• This record comes from PubMed

Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats

. 2022 Jul 20 ; 12 (7) : . [epub] 20220720

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
1/0658/20 VEGA
1/0081/20 VEGA
VVGS-PF-2022-2136 VVGS PF

Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.

See more in PubMed

Crawford S. Lichen Secondary Metabolites. Springer; Cham, Switzerland: 2015. Lichens Used in Traditional Medicine; pp. 27–80. DOI

Ranković B., Mišić M., Sukdolak S. The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J. Microbiol. Biotechnol. 2008;24:1239–1242. doi: 10.1007/s11274-007-9580-7. DOI

Verma N., Behera B., Parizadeh H., Sharma B. Bactericidal Activity of Some Lichen Secondary Compounds of Cladonia ochrochlora, Parmotrema nilgherrensis & Parmotrema sancti-angelii. Int. J. Drug Dev. Res. 2011;3:222–232.

Sunil Kumar K., Müller K. Lichen Metabolites. 1. Inhibitory Action Against Leukotriene B4 Biosynthesis by a Non-Redox Mechanism. J. Nat. Prod. 1999;62:817–820. doi: 10.1021/np9803777. PubMed DOI

Bačkorová M., Bačkor M., Mikeš J., Jendželovský R., Fedoročko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. In Vitro. 2011;25:37–44. doi: 10.1016/j.tiv.2010.09.004. PubMed DOI

Bačkorová M., Jendželovský R., Kello M., Bačkor M., Mikeš J., Fedoročko P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. In Vitro. 2012;26:462–468. doi: 10.1016/j.tiv.2012.01.017. PubMed DOI

Vu T.H., Le Lamer A.-C., Lalli C., Boustie J., Samson M., Lohézic-Le Devehat F., Le Seyec J. Depsides: Lichen Metabolites Active against Hepatitis C Virus. PLoS ONE. 2015;10:e0120405. doi: 10.1371/journal.pone.0120405. PubMed DOI PMC

Thadhani V., Mesaik A., Asif M., Choudhary I. Immunomodulatory Activities of Some Common Lichen Metabolites. Int. J. Pharm. Pharm. Sci. 2015;7:144–147.

Harikrishnan A., Veena V., Lakshmi B., Shanmugavalli R., Theres S., Prashantha C.N., Shah T., Oshin K., Togam R., Nandi S. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. J. Biomol. Struct. Dyn. 2021;39:1248–1258. doi: 10.1080/07391102.2020.1734482. PubMed DOI

Majchrzak-Celińska A., Kleszcz R., Studzińska-Sroka E., Łukaszyk A., Szoszkiewicz A., Stelcer E., Jopek K., Rucinski M., Cielecka-Piontek J., Krajka-Kuźniak V. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells. 2022;11:1084. doi: 10.3390/cells11071084. PubMed DOI PMC

Zhou R., Yang Y., Park S.-Y., Nguyen T.T., Seo Y.-W., Lee K.H., Lee J.H., Kim K.K., Hur J.-S., Kim H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep. 2017;7:8136. doi: 10.1038/s41598-017-08225-1. PubMed DOI PMC

Solár P., Hrčková G., Koptašíková L., Velebný S., Solárová Z., Bačkor M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem.-Biol. Interact. 2016;250:27–37. doi: 10.1016/j.cbi.2016.03.012. PubMed DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38, 27–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Chatterjee T., Pal A., Dey S., Chatterjee B.K., Chakrabarti P. Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PLoS ONE. 2012;7:e37468. doi: 10.1371/journal.pone.0037468. PubMed DOI PMC

Petitpas I., Petersen C.E., Ha C.E., Bhattacharya A.A., Zunszain P.A., Ghuman J., Bhagavan N.V., Curry S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA. 2003;100:6440–6445. doi: 10.1073/pnas.1137188100. PubMed DOI PMC

Di L., Kerns E.H., Li S.Q., Petusky S.L. High throughput microsomal stability assay for insoluble compounds. Int. J. Pharm. 2006;317:54–60. doi: 10.1016/j.ijpharm.2006.03.007. PubMed DOI

Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta Int. J. Clin. Chem. 1978;90:37–43. doi: 10.1016/0009-8981(78)90081-5. PubMed DOI

Kertys M., Grendar M., Horak V., Zidekova N., Kupcova Skalnikova H., Mokry J., Halasova E., Strnadel J. Metabolomic characterisation of progression and spontaneous regression of melanoma in the melanoma-bearing Libechov minipig model. Melanoma Res. 2021;31:140–151. doi: 10.1097/CMR.0000000000000722. PubMed DOI

Kertys M., Grendar M., Kosutova P., Mokra D., Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020;1866:165572. doi: 10.1016/j.bbadis.2019.165572. PubMed DOI

