• This record comes from PubMed

GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways

. 2022 Oct ; 55 (10) : e13310. [epub] 20220803

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/15_003/0000492 European Regional Development Fund
Project 856871-TRANSTEM Horizon 2020 Framework Programme

OBJECTIVE: GDF11 is a member of the TGF-β superfamily that was recently implicated as potential "rejuvenating" factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. METHODS: We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre-adipocyte cell lines. RESULTS: Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre-adipocytes by ALK5-SMAD2/3 activation in cooperation with the WNT/β-catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. CONCLUSION: We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11-based "anti-obesity" therapy.

Anatomy and Physiopathology Division Department of Clinical and Experimental Sciences University of Brescia Brescia Italy

CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic

Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición Madrid Spain

Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina Universitat de Barcelona Barcelona Spain

Department of Anatomy and Cell Biology Research Institute of the Medical University Varna Bulgaria

Department of Biomedical and Biotechnological Sciences Human Anatomy and Histology Section School of Medicine University of Catania Catania Italy

Department of Translational Stem Cell Biology Research Institute of the Medical University Varna Bulgaria

Division of Pediatric Endocrinology and Diabetes Department of Pediatrics and Adolescent Medicine University of Ulm Ulm Germany

Faculty of Medicine Department of Pathological Physiology Masaryk University Brno Czech Republic

Institut de Recerca Hospital Sant Joan de Déu Barcelona Spain

Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs University of Brescia Brescia Italy

International Clinical Research Center St Anne's University Hospital Brno Czech Republic

National Center for Biomolecular Research Masaryk University Brno Czech Republic

Psychogenics Inc Tarrytown New York USA

Research Center for Toxic Compounds in the Environment Masaryk University Brno Czech Republic

See more in PubMed

Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191‐200. PubMed PMC

Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose tissue: a neglected enigma. Gen Comp Endocrinol. 2011;174(1):1‐4. PubMed

Frohlich J, Chaldakov GN, Vinciguerra M. Cardio‐ and neurometabolic adipobiology: consequences and implications for therapy. Int J Mol Sci. 2021;22(8):4137. PubMed PMC

Birbrair A, Zhang T, Wang ZM, et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22(16):2298‐2314. PubMed PMC

Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci. 2013;126(Pt 7):1541‐1552. PubMed

McLaughlin T, Craig C, Liu LF, et al. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin‐resistant and insulin‐sensitive humans. Diabetes. 2016;65(5):1245‐1254. PubMed PMC

Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308(11):1150‐1159. PubMed PMC

Global, B.M.I.M.C , di Angelantonio E, Bhupathiraju S, Wormser D, et al. Body‐mass index and all‐cause mortality: individual‐participant‐data meta‐analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776‐786. PubMed PMC

Bays H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):345‐351. PubMed PMC

Hausman GJ, Hausman DB. Search for the preadipocyte progenitor cell. J Clin Invest. 2006;116(12):3103‐3106. PubMed PMC

Roberts R, Hodson L, Dennis AL, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52(5):882‐890. PubMed

Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715‐736. PubMed

Cohen P, Spiegelman BM. Cell biology of fat storage. Mol Biol Cell. 2016;27(16):2523‐2527. PubMed PMC

David CJ, Massague J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419‐435. PubMed PMC

Blazquez‐Medela AM, Jumabay M, Bostrom KI. Beyond the bone: bone morphogenetic protein signaling in adipose tissue. Obes Rev. 2019;20(5):648‐658. PubMed PMC

Shin S, Seong JK, Bae YS. Ahnak stimulates BMP2‐mediated adipocyte differentiation through Smad1 activation. Obesity (Silver Spring). 2016;24(2):398‐407. PubMed

Hammarstedt A, Hedjazifar S, Jenndahl L, et al. WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4. Proc Natl Acad Sci. 2013;110(7):2563‐2568. PubMed PMC

Gustafson B, Hammarstedt A, Hedjazifar S, Smith U. Restricted adipogenesis in hypertrophic obesity. Diabetes. 2013;62(9):2997‐3004. PubMed PMC

Casana E, Jimenez V, Sacristan V, et al. BMP7 overexpression in adipose tissue induces white adipogenesis and improves insulin sensitivity in ob/ob mice. Int J Obes (Lond). 2021;45(2):449‐460. PubMed

Ahdjoudj S, Kaabeche K, Holy X, et al. Transforming growth factor‐beta inhibits CCAAT/enhancer‐binding protein expression and PPARgamma activity in unloaded bone marrow stromal cells. Exp Cell Res. 2005;303(1):138‐147. PubMed

