Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0658/20
VEGA
1/0081/20
VEGA
VVGS-PF-2022-2136
VVGS PF
PubMed
35888178
PubMed Central
PMC9316313
DOI
10.3390/life12071090
PII: life12071090
Knihovny.cz E-resources
- Keywords
- atranorin, behavioral changes, human serum albumin, laboratory rats, metabolomics, microsomal stability,
- Publication type
- Journal Article MeSH
Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.
Institute of Chemistry Faculty of Sciences Pavol Jozef Safarik University 040 01 Kosice Slovakia
Institute of Neuroimmunology Slovak Academy of Sciences 831 01 Bratislava Slovakia
Institute of Pathology Faculty of Medicine Pavol Jozef Safarik University 040 01 Kosice Slovakia
Small Animal Clinic University of Veterinary Medicine and Pharmacy 041 81 Kosice Slovakia
See more in PubMed
Crawford S. Lichen Secondary Metabolites. Springer; Cham, Switzerland: 2015. Lichens Used in Traditional Medicine; pp. 27–80. DOI
Ranković B., Mišić M., Sukdolak S. The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J. Microbiol. Biotechnol. 2008;24:1239–1242. doi: 10.1007/s11274-007-9580-7. DOI
Verma N., Behera B., Parizadeh H., Sharma B. Bactericidal Activity of Some Lichen Secondary Compounds of Cladonia ochrochlora, Parmotrema nilgherrensis & Parmotrema sancti-angelii. Int. J. Drug Dev. Res. 2011;3:222–232.
Sunil Kumar K., Müller K. Lichen Metabolites. 1. Inhibitory Action Against Leukotriene B4 Biosynthesis by a Non-Redox Mechanism. J. Nat. Prod. 1999;62:817–820. doi: 10.1021/np9803777. PubMed DOI
Bačkorová M., Bačkor M., Mikeš J., Jendželovský R., Fedoročko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. In Vitro. 2011;25:37–44. doi: 10.1016/j.tiv.2010.09.004. PubMed DOI
Bačkorová M., Jendželovský R., Kello M., Bačkor M., Mikeš J., Fedoročko P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. In Vitro. 2012;26:462–468. doi: 10.1016/j.tiv.2012.01.017. PubMed DOI
Vu T.H., Le Lamer A.-C., Lalli C., Boustie J., Samson M., Lohézic-Le Devehat F., Le Seyec J. Depsides: Lichen Metabolites Active against Hepatitis C Virus. PLoS ONE. 2015;10:e0120405. doi: 10.1371/journal.pone.0120405. PubMed DOI PMC
Thadhani V., Mesaik A., Asif M., Choudhary I. Immunomodulatory Activities of Some Common Lichen Metabolites. Int. J. Pharm. Pharm. Sci. 2015;7:144–147.