Pena M.J., Heinzel A., Rossing P., Parving H.H., Dallmann G., Rossing K., Andersen S., Mayer B., Heerspink H.J. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus. J. Transl. Med. 2016;14:203. doi: 10.1186/s12967-016-0960-3. PubMed DOI PMC

Petrova K., Kello M., Kuruc T., Backorova M., Petrovova E., Vilkova M., Goga M., Rucova D., Backor M., Mojzis J. Potential Effect of Pseudevernia furfuracea (L.) Zopf Extract and Metabolite Physodic Acid on Tumour Microenvironment Modulation in MCF-10A Cells. Biomolecules. 2021;11:420. doi: 10.3390/biom11030420. PubMed DOI PMC

Zhang G., Wang L., Pan J. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 2012;60:2721–2729. doi: 10.1021/jf205260g. PubMed DOI

Lakowicz J.R. Principles of Fluorescence Spectroscopy. 2013. [(accessed on 10 May 2022)]. Available online: https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5590161.

Topală T., Bodoki A., Oprean L., Oprean R. Bovine serum albumin interactions with metal complexes. Clujul Med. 2014;87:215. doi: 10.15386/cjmed-357. PubMed DOI PMC

Feroz S.R., Mohamad S.B., Bujang N., Malek S.N., Tayyab S. Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. J. Agric. Food Chem. 2012;60:5899–5908. doi: 10.1021/jf301139h. PubMed DOI

Li X., Chen D., Wang G., Lu Y. Study of interaction between human serum albumin and three antioxidants: Ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem. 2013;70:22–36. doi: 10.1016/j.ejmech.2013.09.033. PubMed DOI

Schellman J.A. Temperature, stability, and the hydrophobic interaction. Biophys. J. 1997;73:2960–2964. doi: 10.1016/S0006-3495(97)78324-3. PubMed DOI PMC

Wani T.A., Bakheit A.H., Al-Majed A.-R.A., Bhat M.A., Zargar S. Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1,3-Dioxo-1,3-dihydro-2 H-isoindol-2-yl)-N′-[(4-ethoxy-phenyl) methylidene] benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules. 2017;22:1258. doi: 10.3390/molecules22081258. PubMed DOI PMC

Alsaif N.A., Wani T.A., Bakheit A.H., Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int. J. Biol. Macromol. 2020;165:2451–2461. doi: 10.1016/j.ijbiomac.2020.10.098. PubMed DOI

Huang S., Qiu H., Lu S., Zhu F., Xiao Q. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches. J. Hazard. Mater. 2015;285:18–26. doi: 10.1016/j.jhazmat.2014.11.019. PubMed DOI

National Research Council (US) Committee on Recognition and Alleviation of Distress in Laboratory Animals . Appendix, Tools to Monitor and Assess Health Status and Well-Being in Stress and Distress. National Academies Press (US); Washington, DC, USA: 2008. PubMed

Pedlar C.R., Newell J., Lewis N.A. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med. 2019;49((Suppl. S2)):185–198. doi: 10.1007/s40279-019-01158-x. PubMed DOI PMC

Leskanicova A., Chovancova O., Babincak M., Blicharova A., Kolesarova M., Macekova D., Kostolny J., Smajda B., Kiskova T. Defining sex differences in selected lipid metabolites of blood plasma in Wistar rats. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2019;70:631–639. doi: 10.26402/jpp.2019.4.14. PubMed DOI

Leskanicova A., Chovancova O., Babincak M., Verboova L., Benetinova Z., Macekova D., Kostolny J., Smajda B., Kiskova T. Sexual Dimorphism in Energy Metabolism of Wistar Rats Using Data Analysis. Molecules. 2020;25:2353. doi: 10.3390/molecules25102353. PubMed DOI PMC

Elečko J., Vilková M., Frenák R., Routray D., Ručová D., Bačkor M., Goga M. A Comparative Study of Isolated Secondary Metabolites from Lichens and Their Antioxidative Properties. Plants. 2022;11:1077. doi: 10.3390/plants11081077. PubMed DOI PMC

Melo M.G., dos Santos J.P., Serafini M.R., Caregnato F.F., Pasquali M.A., Rabelo T.K., da Rocha R.F., Quintans L., Jr., Araújo A.A., da Silva F.A., et al. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol. In Vitro. 2011;25:462–468. doi: 10.1016/j.tiv.2010.11.014. PubMed DOI

Prokopev I.A., Filippova G.V. Antioxidant Activity of Secondary Metabolites from Cladonia Lichens. Chem. Nat. Compd. 2019;55:945–947. doi: 10.1007/s10600-019-02855-9. DOI

