Soft-Tissue Response to Osseous Movement after Orthognathic Surgery in Patients with Facial Asymmetry: A Systematic Review. J. Craniomaxillofac. Surg. 2021;49:763–774. doi: 10.1016/j.jcms.2021.04.010. PubMed DOI
Thurzo A., Kurilová V., Varga I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-TeleHealth System. Healthcare. 2021;9:1695. doi: 10.3390/healthcare9121695. PubMed DOI PMC
Mucchi L., Jayousi S., Gant A., Paoletti E., Zoppi P. Tele-Monitoring System for Chronic Diseases Management: Requirements and Architecture. Int. J. Environ. Res. Public Health. 2021;18:7459. doi: 10.3390/ijerph18147459. PubMed DOI PMC
Kravitz N., Burris B., Butler D., Dabney C. Teledentistry, Do-It-Yourself Orthodontics, and Remote Treatment Monitoring. J. Clin. Orthod. 2016;50:718–726. PubMed
Morris R.S., Hoye L.N., Elnagar M.H., Atsawasuwan P., Galang-Boquiren M.T., Caplin J., Viana G.C., Obrez A., Kusnoto B. Accuracy of Dental Monitoring 3D Digital Dental Models Using Photograph and Video Mode. Am. J. Orthod. Dentofac. Orthop. 2019;156:420–428. doi: 10.1016/j.ajodo.2019.02.014. PubMed DOI
Park J.H., Rogowski L., Kim J.H., al Shami S., Howell S.E.I. Teledentistry Platforms for Orthodontics. J. Clin. Pediatr. Dent. 2021;45:48–53. doi: 10.17796/1053-4625-45.1.9. PubMed DOI
Mandall N., O’Brien K., Brady J., Worthington H., Harvey L. Teledentistry for Screening New Patient Orthodontic Referrals. Part 1: A Randomised Controlled Trial. Br. Dent. J. 2005;199:659–662. doi: 10.1038/sj.bdj.4812930. PubMed DOI
Turchetta B., Fishman L., Subtelny J. Facial Growth Prediction: A Comparison of Methodologies. Am. J. Orthod. Dentofac. Orthop. 2007;132:439–449. doi: 10.1016/j.ajodo.2005.10.026. PubMed DOI
Cao K., Choi K., Jung H., Duan L. Deep Learning for Facial Beauty Prediction. Information. 2020;11:391. doi: 10.3390/info11080391. DOI
Sajedi H., Pardakhti N. Age Prediction Based on Brain MRI Image: A Survey. J. Med. Syst. 2019;43:279. doi: 10.1007/s10916-019-1401-7. PubMed DOI
Iyer T.J., Rahul K., Nersisson R., Zhuang Z., Joseph Raj A.N., Refayee I. Machine Learning-Based Facial Beauty Prediction and Analysis of Frontal Facial Images Using Facial Landmarks and Traditional Image Descriptors. Comput. Intell. Neurosci. 2021;2021:4423407. doi: 10.1155/2021/4423407. PubMed DOI PMC
Artificial Intelligence in Orthodontics: Prediction and Planning|International Journal of Advances in Scientific Research. [(accessed on 7 April 2022)]. Available online: https://ssjournals.com/index.php/ijasr/article/view/5672.
Kishimoto T., Goto T., Matsuda T., Iwawaki Y., Ichikawa T. Application of Artificial Intelligence in the Dental Field: A Literature Review. J. Prosthodont. Res. 2022;66:19–28. doi: 10.2186/jpr.JPR_D_20_00139. PubMed DOI
Shan T., Tay F.R., Gu L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2021;100:232–244. doi: 10.1177/0022034520969115. PubMed DOI
Nissan J., Kosan E., Krois J., Wingenfeld K., Deuter C.E., Gaudin R., Schwendicke F. Patients’ Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. J. Clin. Med. 2022;11:2143. doi: 10.3390/JCM11082143. PubMed DOI PMC
Kim S.-H., Kim K.B., Choo H. New Frontier in Advanced Dentistry: CBCT, Intraoral Scanner, Sensors, and Artificial Intelligence in Dentistry. Sensors. 2022;22:2942. doi: 10.3390/s22082942. PubMed DOI PMC
Ossowska A., Kusiak A., Świetlik D. Artificial Intelligence in Dentistry—Narrative Review. Int. J. Environ. Res. Public Health. 2022;19:3449. doi: 10.3390/ijerph19063449. PubMed DOI PMC
Ibrahim H., Liu X., Rivera S.C., Moher D., Chan A.W., Sydes M.R., Calvert M.J., Denniston A.K. Reporting Guidelines for Clinical Trials of Artificial Intelligence Interventions: The SPIRIT-AI and CONSORT-AI Guidelines. Trials. 2021;22:11. doi: 10.1186/s13063-020-04951-6. PubMed DOI PMC
Campbell J.P., Lee A.Y., Abràmoff M., Keane P.A., Ting D.S.W., Lum F., Chiang M.F. Reporting Guidelines for Artificial Intelligence in Medical Research. Ophthalmology. 2020;127:1596–1599. doi: 10.1016/j.ophtha.2020.09.009. PubMed DOI PMC
Ibrahim H., Liu X., Denniston A.K. Reporting Guidelines for Artificial Intelligence in Healthcare Research. Clin. Exp. Ophthalmol. 2021;49:470–476. doi: 10.1111/ceo.13943. PubMed DOI
Sounderajah V., Ashrafian H., Golub R.M., Shetty S., de Fauw J., Hooft L., Moons K., Collins G., Moher D., Bossuyt P.M., et al. Developing a Reporting Guideline for Artificial Intelligence-Centred Diagnostic Test Accuracy Studies: The STARD-AI Protocol. BMJ Open. 2021;11:e047709. doi: 10.1136/bmjopen-2020-047709. PubMed DOI PMC
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC
Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., Altman D.G., Booth A., et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ. 2015;349:7647. doi: 10.1136/bmj.g7647. PubMed DOI
Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., Estarli M., Barrera E.S.A., et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Rev. Esp. De Nutr. Hum. Y Diet. 2016;20:148–160. doi: 10.1186/2046-4053-4-1. DOI
Alonso-Coello P., Schünemann H.J., Moberg J., Brignardello-Petersen R., Akl E.A., Davoli M., Treweek S., Mustafa R.A., Rada G., Rosenbaum S., et al. GRADE Evidence to Decision (EtD) Frameworks: A Systematic and Transparent Approach to Making Well Informed Healthcare Choices. 1: Introduction. BMJ. 2016;353 doi: 10.1136/bmj.i2016. PubMed DOI
Harzing A.W. Publish or Perish. [(accessed on 9 April 2022)]. Available online: https://harzing.com/resources/publish-or-perish.