Harikrishnan A., Veena V., Lakshmi B., Shanmugavalli R., Theres S., Prashantha C.N., Shah T., Oshin K., Togam R., Nandi S. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. J. Biomol. Struct. Dyn. 2021;39:1248–1258. doi: 10.1080/07391102.2020.1734482. PubMed DOI
Majchrzak-Celińska A., Kleszcz R., Studzińska-Sroka E., Łukaszyk A., Szoszkiewicz A., Stelcer E., Jopek K., Rucinski M., Cielecka-Piontek J., Krajka-Kuźniak V. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells. 2022;11:1084. doi: 10.3390/cells11071084. PubMed DOI PMC
Zhou R., Yang Y., Park S.-Y., Nguyen T.T., Seo Y.-W., Lee K.H., Lee J.H., Kim K.K., Hur J.-S., Kim H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep. 2017;7:8136. doi: 10.1038/s41598-017-08225-1. PubMed DOI PMC
Solár P., Hrčková G., Koptašíková L., Velebný S., Solárová Z., Bačkor M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem.-Biol. Interact. 2016;250:27–37. doi: 10.1016/j.cbi.2016.03.012. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38, 27–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Chatterjee T., Pal A., Dey S., Chatterjee B.K., Chakrabarti P. Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PLoS ONE. 2012;7:e37468. doi: 10.1371/journal.pone.0037468. PubMed DOI PMC
Petitpas I., Petersen C.E., Ha C.E., Bhattacharya A.A., Zunszain P.A., Ghuman J., Bhagavan N.V., Curry S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA. 2003;100:6440–6445. doi: 10.1073/pnas.1137188100. PubMed DOI PMC
Di L., Kerns E.H., Li S.Q., Petusky S.L. High throughput microsomal stability assay for insoluble compounds. Int. J. Pharm. 2006;317:54–60. doi: 10.1016/j.ijpharm.2006.03.007. PubMed DOI
Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta Int. J. Clin. Chem. 1978;90:37–43. doi: 10.1016/0009-8981(78)90081-5. PubMed DOI
Kertys M., Grendar M., Horak V., Zidekova N., Kupcova Skalnikova H., Mokry J., Halasova E., Strnadel J. Metabolomic characterisation of progression and spontaneous regression of melanoma in the melanoma-bearing Libechov minipig model. Melanoma Res. 2021;31:140–151. doi: 10.1097/CMR.0000000000000722. PubMed DOI
Kertys M., Grendar M., Kosutova P., Mokra D., Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020;1866:165572. doi: 10.1016/j.bbadis.2019.165572. PubMed DOI
Pena M.J., Heinzel A., Rossing P., Parving H.H., Dallmann G., Rossing K., Andersen S., Mayer B., Heerspink H.J. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus. J. Transl. Med. 2016;14:203. doi: 10.1186/s12967-016-0960-3. PubMed DOI PMC
Petrova K., Kello M., Kuruc T., Backorova M., Petrovova E., Vilkova M., Goga M., Rucova D., Backor M., Mojzis J. Potential Effect of Pseudevernia furfuracea (L.) Zopf Extract and Metabolite Physodic Acid on Tumour Microenvironment Modulation in MCF-10A Cells. Biomolecules. 2021;11:420. doi: 10.3390/biom11030420. PubMed DOI PMC
Zhang G., Wang L., Pan J. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 2012;60:2721–2729. doi: 10.1021/jf205260g. PubMed DOI
Lakowicz J.R. Principles of Fluorescence Spectroscopy. 2013. [(accessed on 10 May 2022)]. Available online: https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5590161.
Topală T., Bodoki A., Oprean L., Oprean R. Bovine serum albumin interactions with metal complexes. Clujul Med. 2014;87:215. doi: 10.15386/cjmed-357. PubMed DOI PMC
Feroz S.R., Mohamad S.B., Bujang N., Malek S.N., Tayyab S. Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. J. Agric. Food Chem. 2012;60:5899–5908. doi: 10.1021/jf301139h. PubMed DOI