De Melo M.G.D., Araújo A.A.d.S., Serafini M.R., Carvalho L.F., Bezerra M.S., Ramos C.S., Bonjardim L.R., Albuquerque-Júnior R.L.C., Lima J.T., Siqueira R.S., et al. Anti-inflammatory and toxicity studies of atranorin extracted from Cladina kalbii Ahti in rodents. Braz. J. Pharm. Sci. 2011;47:861–872. doi: 10.1590/S1984-82502011000400024. DOI

Vos C., McKinney P., Pearson C., Heiny E., Gunawardena G., Holt E.A. The optimal extraction and stability of atranorin from lichens, in relation to solvent and pH. Lichenologist. 2018;50:499–512. doi: 10.1017/S0024282918000075. DOI

Ojha M., Kil Y.S., Youn U.J., Ok Y.J., Choi H., Nam J.W. Compositional variation of atranorin-related components of lichen Myelochroa leucotyliza dependent on extraction solvent and their quantitative analysis by qHNMR. Phytochem. Anal. 2021;32:1067–1073. doi: 10.1002/pca.3048. PubMed DOI

Bossi R., Rastogi S.C., Bernard G., Gimenez-Arnau E., Johansen J.D., Lepoittevin J.P., Menné T. A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes. J. Sep. Sci. 2004;27:537–540. doi: 10.1002/jssc.200301696. PubMed DOI

Hiserodt R.D., Swijter D.F., Mussinan C.J. Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization. J. Chromatogr. A. 2000;888:103–111. doi: 10.1016/S0021-9673(00)00495-7. PubMed DOI

Toledo Marante F.J., García Castellano A., Estévez Rosas F., Quintana Aguiar J., Bermejo Barrera J. Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: Phytotoxicity and antioxidative activity. J. Chem. Ecol. 2003;29:2049–2071. doi: 10.1023/A:1025682318001. PubMed DOI

Papaioannou M., Schleich S., Prade I., Degen S., Roell D., Schubert U., Tanner T., Claessens F., Matusch R., Baniahmad A. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J. Cell. Mol. Med. 2009;13:2210–2223. doi: 10.1111/j.1582-4934.2008.00426.x. PubMed DOI PMC

Roell D., Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol. Cell. Endocrinol. 2011;332:1–8. doi: 10.1016/j.mce.2010.09.013. PubMed DOI

Guo L., Shi Q., Fang J.-L., Mei N., Ali A.A., Lewis S.M., Leakey J.E.A., Frankos V.H. Review of usnic acid and Usnea barbata toxicity. J. Env. Sci. Health C Env. Carcinog. Ecotoxicol. Rev. 2008;26:317–338. doi: 10.1080/10590500802533392. PubMed DOI PMC

Krishna D.R., Venkataramana D. Pharmacokinetics of D(+)-usnic acid in rabbits after intravenous and oral administration. Drug Metab. Dispos. Biol. Fate Chem. 1992;20:909–911. PubMed

Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Jr., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. Biol. Fate Chem. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI

Siddalingappa B., Benson H.A., Brown D.H., Batty K.T., Chen Y. Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: Investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile. PLoS ONE. 2015;10:e0118824. doi: 10.1371/journal.pone.0118824. PubMed DOI PMC

Springer M., Moco S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients. 2019;11:143. doi: 10.3390/nu11010143. PubMed DOI PMC

Álvarez A.I., Vallejo F., Barrera B., Merino G., Prieto J.G., Tomás-Barberán F., Espín J.C. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab. Dispos. Biol. Fate Chem. 2011;39:2008–2012. doi: 10.1124/dmd.111.040881. PubMed DOI

Levitt D.G., Levitt M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016;9:229–255. doi: 10.2147/IJGM.S102819. PubMed DOI PMC

López-Yerena A., Perez M., Vallverdú-Queralt A., Escribano-Ferrer E. Insights into the Binding of Dietary Phenolic Compounds to Human Serum Albumin and Food-Drug Interactions. Pharmaceutics. 2020;12:1123. doi: 10.3390/pharmaceutics12111123. PubMed DOI PMC

Zhang Y., Shi S., Chen X., Zhang W., Huang K., Peng M. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food–drug interference. J. Agric. Food Chem. 2011;59:8499–8506. doi: 10.1021/jf201796x. PubMed DOI

Chudzik M., Maciążek-Jurczyk M., Pawełczak B., Sułkowska A. Spectroscopic Studies on the Molecular Ageing of Serum Albumin. Molecules. 2016;22:34. doi: 10.3390/molecules22010034. PubMed DOI PMC

Tabassum S., Ahmad M., Afzal M., Zaki M., Bharadwaj P.K. Synthesis and structure elucidation of a copper (II) Schiff-base complex: In vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies. J. Photochem. Photobiol. B Biol. 2014;140:321–331. doi: 10.1016/j.jphotobiol.2014.08.015. PubMed DOI