The A., Chaushu G., Wai Kan Yeung A. The Diagnostic Relevance and Interfaces Covered by Mach Band Effect in Dentistry: An Analysis of the Literature. Healthcare. 2022;10:632. doi: 10.3390/HEALTHCARE10040632. PubMed DOI PMC
Cantrell A., Booth A., Chambers D. A Systematic Review Case Study of Urgent and Emergency Care Configuration Found Citation Searching of Web of Science and Google Scholar of Similar Value. Health Info. Libr. J. 2022:1–16. doi: 10.1111/hir.12428. PubMed DOI
Lee J.H., Kim D.H., Jeong S.N., Choi S.H. Detection and Diagnosis of Dental Caries Using a Deep Learning-Based Convolutional Neural Network Algorithm. J. Dent. 2018;77:106–111. doi: 10.1016/j.jdent.2018.07.015. PubMed DOI
Lee J.H., Kim D.H., Jeong S.N., Choi S.H. Diagnosis and Prediction of Periodontally Compromised Teeth Using a Deep Learning-Based Convolutional Neural Network Algorithm. J. Periodontal Implant Sci. 2018;48:114–123. doi: 10.5051/jpis.2018.48.2.114. PubMed DOI PMC
Ekert T., Krois J., Meinhold L., Elhennawy K., Emara R., Golla T., Schwendicke F. Deep Learning for the Radiographic Detection of Apical Lesions. J. Endod. 2019;45:917–922.e5. doi: 10.1016/j.joen.2019.03.016. PubMed DOI
Schwendicke F., Golla T., Dreher M., Krois J. Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J. Dent. 2019;91:103226. doi: 10.1016/j.jdent.2019.103226. PubMed DOI
Hwang J.J., Jung Y.H., Cho B.H., Heo M.S. An Overview of Deep Learning in the Field of Dentistry. Imaging Sci. Dent. 2019;49:1–7. doi: 10.5624/isd.2019.49.1.1. PubMed DOI PMC
Fourcade A., Khonsari R.H. Deep Learning in Medical Image Analysis: A Third Eye for Doctors. J. Stomatol. Oral Maxillofac. Surg. 2019;120:279–288. doi: 10.1016/j.jormas.2019.06.002. PubMed DOI
Hiraiwa T., Ariji Y., Fukuda M., Kise Y., Nakata K., Katsumata A., Fujita H., Ariji E. A Deep-Learning Artificial Intelligence System for Assessment of Root Morphology of the Mandibular First Molar on Panoramic Radiography. Dentomaxillofac. Radiol. 2019;48:20180218. doi: 10.1259/dmfr.20180218. PubMed DOI PMC
Murata M., Ariji Y., Ohashi Y., Kawai T., Fukuda M., Funakoshi T., Kise Y., Nozawa M., Katsumata A., Fujita H., et al. Deep-Learning Classification Using Convolutional Neural Network for Evaluation of Maxillary Sinusitis on Panoramic Radiography. Oral Radiol. 2019;35:301–307. doi: 10.1007/s11282-018-0363-7. PubMed DOI
Almangush A., Mäkitie A.A., Triantafyllou A., de Bree R., Strojan P., Rinaldo A., Hernandez-Prera J.C., Suárez C., Kowalski L.P., Ferlito A., et al. Staging and Grading of Oral Squamous Cell Carcinoma: An Update. Oral Oncol. 2020;107:104799. doi: 10.1016/j.oraloncology.2020.104799. PubMed DOI
Faber J., Faber C., Faber P. Artificial Intelligence in Orthodontics. APOS Trends Orthod. 2019;9:201–205. doi: 10.25259/APOS_123_2019. DOI
Rousseau M., Retrouvey J.M. Machine Learning in Orthodontics: Automated Facial Analysis of Vertical Dimension for Increased Precision and Efficiency. Am. J. Orthod. Dentofac. Orthop. 2022;161:445–450. doi: 10.1016/j.ajodo.2021.03.017. PubMed DOI
Monill-González A., Rovira-Calatayud L., d’Oliveira N.G., Ustrell-Torrent J.M. Artificial Intelligence in Orthodontics: Where Are We Now? A Scoping Review. Orthod. Craniofacial Res. 2021;24:6–15. doi: 10.1111/ocr.12517. PubMed DOI
Thrall J.H., Li X., Li Q., Cruz C., Do S., Dreyer K., Brink J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018;15:504–508. doi: 10.1016/j.jacr.2017.12.026. PubMed DOI
Hirschfeld W.J., Moyers R.E., Ann D.D.S. Prediction of Craniofacial Growth: The State of the Art. Am. J. Orthod. 1971;60:435–444. doi: 10.1016/0002-9416(71)90112-6. PubMed DOI
Kaźmierczak S., Juszka Z., Vandevska-Radunovic V., Maal T.J.J., Fudalej P., Mańdziuk J. Prediction of the Facial Growth Direction Is Challenging. Springer; Cham, Switzerland: 2021. pp. 665–673.