Elsafadi M, Shinwari T, al‐Malki S, et al. Convergence of TGFbeta and BMP signaling in regulating human bone marrow stromal cell differentiation. Sci Rep. 2019;9(1):4977. PubMed PMC

Choy L, Derynck R. Transforming growth factor‐beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer‐binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem. 2003;278(11):9609‐9619. PubMed

Abou‐Ezzi G, Supakorndej T, Zhang J, et al. TGF‐beta signaling plays an essential role in the lineage specification of mesenchymal stem/progenitor cells in fetal bone marrow. Stem Cell Rep. 2019;13(1):48‐60. PubMed PMC

Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res. 2016;118(7):1125‐1141. PubMed PMC

Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age‐related cardiac hypertrophy. Cell. 2013;153(4):828‐839. PubMed PMC

Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age‐related dysfunction in mouse skeletal muscle. Science (New York, N.Y.). 2014;344(6184):649‐652. PubMed PMC

Li H, Li Y, Xiang L, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet beta‐cell function and survival. Diabetes. 2017;66(7):1914‐1927. PubMed

Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science (New York, NY). 2014;344(6184):630‐634. PubMed PMC

Zhang W, Guo Y, Li B, et al. GDF11 rejuvenates cerebrovascular structure and function in an animal model of Alzheimer's disease. J Alzheimers Dis. 2018;62(2):807‐819. PubMed

Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164‐174. PubMed PMC

Hinken AC, Powers JM, Luo G, Holt JA, Billin AN, Russell AJ. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell. 2016;15(3):582‐584. PubMed PMC

Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol. 2019;54(2):174‐183. PubMed

Rodgers BD, Eldridge JA. Reduced circulating GDF11 is unlikely responsible for age‐dependent changes in mouse heart, muscle, and brain. Endocrinology. 2015;156(11):3885‐3888. PubMed

Smith SC, Zhang X, Zhang X, et al. GDF11 does not rescue aging‐related pathological hypertrophy. Circ Res. 2015;117(11):926‐932. PubMed PMC

Hammers DW, Merscham‐Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9(4):531‐544. PubMed PMC

Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload‐induced hypertrophy, but can cause severe cachexia and premature death. Circ Res. 2018;123(11):1220‐1231. PubMed PMC

Jones JE, Cadena SM, Gong C, et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 2018;22(6):1522‐1530. PubMed

Dai Z, Song G, Balakrishnan A, et al. Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut. 2019;69(6):1104‐1115. PubMed PMC

Lu B, Zhong J, Pan J, et al. Gdf11 gene transfer prevents high fat diet‐induced obesity and improves metabolic homeostasis in obese and STZ‐induced diabetic mice. J Transl Med. 2019;17(1):422. PubMed PMC

McPherron AC. Metabolic functions of myostatin and Gdf11. Immunol Endocr Metab Agents Med Chem. 2010;10(4):217‐231. PubMed PMC

Katsimpardi L, Kuperwasser N, Camus C, et al. Systemic GDF11 stimulates the secretion of adiponectin and induces a calorie restriction‐like phenotype in aged mice. Aging Cell. 2020;19(1):e13038. PubMed PMC

Luo H, Guo Y, Liu Y, et al. Growth differentiation factor 11 inhibits adipogenic differentiation by activating TGF‐beta/Smad signalling pathway. Cell Prolif. 2019;52(4):e12631. PubMed PMC

Arsenijevic T, Grégoire F, Delforge V, Delporte C, Perret J. Murine 3T3‐L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. PLoS One. 2012;7(5):e37517. PubMed PMC

Pazienza V, Panebianco C, Rappa F, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45. PubMed PMC

Lo Re O, Maugeri A, Hruskova J, et al. Obesity‐induced nucleosome release predicts poor cardio‐metabolic health. Clin Epigenetics. 2019;12(1):2. PubMed PMC

Wabitsch M, Brenner RE, Melzner I, et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes (Lond). 2001;25(1):8‐15. PubMed

Fischer‐Posovszky P, Newell FS, Wabitsch M, Tornqvist HE. Human SGBS cells: a unique tool for studies of human fat cell biology. Obes Facts. 2008;1(4):184‐189. PubMed PMC

Benegiamo G, Mazzoccoli G, Cappello F, et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS One. 2013;8(4):e60527. PubMed PMC

Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy‐induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594‐606. PubMed PMC

Vinciguerra M, Veyrat‐Durebex C, Moukil MA, Rubbia–Brandt L, Rohner–Jeanrenaud F, Foti M. PTEN Down‐regulation by unsaturated fatty acids triggers hepatic steatosis via an NF‐κBp65/mTOR‐dependent mechanism. Gastroenterology. 2008;134(1):268‐280. PubMed

