GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/15_003/0000492
European Regional Development Fund
Project 856871-TRANSTEM
Horizon 2020 Framework Programme
PubMed
35920128
PubMed Central
PMC9528760
DOI
10.1111/cpr.13310
Knihovny.cz E-resources
- MeSH
- Adipogenesis * MeSH
- Adiponectin metabolism MeSH
- beta Catenin * metabolism MeSH
- Cell Differentiation physiology MeSH
- Glucose metabolism MeSH
- Insulin metabolism MeSH
- Bone Morphogenetic Proteins metabolism MeSH
- Humans MeSH
- Mice MeSH
- Smad2 Protein MeSH
- Smad3 Protein MeSH
- Smad Proteins, Receptor-Regulated MeSH
- Growth Differentiation Factors metabolism MeSH
- Wnt Signaling Pathway MeSH
- Receptor, Transforming Growth Factor-beta Type I MeSH
- Transforming Growth Factor beta metabolism MeSH
- Adipocytes metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adiponectin MeSH
- beta Catenin * MeSH
- GDF11 protein, human MeSH Browser
- Gdf11 protein, mouse MeSH Browser
- Glucose MeSH
- Insulin MeSH
- Bone Morphogenetic Proteins MeSH
- Smad2 Protein MeSH
- Smad3 Protein MeSH
- Smad Proteins, Receptor-Regulated MeSH
- Growth Differentiation Factors MeSH
- SMAD2 protein, human MeSH Browser
- Smad2 protein, mouse MeSH Browser
- SMAD3 protein, human MeSH Browser
- Smad3 protein, mouse MeSH Browser
- Receptor, Transforming Growth Factor-beta Type I MeSH
- TGFBR1 protein, human MeSH Browser
- Tgfbr1 protein, mouse MeSH Browser
- Transforming Growth Factor beta MeSH
OBJECTIVE: GDF11 is a member of the TGF-β superfamily that was recently implicated as potential "rejuvenating" factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. METHODS: We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre-adipocyte cell lines. RESULTS: Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre-adipocytes by ALK5-SMAD2/3 activation in cooperation with the WNT/β-catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. CONCLUSION: We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11-based "anti-obesity" therapy.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición Madrid Spain
Department of Anatomy and Cell Biology Research Institute of the Medical University Varna Bulgaria
Faculty of Medicine Department of Pathological Physiology Masaryk University Brno Czech Republic
Institut de Recerca Hospital Sant Joan de Déu Barcelona Spain
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
National Center for Biomolecular Research Masaryk University Brno Czech Republic
Psychogenics Inc Tarrytown New York USA
Research Center for Toxic Compounds in the Environment Masaryk University Brno Czech Republic
See more in PubMed
Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191‐200. PubMed PMC
Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose tissue: a neglected enigma. Gen Comp Endocrinol. 2011;174(1):1‐4. PubMed
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio‐ and neurometabolic adipobiology: consequences and implications for therapy. Int J Mol Sci. 2021;22(8):4137. PubMed PMC
Birbrair A, Zhang T, Wang ZM, et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22(16):2298‐2314. PubMed PMC
Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci. 2013;126(Pt 7):1541‐1552. PubMed
McLaughlin T, Craig C, Liu LF, et al. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin‐resistant and insulin‐sensitive humans. Diabetes. 2016;65(5):1245‐1254. PubMed PMC
Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308(11):1150‐1159. PubMed PMC
Global, B.M.I.M.C , di Angelantonio E, Bhupathiraju S, Wormser D, et al. Body‐mass index and all‐cause mortality: individual‐participant‐data meta‐analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776‐786. PubMed PMC
Bays H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):345‐351. PubMed PMC
Hausman GJ, Hausman DB. Search for the preadipocyte progenitor cell. J Clin Invest. 2006;116(12):3103‐3106. PubMed PMC
Roberts R, Hodson L, Dennis AL, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52(5):882‐890. PubMed
Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715‐736. PubMed
Cohen P, Spiegelman BM. Cell biology of fat storage. Mol Biol Cell. 2016;27(16):2523‐2527. PubMed PMC
David CJ, Massague J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419‐435. PubMed PMC
Blazquez‐Medela AM, Jumabay M, Bostrom KI. Beyond the bone: bone morphogenetic protein signaling in adipose tissue. Obes Rev. 2019;20(5):648‐658. PubMed PMC
Shin S, Seong JK, Bae YS. Ahnak stimulates BMP2‐mediated adipocyte differentiation through Smad1 activation. Obesity (Silver Spring). 2016;24(2):398‐407. PubMed
Hammarstedt A, Hedjazifar S, Jenndahl L, et al. WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4. Proc Natl Acad Sci. 2013;110(7):2563‐2568. PubMed PMC
Gustafson B, Hammarstedt A, Hedjazifar S, Smith U. Restricted adipogenesis in hypertrophic obesity. Diabetes. 2013;62(9):2997‐3004. PubMed PMC