Hansa I., Katyal V., Ferguson D.J., Vaid N. Outcomes of Clear Aligner Treatment with and without Dental Monitoring: A Retrospective Cohort Study. Am. J. Orthod. Dentofac. Orthop. 2021;159:453–459. doi: 10.1016/j.ajodo.2020.02.010. PubMed DOI
Caruso S., Caruso S., Pellegrino M., Skafi R., Nota A., Tecco S. A Knowledge-Based Algorithm for Automatic Monitoring of Orthodontic Treatment: The Dental Monitoring System. Two Cases. Sensors. 2021;21:1856. doi: 10.3390/s21051856. PubMed DOI PMC
Impellizzeri A., Horodinsky M., Barbato E., Polimeni A., Salah P., Galluccio G. Dental Monitoring Application: It Is a Valid Innovation in the Orthodontics Practice? Clin. Ter. 2020;171:260–267. doi: 10.7417/CT.2020.2224. PubMed DOI
Roisin L.-C., Brézulier D., Sorel O. Remotely-Controlled Orthodontics: Fundamentals and Description of the Dental Monitoring System. J. Dentofac. Anom. Orthod. 2016;19:408. doi: 10.1051/odfen/2016021. DOI
Hansa I., Semaan S.J., Vaid N.R. Clinical Outcomes and Patient Perspectives of Dental Monitoring® GoLive® with Invisalign®—a Retrospective Cohort Study. Prog. Orthod. 2020;21:16. doi: 10.1186/s40510-020-00316-6. PubMed DOI PMC
Saccomanno S., Quinzi V., Albani A., D’Andrea N., Marzo G., Macchiarelli G. Utility of Teleorthodontics in Orthodontic Emergencies during the COVID-19 Pandemic: A Systematic Review. Healthcare. 2022;10:1108. doi: 10.3390/healthcare10061108. PubMed DOI PMC
Thurzo A., Kočiš F., Novák B., Czako L., Varga I. Three-Dimensional Modeling and 3D Printing of Biocompatible Orthodontic Power-Arm Design with Clinical Application. Appl. Sci. 2021;11:9693. doi: 10.3390/app11209693. DOI
Thurzo A., Urbanová W., Novák B., Waczulíková I., Varga I. Utilization of a 3D Printed Orthodontic Distalizer for Tooth-Borne Hybrid Treatment in Class II Unilateral Malocclusions. Materials. 2022;15:1740. doi: 10.3390/ma15051740. PubMed DOI PMC
Fatima A., Shahid A.R., Raza B., Madni T.M., Janjua U.I. State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J. Digit. Imaging. 2020;33:1443–1464. doi: 10.1007/s10278-020-00367-5. PubMed DOI PMC
Herath B., Suresh S., Downing D., Cometta S., Tino R., Castro N.J., Leary M., Schmutz B., Wille M.-L., Hutmacher D.W. Mechanical and Geometrical Study of 3D Printed Voronoi Scaffold Design for Large Bone Defects. Mater. Des. 2021;212:110224. doi: 10.1016/j.matdes.2021.110224. DOI
Thurzo A., Urbanová W., Waczulíková I., Kurilová V., Mriňáková B., Kosnáčová H., Gális B., Varga I., Matajs M., Novák B. Dental Care and Education Facing Highly Transmissible SARS-CoV-2 Variants: Prospective Biosafety Setting: Prospective, Single-Arm, Single-Center Study. Int. J. Environ. Res. Public Health. 2022;19:7693. doi: 10.3390/ijerph19137693. PubMed DOI PMC
MacHoy M.E., Szyszka-Sommerfeld L., Vegh A., Gedrange T., Woźniak K. The Ways of Using Machine Learning in Dentistry. Adv. Clin. Exp. Med. 2020;29:375–384. doi: 10.17219/acem/115083. PubMed DOI
Choi J.W., Park H., In-Hwan Kim B.S., Kim N., Kwon S.-M., Lee J.Y. Surgery-First Orthognathic Approach to Correct Facial Asymmetry: Artificial Intelligence–Based Cephalometric Analysis. Plast. Reconstr. Surg. 2022;149:496e–499e. doi: 10.1097/PRS.0000000000008818. PubMed DOI
Joshi V.K. Dental Treatment Planning and Management for the Mouth Cancer Patient. Oral Oncol. 2010;46:475–479. doi: 10.1016/j.oraloncology.2010.03.010. PubMed DOI
Chang S.W., Abdul-Kareem S., Merican A.F., Zain R.B. Oral Cancer Prognosis Based on Clinicopathologic and Genomic Markers Using a Hybrid of Feature Selection and Machine Learning Methods. BMC Bioinform. 2013;14:170. doi: 10.1186/1471-2105-14-170. PubMed DOI PMC
Kumar V., Gu Y., Basu S., Berglund A., Eschrich S.A., Schabath M.B., Forster K., Aerts H.J.W.L., Dekker A., Fenstermacher D., et al. Radiomics: The Process and the Challenges. Magn. Reson. Imaging. 2012;30:1234–1248. doi: 10.1016/j.mri.2012.06.010. PubMed DOI PMC
Patcas R., Bernini D.A.J., Volokitin A., Agustsson E., Rothe R., Timofte R. Applying Artificial Intelligence to Assess the Impact of Orthognathic Treatment on Facial Attractiveness and Estimated Age. Int. J. Oral Maxillofac. Surg. 2019;48:77–83. doi: 10.1016/j.ijom.2018.07.010. PubMed DOI
Bouletreau P., Makaremi M., Ibrahim B., Louvrier A., Sigaux N. Artificial Intelligence: Applications in Orthognathic Surgery. J. Stomatol. Oral Maxillofac. Surg. 2019;120:347–354. doi: 10.1016/j.jormas.2019.06.001. PubMed DOI