Benegiamo G, Vinciguerra M, Mazzoccoli G, Piepoli A, Andriulli A, Pazienza V. DNA methyltransferases 1 and 3b expression in Huh‐7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598‐1603. PubMed

Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5‐dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158920. PubMed

Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607‐D613. PubMed PMC

Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012;4(9):a008417. PubMed PMC

Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: The anti‐adipogenic role of AMP‐activated protein kinase. Front Mol Biosci. 2020;7:76. PubMed PMC

Shao X, Wang M, Wei X, et al. Peroxisome proliferator‐activated receptor‐γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther. 2016;11(3):282‐289. PubMed

Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614‐620. PubMed

de Winter TJJ, Nusse R. Running against the Wnt: how Wnt/β‐catenin suppresses adipogenesis. Front Cell Dev Biol. 2021;9:140. PubMed PMC

DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000‐1007. PubMed

Chadt A, Al‐Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020;472(9):1273‐1298. PubMed PMC

Zhang Y, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017;8(46):81604‐81616. PubMed PMC

Harmon EB, Apelqvist ÅA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3+ islet progenitor cell number and promotes beta‐cell differentiation in pancreas development. Development. 2004;131(24):6163‐6174. PubMed

Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118(1):29‐37. PubMed PMC

Harper SC, Brack A, MacDonnell S, et al. Is growth differentiation factor 11 a realistic therapeutic for aging‐dependent muscle defects? Circ Res. 2016;118(7):1143‐1150. PubMed PMC

Lee M‐J. Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochim Biophys Acta. 2018;1864(4):1160‐1171. PubMed

Liang X, Kanjanabuch T, Mao SL, et al. Plasminogen activator inhibitor‐1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab. 2006;290(1):E103‐E113. PubMed

Lopez‐Legarrea P, Mansego ML, Zulet MA, Martinez JA. SERPINE1, PAI‐1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction. J Clin Biochem Nutr. 2013;53(3):139‐144. PubMed PMC

Zhao Y, Ling F, Griffin TM, et al. Up‐regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) genes in white adipose tissue of Id1 protein‐deficient mice. J Biol Chem. 2014;289(42):29112‐29122. PubMed PMC

Guo X, Wang X‐F. Signaling cross‐talk between TGF‐β/BMP and other pathways. Cell Res. 2009;19(1):71‐88. PubMed PMC

Attisano L, Labbé E. TGFbeta and Wnt pathway cross‐talk. Cancer Metastasis Rev. 2004;23(1–2):53‐61. PubMed

Warner DR, Greene RM, Pisano MM. Cross‐talk between the TGFbeta and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. FEBS Lett. 2005;579(17):3539‐3546. PubMed

Miller DSJ, Schmierer B, Hill CS. TGF‐β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci. 2019;132(14):jcs234039. PubMed PMC

Aykul S, Martinez‐Hackert E. Transforming growth factor‐β family ligands can function as antagonists by competing for type II receptor binding. J Biol Chem. 2016;291(20):10792‐10804. PubMed PMC

Suh J, Lee Y‐S. Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med. 2020;52(10):1673‐1693. PubMed PMC

Lu H, Ward MG, Adeola O, Ajuwon KM. Regulation of adipocyte differentiation and gene expression‐crosstalk between TGFβ and wnt signaling pathways. Mol Biol Rep. 2013;40(9):5237‐5245. PubMed

Mei W, Xiang G, Li Y, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E‐null mice. Mol Ther. 2016;24(11):1926‐1938. PubMed PMC

Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11‐deficient mice. Dev Dyn. 2006;235(11):3016‐3025. PubMed

Gao M, Zhang C, Ma Y, Bu L, Yan L, Liu D. Hydrodynamic delivery of mIL10 gene protects mice from high‐fat diet‐induced obesity and glucose intolerance. Mol Ther. 2013;21(10):1852‐1861. PubMed PMC

Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance. J Clin Invest. 2003;112(12):1821‐1830. PubMed PMC

Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin‐mediated glucose uptake in insulin resistance: role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749‐758. PubMed

Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524‐529. PubMed

Diez JJ, Iglesias P. The role of the novel adipocyte‐derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148(3):293‐300. PubMed

Ukkola O, Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med (Berl). 2002;80(11):696‐702. PubMed

Miller KN, Burhans MS, Clark JP, et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell. 2017;16(3):497‐507. PubMed PMC

Frohlich J, Kovacovicova K, Mazza T, et al. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY). 2020;12(20):20024‐20046. PubMed PMC

Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? Geroscience. 2020;42(6):1475‐1498. PubMed PMC

Bates R, Huang W, Cao L. Adipose tissue: an emerging target for adeno‐associated viral vectors. Mol Ther Methods Clin Dev. 2020;19:236‐249. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...