Li X., Chen D., Wang G., Lu Y. Study of interaction between human serum albumin and three antioxidants: Ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem. 2013;70:22–36. doi: 10.1016/j.ejmech.2013.09.033. PubMed DOI
Schellman J.A. Temperature, stability, and the hydrophobic interaction. Biophys. J. 1997;73:2960–2964. doi: 10.1016/S0006-3495(97)78324-3. PubMed DOI PMC
Wani T.A., Bakheit A.H., Al-Majed A.-R.A., Bhat M.A., Zargar S. Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1,3-Dioxo-1,3-dihydro-2 H-isoindol-2-yl)-N′-[(4-ethoxy-phenyl) methylidene] benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules. 2017;22:1258. doi: 10.3390/molecules22081258. PubMed DOI PMC
Alsaif N.A., Wani T.A., Bakheit A.H., Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int. J. Biol. Macromol. 2020;165:2451–2461. doi: 10.1016/j.ijbiomac.2020.10.098. PubMed DOI
Huang S., Qiu H., Lu S., Zhu F., Xiao Q. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches. J. Hazard. Mater. 2015;285:18–26. doi: 10.1016/j.jhazmat.2014.11.019. PubMed DOI
National Research Council (US) Committee on Recognition and Alleviation of Distress in Laboratory Animals . Appendix, Tools to Monitor and Assess Health Status and Well-Being in Stress and Distress. National Academies Press (US); Washington, DC, USA: 2008. PubMed
Pedlar C.R., Newell J., Lewis N.A. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med. 2019;49((Suppl. S2)):185–198. doi: 10.1007/s40279-019-01158-x. PubMed DOI PMC
Leskanicova A., Chovancova O., Babincak M., Blicharova A., Kolesarova M., Macekova D., Kostolny J., Smajda B., Kiskova T. Defining sex differences in selected lipid metabolites of blood plasma in Wistar rats. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2019;70:631–639. doi: 10.26402/jpp.2019.4.14. PubMed DOI
Leskanicova A., Chovancova O., Babincak M., Verboova L., Benetinova Z., Macekova D., Kostolny J., Smajda B., Kiskova T. Sexual Dimorphism in Energy Metabolism of Wistar Rats Using Data Analysis. Molecules. 2020;25:2353. doi: 10.3390/molecules25102353. PubMed DOI PMC
Elečko J., Vilková M., Frenák R., Routray D., Ručová D., Bačkor M., Goga M. A Comparative Study of Isolated Secondary Metabolites from Lichens and Their Antioxidative Properties. Plants. 2022;11:1077. doi: 10.3390/plants11081077. PubMed DOI PMC
Melo M.G., dos Santos J.P., Serafini M.R., Caregnato F.F., Pasquali M.A., Rabelo T.K., da Rocha R.F., Quintans L., Jr., Araújo A.A., da Silva F.A., et al. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol. In Vitro. 2011;25:462–468. doi: 10.1016/j.tiv.2010.11.014. PubMed DOI
Prokopev I.A., Filippova G.V. Antioxidant Activity of Secondary Metabolites from Cladonia Lichens. Chem. Nat. Compd. 2019;55:945–947. doi: 10.1007/s10600-019-02855-9. DOI
De Melo M.G.D., Araújo A.A.d.S., Serafini M.R., Carvalho L.F., Bezerra M.S., Ramos C.S., Bonjardim L.R., Albuquerque-Júnior R.L.C., Lima J.T., Siqueira R.S., et al. Anti-inflammatory and toxicity studies of atranorin extracted from Cladina kalbii Ahti in rodents. Braz. J. Pharm. Sci. 2011;47:861–872. doi: 10.1590/S1984-82502011000400024. DOI
Vos C., McKinney P., Pearson C., Heiny E., Gunawardena G., Holt E.A. The optimal extraction and stability of atranorin from lichens, in relation to solvent and pH. Lichenologist. 2018;50:499–512. doi: 10.1017/S0024282918000075. DOI
Ojha M., Kil Y.S., Youn U.J., Ok Y.J., Choi H., Nam J.W. Compositional variation of atranorin-related components of lichen Myelochroa leucotyliza dependent on extraction solvent and their quantitative analysis by qHNMR. Phytochem. Anal. 2021;32:1067–1073. doi: 10.1002/pca.3048. PubMed DOI