Arık S., Ibragimov B., Xing L. Fully Automated Quantitative Cephalometry Using Convolutional Neural Networks. J. Med. Imaging. 2017;4:014501. doi: 10.1117/1.JMI.4.1.014501. PubMed DOI PMC
Kang S.H., Jeon K., Kim H.-J., Seo J.K., Lee S.-H. Automatic Three-Dimensional Cephalometric Annotation System Using Three-Dimensional Convolutional Neural Networks: A Developmental Trial. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2019;8:210–218. doi: 10.1080/21681163.2019.1674696. DOI
Yang C., Rangarajan A., Ranka S. Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification. AMIA Annu. Symp. Proc. 2018;2018:1571. PubMed PMC
Schwendicke F., Rossi J.G., Göstemeyer G., Elhennawy K., Cantu A.G., Gaudin R., Chaurasia A., Gehrung S., Krois J. Cost-Effectiveness of Artificial Intelligence for Proximal Caries Detection. J. Dent. Res. 2021;100:369–376. doi: 10.1177/0022034520972335. PubMed DOI PMC
Shimada Y., Bakhsh T.A., Schlenz M.A., Schupp B., Schmidt A., Wöstmann B., Baresel I., Krämer N., Schulz-Weidner N. New Caries Diagnostic Tools in Intraoral Scanners: A Comparative In Vitro Study to Established Methods in Permanent and Primary Teeth. Sensors. 2022;22:2156. doi: 10.3390/S22062156. PubMed DOI PMC
Bayrakdar I.S., Orhan K., Akarsu S., Çelik Ö., Atasoy S., Pekince A., Yasa Y., Bilgir E., Sağlam H., Aslan A.F., et al. Deep-Learning Approach for Caries Detection and Segmentation on Dental Bitewing Radiographs. Oral Radiol. 2021 doi: 10.1007/s11282-021-00577-9. PubMed DOI
Yasa Y., Çelik Ö., Bayrakdar I.S., Pekince A., Orhan K., Akarsu S., Atasoy S., Bilgir E., Odabaş A., Aslan A.F. An Artificial Intelligence Proposal to Automatic Teeth Detection and Numbering in Dental Bite-Wing Radiographs. Acta Odontol. Scand. 2021;79:275–281. doi: 10.1080/00016357.2020.1840624. PubMed DOI
Kelleher M., Bishop K. Tooth Surface Loss: An. Overview. British. Dental. 1999;186:61–66. doi: 10.1038/sj.bdj.4800020a2. PubMed DOI
Al Haidan A., Abu-Hammad O., Dar-Odeh N. Predicting Tooth Surface Loss Using Genetic Algorithms-Optimized Artificial Neural Networks. Comput. Math. Methods Med. 2014;2014:106236. doi: 10.1155/2014/106236. PubMed DOI PMC
Meghil M.M., Rajpurohit P., Awad M.E., McKee J., Shahoumi L.A., Ghaly M. Artificial Intelligence in Dentistry. Dent. Rev. 2022;2:100009. doi: 10.1016/j.dentre.2021.100009. DOI
Ahmed N., Abbasi M.S., Zuberi F., Qamar W., bin Halim M.S., Maqsood A., Alam M.K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry—A Systematic Review. BioMed Res. Int. 2021;2021:9751564. doi: 10.1155/2021/9751564. PubMed DOI PMC
Farhadian M., Shokouhi P., Torkzaban P. A Decision Support System Based on Support Vector Machine for Diagnosis of Periodontal Disease. BMC Res. Notes. 2020;13:337. doi: 10.1186/s13104-020-05180-5. PubMed DOI PMC
Chen W.P., Chang S.H., Tang C.Y., Liou M.L., Tsai S.J.J., Lin Y.L. Composition Analysis and Feature Selection of the Oral Microbiota Associated with Periodontal Disease. BioMed Res. Int. 2018;2018 :3130607. doi: 10.1155/2018/3130607. PubMed DOI PMC
Li W., Chen Y., Sun W., Brown M., Zhang X., Wang S., Miao L. A Gingivitis Identification Method Based on Contrast-Limited Adaptive Histogram Equalization, Gray-Level Co-Occurrence Matrix, and Extreme Learning Machine. Int. J. Imaging Syst. Technol. 2019;29:77–82. doi: 10.1002/ima.22298. DOI
Akther S., Saleheen N., Samiei S.A., Shetty V., Ertin E., Kumar S. MORAL: An mHealth Model for Inferring Oral Hygiene Behaviors in-the-wild Using Wrist-worn Inertial Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019;3:1–25. doi: 10.1145/3314388. PubMed DOI
Boreak N. Effectiveness of Artifcial Intelligence Applications Designed for Endodontic Diagnosis, Decision-Making, and Prediction of Prognosis: A Systematic Review. J. Contemp. Dent. Pract. 2020;21:926–934. doi: 10.5005/jp-journals-10024-2894. PubMed DOI
Keskin C., Keles A. Digital Applications in Endodontics: An Update and Review. J. Exp. Clin. Med. 2021;38:168–174. doi: 10.52142/omujecm.38.si.dent.15. DOI
Aminoshariae A., Kulild J., Nagendrababu V. Artificial Intelligence in Endodontics: Current Applications and Future Directions. J. Endod. 2021;47:1352–1357. doi: 10.1016/j.joen.2021.06.003. PubMed DOI
Li C.W., Lin S.Y., Chou H.S., Chen T.Y., Chen Y.A., Liu S.Y., Liu Y.L., Chen C.A., Huang Y.C., Chen S.L., et al. Detection of Dental Apical Lesions Using Cnns on Periapical Radiograph. Sensors. 2021;21:7049. doi: 10.3390/s21217049. PubMed DOI PMC