Casana E, Jimenez V, Sacristan V, et al. BMP7 overexpression in adipose tissue induces white adipogenesis and improves insulin sensitivity in ob/ob mice. Int J Obes (Lond). 2021;45(2):449‐460. PubMed
Ahdjoudj S, Kaabeche K, Holy X, et al. Transforming growth factor‐beta inhibits CCAAT/enhancer‐binding protein expression and PPARgamma activity in unloaded bone marrow stromal cells. Exp Cell Res. 2005;303(1):138‐147. PubMed
Elsafadi M, Shinwari T, al‐Malki S, et al. Convergence of TGFbeta and BMP signaling in regulating human bone marrow stromal cell differentiation. Sci Rep. 2019;9(1):4977. PubMed PMC
Choy L, Derynck R. Transforming growth factor‐beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer‐binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem. 2003;278(11):9609‐9619. PubMed
Abou‐Ezzi G, Supakorndej T, Zhang J, et al. TGF‐beta signaling plays an essential role in the lineage specification of mesenchymal stem/progenitor cells in fetal bone marrow. Stem Cell Rep. 2019;13(1):48‐60. PubMed PMC
Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res. 2016;118(7):1125‐1141. PubMed PMC
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age‐related cardiac hypertrophy. Cell. 2013;153(4):828‐839. PubMed PMC
Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age‐related dysfunction in mouse skeletal muscle. Science (New York, N.Y.). 2014;344(6184):649‐652. PubMed PMC
Li H, Li Y, Xiang L, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet beta‐cell function and survival. Diabetes. 2017;66(7):1914‐1927. PubMed
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science (New York, NY). 2014;344(6184):630‐634. PubMed PMC
Zhang W, Guo Y, Li B, et al. GDF11 rejuvenates cerebrovascular structure and function in an animal model of Alzheimer's disease. J Alzheimers Dis. 2018;62(2):807‐819. PubMed
Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164‐174. PubMed PMC
Hinken AC, Powers JM, Luo G, Holt JA, Billin AN, Russell AJ. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell. 2016;15(3):582‐584. PubMed PMC
Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol. 2019;54(2):174‐183. PubMed
Rodgers BD, Eldridge JA. Reduced circulating GDF11 is unlikely responsible for age‐dependent changes in mouse heart, muscle, and brain. Endocrinology. 2015;156(11):3885‐3888. PubMed
Smith SC, Zhang X, Zhang X, et al. GDF11 does not rescue aging‐related pathological hypertrophy. Circ Res. 2015;117(11):926‐932. PubMed PMC
Hammers DW, Merscham‐Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9(4):531‐544. PubMed PMC
Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload‐induced hypertrophy, but can cause severe cachexia and premature death. Circ Res. 2018;123(11):1220‐1231. PubMed PMC
Jones JE, Cadena SM, Gong C, et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 2018;22(6):1522‐1530. PubMed
Dai Z, Song G, Balakrishnan A, et al. Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut. 2019;69(6):1104‐1115. PubMed PMC
Lu B, Zhong J, Pan J, et al. Gdf11 gene transfer prevents high fat diet‐induced obesity and improves metabolic homeostasis in obese and STZ‐induced diabetic mice. J Transl Med. 2019;17(1):422. PubMed PMC
McPherron AC. Metabolic functions of myostatin and Gdf11. Immunol Endocr Metab Agents Med Chem. 2010;10(4):217‐231. PubMed PMC
Katsimpardi L, Kuperwasser N, Camus C, et al. Systemic GDF11 stimulates the secretion of adiponectin and induces a calorie restriction‐like phenotype in aged mice. Aging Cell. 2020;19(1):e13038. PubMed PMC
Luo H, Guo Y, Liu Y, et al. Growth differentiation factor 11 inhibits adipogenic differentiation by activating TGF‐beta/Smad signalling pathway. Cell Prolif. 2019;52(4):e12631. PubMed PMC
Arsenijevic T, Grégoire F, Delforge V, Delporte C, Perret J. Murine 3T3‐L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. PLoS One. 2012;7(5):e37517. PubMed PMC
Pazienza V, Panebianco C, Rappa F, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45. PubMed PMC
Lo Re O, Maugeri A, Hruskova J, et al. Obesity‐induced nucleosome release predicts poor cardio‐metabolic health. Clin Epigenetics. 2019;12(1):2. PubMed PMC
Wabitsch M, Brenner RE, Melzner I, et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes (Lond). 2001;25(1):8‐15. PubMed
Fischer‐Posovszky P, Newell FS, Wabitsch M, Tornqvist HE. Human SGBS cells: a unique tool for studies of human fat cell biology. Obes Facts. 2008;1(4):184‐189. PubMed PMC
Benegiamo G, Mazzoccoli G, Cappello F, et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS One. 2013;8(4):e60527. PubMed PMC
Borghesan M, Fusilli C, Rappa F, et al. DNA hypomethylation and histone variant macroH2A1 synergistically attenuate chemotherapy‐induced senescence to promote hepatocellular carcinoma progression. Cancer Res. 2016;76(3):594‐606. PubMed PMC
Vinciguerra M, Veyrat‐Durebex C, Moukil MA, Rubbia–Brandt L, Rohner–Jeanrenaud F, Foti M. PTEN Down‐regulation by unsaturated fatty acids triggers hepatic steatosis via an NF‐κBp65/mTOR‐dependent mechanism. Gastroenterology. 2008;134(1):268‐280. PubMed