Bossi R., Rastogi S.C., Bernard G., Gimenez-Arnau E., Johansen J.D., Lepoittevin J.P., Menné T. A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes. J. Sep. Sci. 2004;27:537–540. doi: 10.1002/jssc.200301696. PubMed DOI
Hiserodt R.D., Swijter D.F., Mussinan C.J. Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization. J. Chromatogr. A. 2000;888:103–111. doi: 10.1016/S0021-9673(00)00495-7. PubMed DOI
Toledo Marante F.J., García Castellano A., Estévez Rosas F., Quintana Aguiar J., Bermejo Barrera J. Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: Phytotoxicity and antioxidative activity. J. Chem. Ecol. 2003;29:2049–2071. doi: 10.1023/A:1025682318001. PubMed DOI
Papaioannou M., Schleich S., Prade I., Degen S., Roell D., Schubert U., Tanner T., Claessens F., Matusch R., Baniahmad A. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J. Cell. Mol. Med. 2009;13:2210–2223. doi: 10.1111/j.1582-4934.2008.00426.x. PubMed DOI PMC
Roell D., Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol. Cell. Endocrinol. 2011;332:1–8. doi: 10.1016/j.mce.2010.09.013. PubMed DOI
Guo L., Shi Q., Fang J.-L., Mei N., Ali A.A., Lewis S.M., Leakey J.E.A., Frankos V.H. Review of usnic acid and Usnea barbata toxicity. J. Env. Sci. Health C Env. Carcinog. Ecotoxicol. Rev. 2008;26:317–338. doi: 10.1080/10590500802533392. PubMed DOI PMC
Krishna D.R., Venkataramana D. Pharmacokinetics of D(+)-usnic acid in rabbits after intravenous and oral administration. Drug Metab. Dispos. Biol. Fate Chem. 1992;20:909–911. PubMed
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Jr., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. Biol. Fate Chem. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Siddalingappa B., Benson H.A., Brown D.H., Batty K.T., Chen Y. Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: Investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile. PLoS ONE. 2015;10:e0118824. doi: 10.1371/journal.pone.0118824. PubMed DOI PMC
Springer M., Moco S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients. 2019;11:143. doi: 10.3390/nu11010143. PubMed DOI PMC
Álvarez A.I., Vallejo F., Barrera B., Merino G., Prieto J.G., Tomás-Barberán F., Espín J.C. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab. Dispos. Biol. Fate Chem. 2011;39:2008–2012. doi: 10.1124/dmd.111.040881. PubMed DOI
Levitt D.G., Levitt M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016;9:229–255. doi: 10.2147/IJGM.S102819. PubMed DOI PMC
López-Yerena A., Perez M., Vallverdú-Queralt A., Escribano-Ferrer E. Insights into the Binding of Dietary Phenolic Compounds to Human Serum Albumin and Food-Drug Interactions. Pharmaceutics. 2020;12:1123. doi: 10.3390/pharmaceutics12111123. PubMed DOI PMC
Zhang Y., Shi S., Chen X., Zhang W., Huang K., Peng M. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food–drug interference. J. Agric. Food Chem. 2011;59:8499–8506. doi: 10.1021/jf201796x. PubMed DOI
Chudzik M., Maciążek-Jurczyk M., Pawełczak B., Sułkowska A. Spectroscopic Studies on the Molecular Ageing of Serum Albumin. Molecules. 2016;22:34. doi: 10.3390/molecules22010034. PubMed DOI PMC
Tabassum S., Ahmad M., Afzal M., Zaki M., Bharadwaj P.K. Synthesis and structure elucidation of a copper (II) Schiff-base complex: In vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies. J. Photochem. Photobiol. B Biol. 2014;140:321–331. doi: 10.1016/j.jphotobiol.2014.08.015. PubMed DOI
Zhang Z., Yang M., Yi J., Zhu Q., Huang C., Chen Y., Li J., Yang B., Zhao X. Comprehensive insights into the interactions of two emerging bromophenolic DBPs with human serum albumin by multispectroscopy and molecular docking. ACS Omega. 2019;4:563–572. doi: 10.1021/acsomega.8b03116. DOI