Pauwels R., Brasil D.M., Yamasaki M.C., Jacobs R., Bosmans H., Freitas D.Q., Haiter-Neto F. Artificial Intelligence for Detection of Periapical Lesions on Intraoral Radiographs: Comparison between Convolutional Neural Networks and Human Observers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021;131:610–616. doi: 10.1016/j.oooo.2021.01.018. PubMed DOI
Setzer F.C., Shi K.J., Zhang Z., Yan H., Yoon H., Mupparapu M., Li J. Artificial Intelligence for the Computer-Aided Detection of Periapical Lesions in Cone-Beam Computed Tomographic Images. J. Endod. 2020;46:987–993. doi: 10.1016/j.joen.2020.03.025. PubMed DOI
Fukuda M., Inamoto K., Shibata N., Ariji Y., Yanashita Y., Kutsuna S., Nakata K., Katsumata A., Fujita H., Ariji E. Evaluation of an Artificial Intelligence System for Detecting Vertical Root Fracture on Panoramic Radiography. Oral Radiol. 2020;36:337–343. doi: 10.1007/s11282-019-00409-x. PubMed DOI
Liao W.C., Chen C.H., Pan Y.H., Chang M.C., Jeng J.H. Vertical Root Fracture in Non-Endodontically and Endodontically Treated Teeth: Current Understanding and Future Challenge. J. Pers. Med. 2021;11:1375. doi: 10.3390/jpm11121375. PubMed DOI PMC
Shafi N., Bukhari F., Iqbal W., Almustafa K.M., Asif M., Nawaz Z. Cleft Prediction before Birth Using Deep Neural Network. Health Inform. J. 2020;26:2568–2585. doi: 10.1177/1460458220911789. PubMed DOI
Zhang S.J., Meng P., Zhang J., Jia P., Lin J., Wang X., Chen F., Wei X. Machine Learning Models for Genetic Risk Assessment of Infants with Non-Syndromic Orofacial Cleft. Genom. Proteom. Bioinform. 2018;16:354–364. doi: 10.1016/j.gpb.2018.07.005. PubMed DOI PMC
Baker N.C., Sipes N.S., Franzosa J., Belair D.G., Abbott B.D., Judson R.S., Knudsen T.B. Characterizing Cleft Palate Toxicants Using ToxCast Data, Chemical Structure, and the Biomedical Literature. Birth Defects Res. 2020;112:19–39. doi: 10.1002/bdr2.1581. PubMed DOI PMC
Jurek J., Wójtowicz W., Wójtowicz A. Syntactic Pattern Recognition-Based Diagnostics of Fetal Palates. Pattern Recognit. Lett. 2020;133:144–150. doi: 10.1016/j.patrec.2020.02.023. DOI
Kuwada C., Ariji Y., Kise Y., Funakoshi T., Fukuda M., Kuwada T., Gotoh K., Ariji E. Detection and Classification of Unilateral Cleft Alveolus with and without Cleft Palate on Panoramic Radiographs Using a Deep Learning System. Sci. Rep. 2021;11:16044. doi: 10.1038/s41598-021-95653-9. PubMed DOI PMC
Zhang Y., Pei Y., Chen S., Guo Y., Ma G., Xu T., Zha H. Volumetric Registration-Based Cleft Volume Estimation of Alveolar Cleft Grafting Procedures; Proceedings of the International Symposium on Biomedical Imaging; Iowa City, IA, USA. 3–7 April 2020; pp. 99–103.
Ortiz-Posadas M.R., Vega-Alvarado L., Toni B. A Similarity Function to Evaluate the Orthodontic Condition in Patients with Cleft Lip and Palate. Med. Hypotheses. 2004;63:35–41. doi: 10.1016/j.mehy.2004.01.027. PubMed DOI
Tanikawa C., Lee C., Lim J., Oka A., Yamashiro T. Clinical Applicability of Automated Cephalometric Landmark Identification: Part I-Patient-Related Identification Errors. Orthod. Craniofacial Res. 2021;24:43–52. doi: 10.1111/ocr.12501. PubMed DOI
Alam M.K., Alfawzan A.A. Dental Characteristics of Different Types of Cleft and Non-Cleft Individuals. Front. Cell Dev. Biol. 2020;8:789. doi: 10.3389/fcell.2020.00789. PubMed DOI PMC
Lim J., Tanikawa C., Kogo M., Yamashiro C. Determination of Prognostic Factors for Orthognathic Surgery in Children with Cleft Lip and or Palate. Orthod. Craniofacial Res. 2021;24:153–162. doi: 10.1111/ocr.12477. PubMed DOI
Jihee S., Yang I.-H., Choi J.-Y., Lee J.-H., Baek S.-H. Three-Dimensional Facial Soft Tissue Changes After Orthognathic Surgery in Cleft Patients Using Artificial Intelligence-Assisted Landmark Autodigitization. J. Craniofacial Surg. 2021;32:2695–2700. PubMed
Pietruski P., Majak M., Debski T., Antoszewski B. A Novel Computer System for the Evaluation of Nasolabial Morphology, Symmetry and Aesthetics after Cleft Lip and Palate Treatment. Part 1: General Concept and Validation. J. Cranio-Maxillofac. Surg. 2017;45:491–504. doi: 10.1016/j.jcms.2017.01.024. PubMed DOI
Patcas R., Timofte R., Volokitin A., Agustsson E., Eliades T., Eichenberger M., Bornstein M.M. Facial Attractiveness of Cleft Patients: A Direct Comparison between Artificial-Intelligence-Based Scoring and Conventional Rater Groups. Eur. J. Orthod. 2019;41:428–433. doi: 10.1093/ejo/cjz007. PubMed DOI
Wang X., Yang S., Tang M., Yin H., Huang H., He L. HypernasalityNet: Deep Recurrent Neural Network for Automatic Hypernasality Detection. Int. J. Med. Inform. 2019;129:1–12. doi: 10.1016/j.ijmedinf.2019.05.023. PubMed DOI