Zhang Z., Yang M., Yi J., Zhu Q., Huang C., Chen Y., Li J., Yang B., Zhao X. Comprehensive insights into the interactions of two emerging bromophenolic DBPs with human serum albumin by multispectroscopy and molecular docking. ACS Omega. 2019;4:563–572. doi: 10.1021/acsomega.8b03116. DOI

Khanna D., Peltzer C., Kahar P., Parmar M.S. Body Mass Index (BMI): A Screening Tool Analysis. Cureus. 2022;14:e22119. doi: 10.7759/cureus.22119. PubMed DOI PMC

Aparicio V.A., Nebot E., García-del Moral R., Machado-Vílchez M., Porres J.M., Sánchez C., Aranda P. High-protein diets and renal status in rats. Nutr. Hosp. 2013;28:232–237. doi: 10.3305/nh.2013.28.1.6165. PubMed DOI

Bazzano T., Restel T.I., Porfirio L.C., Souza A.S., Silva I.S. Renal biomarkers of male and female Wistar rats (Rattus norvegicus) undergoing renal ischemia and reperfusion. Acta Cir. Bras. 2015;30:277–288. doi: 10.1590/S0102-865020150040000007. PubMed DOI

Monteomo G.F., Kamagate A., Yapo A.P. Effects of metabolic syndrome on blood cells to Wistar rats. J. Diabetes Metab. Disord. Control. 2018;5:222–225. doi: 10.15406/jdmdc.2018.05.00170. DOI

Pérez-López F.R., Larrad-Mur L., Kallen A., Chedraui P., Taylor H.S. Gender differences in cardiovascular disease: Hormonal and biochemical influences. Reprod. Sci. 2010;17:511–531. doi: 10.1177/1933719110367829. PubMed DOI PMC

Franconi F., Brunelleschi S., Steardo L., Cuomo V. Gender differences in drug responses. Pharmacol. Res. 2007;55:81–95. doi: 10.1016/j.phrs.2006.11.001. PubMed DOI

Zucker I., Prendergast B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020;11:32. doi: 10.1186/s13293-020-00308-5. PubMed DOI PMC

Elbaradie K.B.Y., Wang Y., Boyan B.D., Schwartz Z. Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2013;1833:1165–1172. doi: 10.1016/j.bbamcr.2012.12.022. PubMed DOI

Ros P., Díaz F., Freire-Regatillo A., Argente Arizón P., Barrios V., Argente J., Chowen J. Sex Differences in Long-term Metabolic Effects of Maternal Resveratrol Intake in Adult Rat Offspring. Endocrinology. 2020;161:bqaa090. doi: 10.1210/endocr/bqaa090. PubMed DOI

Wagnerova A., Babickova J., Liptak R., Vlkova B., Celec P., Gardlik R. Sex Differences in the Effect of Resveratrol on DSS-Induced Colitis in Mice. Gastroenterol. Res. Pract. 2017;2017:8051870. doi: 10.1155/2017/8051870. PubMed DOI PMC

Lutterschmidt D.I., Wilczynski W. Sexually dimorphic effects of melatonin on brain arginine vasotocin immunoreactivity in green treefrogs (Hyla cinerea) Brain Behav. Evol. 2012;80:222–232. doi: 10.1159/000341238. PubMed DOI PMC

Goodin M., Bray B., Rosengren R. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epigallocatechin (ECG) in the mouse. Food Chem. Toxicol. 2006;44:1496–1504. doi: 10.1016/j.fct.2006.04.012. PubMed DOI

Shokouhi G., Kosari-Nasab M., Salari A.-A. Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sci. 2020;257:118049. doi: 10.1016/j.lfs.2020.118049. PubMed DOI

Belovicova K., Bogi E., Csatlosova K., Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip. Toxicol. 2017;10:40–43. doi: 10.1515/intox-2017-0006. PubMed DOI PMC

Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002;134:49–57. doi: 10.1016/S0166-4328(01)00452-1. PubMed DOI

Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI

Smith R., Taylor S., Wilson R.C., Chuning A.E., Persich M.R., Wang S., Killgore W.D.S. Lower Levels of Directed Exploration and Reflective Thinking Are Associated With Greater Anxiety and Depression. Front. Psychiatry. 2022;12:782136. doi: 10.3389/fpsyt.2021.782136. PubMed DOI PMC

Blanco N.J., Otto A.R., Maddox W.T., Beevers C.G., Love B.C. The influence of depression symptoms on exploratory decision-making. Cognition. 2013;129:563–568. doi: 10.1016/j.cognition.2013.08.018. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...