Khanna D., Peltzer C., Kahar P., Parmar M.S. Body Mass Index (BMI): A Screening Tool Analysis. Cureus. 2022;14:e22119. doi: 10.7759/cureus.22119. PubMed DOI PMC
Aparicio V.A., Nebot E., García-del Moral R., Machado-Vílchez M., Porres J.M., Sánchez C., Aranda P. High-protein diets and renal status in rats. Nutr. Hosp. 2013;28:232–237. doi: 10.3305/nh.2013.28.1.6165. PubMed DOI
Bazzano T., Restel T.I., Porfirio L.C., Souza A.S., Silva I.S. Renal biomarkers of male and female Wistar rats (Rattus norvegicus) undergoing renal ischemia and reperfusion. Acta Cir. Bras. 2015;30:277–288. doi: 10.1590/S0102-865020150040000007. PubMed DOI
Monteomo G.F., Kamagate A., Yapo A.P. Effects of metabolic syndrome on blood cells to Wistar rats. J. Diabetes Metab. Disord. Control. 2018;5:222–225. doi: 10.15406/jdmdc.2018.05.00170. DOI
Pérez-López F.R., Larrad-Mur L., Kallen A., Chedraui P., Taylor H.S. Gender differences in cardiovascular disease: Hormonal and biochemical influences. Reprod. Sci. 2010;17:511–531. doi: 10.1177/1933719110367829. PubMed DOI PMC
Franconi F., Brunelleschi S., Steardo L., Cuomo V. Gender differences in drug responses. Pharmacol. Res. 2007;55:81–95. doi: 10.1016/j.phrs.2006.11.001. PubMed DOI
Zucker I., Prendergast B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020;11:32. doi: 10.1186/s13293-020-00308-5. PubMed DOI PMC
Elbaradie K.B.Y., Wang Y., Boyan B.D., Schwartz Z. Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2013;1833:1165–1172. doi: 10.1016/j.bbamcr.2012.12.022. PubMed DOI
Ros P., Díaz F., Freire-Regatillo A., Argente Arizón P., Barrios V., Argente J., Chowen J. Sex Differences in Long-term Metabolic Effects of Maternal Resveratrol Intake in Adult Rat Offspring. Endocrinology. 2020;161:bqaa090. doi: 10.1210/endocr/bqaa090. PubMed DOI
Wagnerova A., Babickova J., Liptak R., Vlkova B., Celec P., Gardlik R. Sex Differences in the Effect of Resveratrol on DSS-Induced Colitis in Mice. Gastroenterol. Res. Pract. 2017;2017:8051870. doi: 10.1155/2017/8051870. PubMed DOI PMC
Lutterschmidt D.I., Wilczynski W. Sexually dimorphic effects of melatonin on brain arginine vasotocin immunoreactivity in green treefrogs (Hyla cinerea) Brain Behav. Evol. 2012;80:222–232. doi: 10.1159/000341238. PubMed DOI PMC
Goodin M., Bray B., Rosengren R. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epigallocatechin (ECG) in the mouse. Food Chem. Toxicol. 2006;44:1496–1504. doi: 10.1016/j.fct.2006.04.012. PubMed DOI
Shokouhi G., Kosari-Nasab M., Salari A.-A. Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sci. 2020;257:118049. doi: 10.1016/j.lfs.2020.118049. PubMed DOI
Belovicova K., Bogi E., Csatlosova K., Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip. Toxicol. 2017;10:40–43. doi: 10.1515/intox-2017-0006. PubMed DOI PMC
Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002;134:49–57. doi: 10.1016/S0166-4328(01)00452-1. PubMed DOI
Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI
Smith R., Taylor S., Wilson R.C., Chuning A.E., Persich M.R., Wang S., Killgore W.D.S. Lower Levels of Directed Exploration and Reflective Thinking Are Associated With Greater Anxiety and Depression. Front. Psychiatry. 2022;12:782136. doi: 10.3389/fpsyt.2021.782136. PubMed DOI PMC
Blanco N.J., Otto A.R., Maddox W.T., Beevers C.G., Love B.C. The influence of depression symptoms on exploratory decision-making. Cognition. 2013;129:563–568. doi: 10.1016/j.cognition.2013.08.018. PubMed DOI PMC
The First In Vivo Study Shows That Gyrophoric Acid Changes Behavior of Healthy Laboratory Rats