Gugsch C., Dannhauer K.H., Fuchs M. Stimmanalytische Beurteilung Des Therapieverlaufs Bei Patienten Mit Lippen-Kiefer-Gaumen-Spalten—Eine Pilotstudie. J. Orofac. Orthop. 2008;69:257–267. doi: 10.1007/s00056-008-0702-0. PubMed DOI
Bernauer S.A., Zitzmann N.U., Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors. 2021;21:6628. doi: 10.3390/s21196628. PubMed DOI PMC
Sacher M., Schulz G., Deyhle H., Jäger K., Müller B. Accuracy of Commercial Intraoral Scanners. J. Med. Imaging. 2021;8:035501. doi: 10.1117/1.JMI.8.3.035501. PubMed DOI PMC
Amornvit P., Rokaya D., Sanohkan S. Comparison of Accuracy of Current Ten Intraoral Scanners. [(accessed on 6 March 2022)];BioMed Res. Int. 2021 Available online: https://www.hindawi.com/journals/bmri/2021/2673040/ PubMed PMC
Celeghin G., Franceschetti G., Mobilio N., Fasiol A., Catapano S., Corsalini M., Grande F. Complete-Arch Accuracy of Four Intraoral Scanners: An In Vitro Study. Healthcare. 2021;9:246. doi: 10.3390/healthcare9030246. PubMed DOI PMC
ITero Element|ITero Intraoral Scanner. [(accessed on 6 March 2022)]. Available online: https://global.itero.com/products/itero_element.
3Shape® Introduces TRIOS® AI Scanning! CADpro Academy. [(accessed on 6 March 2022)]. Available online: https://cadproacademy.com/news/3shape%C2%AE-introduces-trios%C2%AE-ai-scanning.
Cabanes-Gumbau G., Palma J.C., Kois J.C., Revilla-León M. Transferring the Tooth Preparation Finish Line on Intraoral Digital Scans to Dental Software Programs: A Dental Technique. J. Prosthet. Dent. 2022 doi: 10.1016/j.prosdent.2021.10.009. PubMed DOI
Logozzo S., Franceschini G., Kilpela A., Caponi M., Governi L., Blois L. A Comparative Analysis of Intraoral 3d Digital Scanners for Restorative Dentistry. Internet J. Med. Technol. 2011;5:1–18. doi: 10.5580/1b90. DOI
Oğuz E.İ., Kılıçarslan M.A., Ocak M., Bilecenoğlu B., Ekici Z. Marginal and Internal Fit of Feldspathic Ceramic CAD/CAM Crowns Fabricated via Different Extraoral Digitization Methods: A Micro-Computed Tomography Analysis. Odontology. 2021;109:440–447. doi: 10.1007/s10266-020-00560-6. PubMed DOI
Leeson D. The Digital Factory in Both the Modern Dental Lab and Clinic. Dent. Mater. 2020;36:43–52. doi: 10.1016/j.dental.2019.10.010. PubMed DOI
AI Isn’t Science Fiction: It’s Digital Design’s Reality|July 2021|Inside Dental Technology. [(accessed on 6 March 2022)]. Available online: https://www.aegisdentalnetwork.com/idt/2021/07/ai-isnt-science-fiction-its-digital-designs-reality.
Lerner H., Mouhyi J., Admakin O., Mangano F. Artificial Intelligence in Fixed Implant Prosthodontics: A Retrospective Study of 106 Implant-Supported Monolithic Zirconia Crowns Inserted in the Posterior Jaws of 90 Patients. BMC Oral Health. 2020;20:80. doi: 10.1186/s12903-020-1062-4. PubMed DOI PMC
Yamaguchi S., Lee C., Karaer O., Ban S., Mine A., Imazato S. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI. J. Dent. Res. 2019;98:1234–1238. doi: 10.1177/0022034519867641. PubMed DOI
Takahashi T., Nozaki K., Gonda T., Ikebe K. A System for Designing Removable Partial Dentures Using Artificial Intelligence. Part 1. Classification of Partially Edentulous Arches Using a Convolutional Neural Network. J. Prosthodont. Res. 2020;65:115–118. doi: 10.2186/jpr.JPOR_2019_354. PubMed DOI
Takaichi A., Fueki K., Murakami N., Ueno T., Inamochi Y., Wada J., Arai Y., Wakabayashi N. A Systematic Review of Digital Removable Partial Dentures. Part II: CAD/CAM Framework, Artificial Teeth, and Denture Base. J. Prosthodont. Res. 2021;66:53–67. doi: 10.2186/jpr.JPR_D_20_00117. PubMed DOI
Marinello C., Brugger R. Digital Removable Complete Denture—An Overview. Curr. Oral Health Rep. 2021;8:117–131. doi: 10.1007/s40496-021-00299-1. DOI
Hein S., Modrić D., Westland S., Tomeček M. Objective Shade Matching, Communication, and Reproduction by Combining Dental Photography and Numeric Shade Quantification. J. Esthet. Restor. Dent. 2020;33:107–117. doi: 10.1111/jerd.12641. PubMed DOI
Medit I500’s Artificial Intelligence Custom Implant Identification Using The Analog Impression Abutment As A Scanbody|CAD-Ray.Com. [(accessed on 6 March 2022)]. Available online: https://www.cad-ray.com/medit-i500s-artificial-intellegence-custom-implant-identification-using-the-analog-impression-abutment-as-a-scanbdoy/
Revilla-León M., Gomez-Polo M., Vyas S., Barmak A.B., Gallucci G., Att W., Krishnamurthy V. Artificial Intelligence Applications in Implant Dentistry: A Systematic Review. J. Prosthet. Dent. 2021 doi: 10.1016/j.prosdent.2021.05.008. PubMed DOI