Benegiamo G, Vinciguerra M, Mazzoccoli G, Piepoli A, Andriulli A, Pazienza V. DNA methyltransferases 1 and 3b expression in Huh‐7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598‐1603. PubMed
Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5‐dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158920. PubMed
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607‐D613. PubMed PMC
Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012;4(9):a008417. PubMed PMC
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: The anti‐adipogenic role of AMP‐activated protein kinase. Front Mol Biosci. 2020;7:76. PubMed PMC
Shao X, Wang M, Wei X, et al. Peroxisome proliferator‐activated receptor‐γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther. 2016;11(3):282‐289. PubMed
Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614‐620. PubMed
de Winter TJJ, Nusse R. Running against the Wnt: how Wnt/β‐catenin suppresses adipogenesis. Front Cell Dev Biol. 2021;9:140. PubMed PMC
DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000‐1007. PubMed
Chadt A, Al‐Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020;472(9):1273‐1298. PubMed PMC
Zhang Y, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017;8(46):81604‐81616. PubMed PMC
Harmon EB, Apelqvist ÅA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3+ islet progenitor cell number and promotes beta‐cell differentiation in pancreas development. Development. 2004;131(24):6163‐6174. PubMed
Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118(1):29‐37. PubMed PMC
Harper SC, Brack A, MacDonnell S, et al. Is growth differentiation factor 11 a realistic therapeutic for aging‐dependent muscle defects? Circ Res. 2016;118(7):1143‐1150. PubMed PMC
Lee M‐J. Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochim Biophys Acta. 2018;1864(4):1160‐1171. PubMed
Liang X, Kanjanabuch T, Mao SL, et al. Plasminogen activator inhibitor‐1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab. 2006;290(1):E103‐E113. PubMed
Lopez‐Legarrea P, Mansego ML, Zulet MA, Martinez JA. SERPINE1, PAI‐1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction. J Clin Biochem Nutr. 2013;53(3):139‐144. PubMed PMC
Zhao Y, Ling F, Griffin TM, et al. Up‐regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) genes in white adipose tissue of Id1 protein‐deficient mice. J Biol Chem. 2014;289(42):29112‐29122. PubMed PMC
Guo X, Wang X‐F. Signaling cross‐talk between TGF‐β/BMP and other pathways. Cell Res. 2009;19(1):71‐88. PubMed PMC
Attisano L, Labbé E. TGFbeta and Wnt pathway cross‐talk. Cancer Metastasis Rev. 2004;23(1–2):53‐61. PubMed
Warner DR, Greene RM, Pisano MM. Cross‐talk between the TGFbeta and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. FEBS Lett. 2005;579(17):3539‐3546. PubMed
Miller DSJ, Schmierer B, Hill CS. TGF‐β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci. 2019;132(14):jcs234039. PubMed PMC
Aykul S, Martinez‐Hackert E. Transforming growth factor‐β family ligands can function as antagonists by competing for type II receptor binding. J Biol Chem. 2016;291(20):10792‐10804. PubMed PMC
Suh J, Lee Y‐S. Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med. 2020;52(10):1673‐1693. PubMed PMC
Lu H, Ward MG, Adeola O, Ajuwon KM. Regulation of adipocyte differentiation and gene expression‐crosstalk between TGFβ and wnt signaling pathways. Mol Biol Rep. 2013;40(9):5237‐5245. PubMed
Mei W, Xiang G, Li Y, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E‐null mice. Mol Ther. 2016;24(11):1926‐1938. PubMed PMC
Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11‐deficient mice. Dev Dyn. 2006;235(11):3016‐3025. PubMed
Gao M, Zhang C, Ma Y, Bu L, Yan L, Liu D. Hydrodynamic delivery of mIL10 gene protects mice from high‐fat diet‐induced obesity and glucose intolerance. Mol Ther. 2013;21(10):1852‐1861. PubMed PMC
Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance. J Clin Invest. 2003;112(12):1821‐1830. PubMed PMC
Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin‐mediated glucose uptake in insulin resistance: role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749‐758. PubMed
Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524‐529. PubMed
Diez JJ, Iglesias P. The role of the novel adipocyte‐derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148(3):293‐300. PubMed
Ukkola O, Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med (Berl). 2002;80(11):696‐702. PubMed
Miller KN, Burhans MS, Clark JP, et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell. 2017;16(3):497‐507. PubMed PMC
Frohlich J, Kovacovicova K, Mazza T, et al. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY). 2020;12(20):20024‐20046. PubMed PMC
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? Geroscience. 2020;42(6):1475‐1498. PubMed PMC
Bates R, Huang W, Cao L. Adipose tissue: an emerging target for adeno‐associated viral vectors. Mol Ther Methods Clin Dev. 2020;19:236‐249. PubMed PMC