Lee S., Kim J.E. Evaluating the Precision of Automatic Segmentation of Teeth, Gingiva and Facial Landmarks for 2D Digital Smile Design Using Real-Time Instance Segmentation Network. J. Clin. Med. 2022;11:852. doi: 10.3390/jcm11030852. PubMed DOI PMC
Alvari G., Furlanello C., Venuti P. Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. J. Clin. Med. 2021;10:1776. doi: 10.3390/jcm10081776. PubMed DOI PMC
Spagnuolo G., Sorrentino R. The Role of Digital Devices in Dentistry: Clinical Trends and Scientific Evidences. J. Clin. Med. 2020;9:1692. doi: 10.3390/jcm9061692. PubMed DOI PMC
Scattarelli P., Smaniotto P., Leuci S., Cervino G., Gisotti M. The Digital Integrated Workflow in the Aesthetic Management of the Smile: A Case Report. Prosthesis. 2020;2:196–210. doi: 10.3390/prosthesis2030017. DOI
Coachman C., Calamita M., Sesma N. Dynamic Documentation of the Smile and the 2D/3D Digital Smile Design Process. Int. J. Periodontics Restor. Dent. 2017;37:183–193. doi: 10.11607/prd.2911. PubMed DOI
Mendoza G., Cornejo H., Villanueva M., Alva R., Souza A. Periodontal Plastic Surgery for Esthetic Crown Lengthening by Using Data Merging and a CAD-CAM Surgical Guide. J. Prosthet. Dent. 2020 doi: 10.1016/j.prosdent.2020.09.041. PubMed DOI
Jafri Z., Ahmad N., Sawai M., Sultan N., Bhardwaj A. Digital Smile Design-An Innovative Tool in Aesthetic Dentistry. J. Oral Biol. Craniofacial Res. 2020;10:194–198. doi: 10.1016/j.jobcr.2020.04.010. PubMed DOI PMC
Jreige C., Kimura R., Segundo Â., Coachman C., Sesma N. Esthetic Treatment Planning with Digital Animation of the Smile Dynamics: A Technique to Create a 4-Dimensional Virtual Patient. J. Prosthet. Dent. 2021 doi: 10.1016/j.prosdent.2020.10.015. PubMed DOI
Rajkomar A., Dean J., Kohane I. Machine Learning in Medicine. N. Engl. J. Med. 2019;380:1347–1358. doi: 10.1056/NEJMra1814259. PubMed DOI
Kaplan A., Cao H., FitzGerald J.M., Iannotti N., Yang E., Kocks J.W.H., Kostikas K., Price D., Reddel H.K., Tsiligianni I., et al. Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis. J. Allergy Clin. Immunol. Pract. 2021;9:2255–2261. doi: 10.1016/j.jaip.2021.02.014. PubMed DOI
Messinger A.I., Luo G., Deterding R.R. The Doctor Will See You Now: How Machine Learning and Artificial Intelligence Can Extend Our Understanding and Treatment of Asthma. J. Allergy Clin. Immunol. 2020;145:476–478. doi: 10.1016/j.jaci.2019.12.898. PubMed DOI PMC
Chen Y., Wang W., Guo Y., Zhang H., Chen Y., Xie L. A Single-Center Validation of the Accuracy of a Photoplethysmography-Based Smartwatch for Screening Obstructive Sleep Apnea. Nat. Sci. Sleep. 2021;13:1533–1544. doi: 10.2147/NSS.S323286. PubMed DOI PMC
Chen X., Xiao Y., Tang Y., Fernandez-Mendoza J., Cao G. ApneaDetector: Detecting Sleep Apnea with Smartwatches. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021;5:1–22. doi: 10.1145/3463514. DOI
Matava C., Pankiv E., Ahumada L., Weingarten B., Simpao A. Artificial Intelligence, Machine Learning and the Pediatric Airway. Paediatr. Anaesth. 2020;30:264–268. doi: 10.1111/pan.13792. PubMed DOI
Topalovic M., Das N., Burgel P.R., Daenen M., Derom E., Haenebalcke C., Janssen R., Kerstjens H.A.M., Liistro G., Louis R., et al. Artificial Intelligence Outperforms Pulmonologists in the Interpretation of Pulmonary Function Tests. Eur. Respir. J. 2019;53:1801660. doi: 10.1183/13993003.01660-2018. PubMed DOI
Lu M.T., Ivanov A., Mayrhofer T., Hosny A., Aerts H.J.W.L., Hoffmann U. Deep Learning to Assess Long-Term Mortality from Chest Radiographs. JAMA Netw. Open. 2019;2:e197416. doi: 10.1001/jamanetworkopen.2019.7416. PubMed DOI PMC
Nam J.G., Park S., Hwang E.J., Lee J.H., Jin K.N., Lim K.Y., Vu T.H., Sohn J.H., Hwang S., Goo J.M., et al. Development and Validation of Deep Learning-Based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology. 2019;290:218–228. doi: 10.1148/radiol.2018180237. PubMed DOI
Hwang E.J., Park S., Jin K.N., Kim J.I., Choi S.Y., Lee J.H., Goo J.M., Aum J., Yim J.J., Park C.M., et al. Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin. Infect. Dis. 2019;69:739–747. doi: 10.1093/cid/ciy967. PubMed DOI PMC
Das N., Topalovic M., Janssens W. Artificial Intelligence in Diagnosis of Obstructive Lung Disease: Current Status and Future Potential. Curr. Opin. Pulm. Med. 2018;24:117–123. doi: 10.1097/MCP.0000000000000459. PubMed DOI
Lovejoy C.A., Phillips E., Maruthappu M. Application of Artificial Intelligence in Respiratory Medicine: Has the Time Arrived? Respirology. 2019;24:1136–1137. doi: 10.1111/resp.13676. PubMed DOI
Ardila D., Kiraly A.P., Bharadwaj S., Choi B., Reicher J.J., Peng L., Tse D., Etemadi M., Ye W., Corrado G., et al. End-to-End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nat. Med. 2019;25:954–961. doi: 10.1038/s41591-019-0447-x. PubMed DOI
Gonem S., Janssens W., Das N., Topalovic M. Applications of Artificial Intelligence and Machine Learning in Respiratory Medicine. Thorax. 2020;75:695–701. doi: 10.1136/thoraxjnl-2020-214556. PubMed DOI
Exarchos K.P., Beltsiou M., Votti C.A., Kostikas K. REVIEW ASTHMA Artificial Intelligence Techniques in Asthma: A Systematic Review and Critical Appraisal of the Existing Literature. Eur. Respir. J. 2020;56:2000521. doi: 10.1183/13993003.00521-2020. PubMed DOI
Abdelkarim A. Cone-Beam Computed Tomography in Orthodontics. Dent. J. 2019;7:89. doi: 10.3390/dj7030089. PubMed DOI PMC
Aboudara C., Nielsen I., Huang J.C., Maki K., Miller A.J., Hatcher D. Comparison of Airway Space with Conventional Lateral Headfilms and 3-Dimensional Reconstruction from Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2009;135:468–479. doi: 10.1016/j.ajodo.2007.04.043. PubMed DOI
Richert R., Ducret M., Alliot-Licht B., Bekhouche M., Gobert S., Farges J.C. A Critical Analysis of Research Methods and Experimental Models to Study Pulpitis. Int. Endod. J. 2022;55:14–36. doi: 10.1111/iej.13683. PubMed DOI
Joda T., Zitzmann N.U. Personalized Workflows in Reconstructive Dentistry—Current Possibilities and Future Opportunities. Clin. Oral Investig. 2022;26:4283–4290. doi: 10.1007/s00784-022-04475-0. PubMed DOI PMC
Umer F., Habib S. Critical Analysis of Artificial Intelligence in Endodontics: A Scoping Review. J. Endod. 2022;48:152–160. doi: 10.1016/j.joen.2021.11.007. PubMed DOI
Khanagar S.B., Al-ehaideb A., Maganur P.C., Vishwanathaiah S., Patil S., Baeshen H.A., Sarode S.C., Bhandi S. Developments, Application, and Performance of Artificial Intelligence in Dentistry—A Systematic Review. J. Dent. Sci. 2021;16:508–522. doi: 10.1016/j.jds.2020.06.019. PubMed DOI PMC
Le V.N.T., Kang J., Oh I.-S., Kim J.-G., Yang Y.-M., Lee D.-W. Effectiveness of Human–Artificial Intelligence Collaboration in Cephalometric Landmark Detection. J. Pers. Med. 2022;12:387. doi: 10.3390/jpm12030387. PubMed DOI PMC
Shimizu Y., Tanikawa C., Kajiwara T., Nagahara H., Yamashiro T. The Validation of Orthodontic Artificial Intelligence Systems That Perform Orthodontic Diagnoses and Treatment Planning. Eur. J. Orthod. 2022:cjab083. doi: 10.1093/ejo/cjab083. PubMed DOI
Del Real A., del Real O., Sardina S., Oyonarte R. Use of Automated Artificial Intelligence to Predict the Need for Orthodontic Extractions. Korean J. Orthod. 2022;52:102. doi: 10.4041/kjod.2022.52.2.102. PubMed DOI PMC
Mohammad-Rahimi H., Motamedian S.R., Rohban M.H., Krois J., Uribe S., Nia E.M., Rokhshad R., Nadimi M., Schwendicke F. Deep Learning for Caries Detection: A Systematic Review: DL for Caries Detection. J. Dent. 2022;122:104115. doi: 10.1016/j.jdent.2022.104115. PubMed DOI
Futyma-Gabka K., Rózylo-Kalinowska I. The Use of Artificial Intelligence in Radiological Diagnosis and Detection of Dental Caries: A Systematic Review. J. Stomatol. 2021;74:262–266. doi: 10.5114/jos.2021.111664. DOI
Singh N.K., Raza K. Progress in Deep Learning-Based Dental and Maxillofacial Image Analysis: A Systematic Review. Expert Syst. Appl. 2022;199:116968. doi: 10.1016/j.eswa.2022.116968. DOI
Farook T.H., bin Jamayet N., Abdullah J.Y., Alam M.K. Machine Learning and Intelligent Diagnostics in Dental and Orofacial Pain Management: A Systematic Review. Pain Res. Manag. 2021;2021:6659133. doi: 10.1155/2021/6659133. PubMed DOI PMC
Devlin H., Williams T., Graham J., Ashley M. The ADEPT Study: A Comparative Study of Dentists’ Ability to Detect Enamel-Only Proximal Caries in Bitewing Radiographs with and without the Use of AssistDent Artificial Intelligence Software. Br. Dent. J. 2021;231:481–485. doi: 10.1038/s41415-021-3526-6. PubMed DOI PMC
NCT05096624 Impact of Complete Removable Prosthetic Rehabilitations Performed by an Innovative DDTENS Protocol, on the Quality of Masticatory Function and the Management of Completely Edentulous Patients. [(accessed on 6 March 2022)];2021 Available online: https://clinicaltrials.gov/show/NCT05096624.
Pierre Robin Sequence and 3D Printed Personalized Composite Appliances in Interdisciplinary Approach