Cardio- and Neurometabolic Adipobiology: Consequences and Implications for Therapy
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Project 856871 - TRANSTEM
H2020 Research Infrastructures
Project MAGNET (No. CZ.02.1s01/0.0/0.0/15_003/0000492
European Research Development Fund
PubMed
33923652
PubMed Central
PMC8072708
DOI
10.3390/ijms22084137
PII: ijms22084137
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, BDNF, Klotho, NGF, adipokines, adiponectin, cardiometabolic diseases, irisin, metabotrophic factors,
- MeSH
- Adipokines metabolism MeSH
- Molecular Targeted Therapy methods MeSH
- Humans MeSH
- Metabolic Syndrome drug therapy metabolism MeSH
- Neurodegenerative Diseases drug therapy metabolism MeSH
- Neuropeptides metabolism MeSH
- Nerve Growth Factors metabolism MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Adipokines MeSH
- Neuropeptides MeSH
- Nerve Growth Factors MeSH
Studies over the past 30 years have revealed that adipose tissue is the major endocrine and paracrine organ of the human body. Arguably, adiopobiology has taken its reasonable place in studying obesity and related cardiometabolic diseases (CMDs), including Alzheimer's disease (AD), which is viewed herein as a neurometabolic disorder. The pathogenesis and therapy of these diseases are multiplex at basic, clinical and translational levels. Our present goal is to describe new developments in cardiometabolic and neurometabolic adipobiology. Accordingly, we focus on adipose- and/or skeletal muscle-derived signaling proteins (adipsin, adiponectin, nerve growth factor, brain-derived neuroptrophic factor, neurotrophin-3, irisin, sirtuins, Klotho, neprilysin, follistatin-like protein-1, meteorin-like (metrnl), as well as growth differentiation factor 11) as examples of metabotrophic factors (MTFs) implicated in the pathogenesis and therapy of obesity and related CMDs. We argue that these pathologies are MTF-deficient diseases. In 1993 the "vascular hypothesis of AD" was published and in the present review we propose the "vasculometabolic hypothesis of AD." We discuss how MTFs could bridge CMDs and neurodegenerative diseases, such as AD. Greater insights on how to manage the MTF network would provide benefits to the quality of human life.
See more in PubMed
Stampfer M.J. Cardiovascular disease and Alzheimer’s disease: Common links. J. Intern. Med. 2006;260:211–223. doi: 10.1111/j.1365-2796.2006.01687.x. PubMed DOI
Tini G., Scagliola R., Monacelli F., La Malfa G., Porto I., Brunelli C., Rosa G.M. Alzheimer’s Disease and Cardiovascular Disease: A Particular Association. Cardiol. Res. Pr. 2020;2020:1–10. doi: 10.1155/2020/2617970. PubMed DOI PMC
Santos C.Y., Snyder P.J., Wu W.C., Zhang M., Echeverria A., Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement (Amst.) 2017;7:69–87. doi: 10.1016/j.dadm.2017.01.005. PubMed DOI PMC
Bhat N.R. Linking cardiometabolic disorders to sporadic Alzheimer’s disease: A perspective on potential mechanisms and mediators. J. Neurochem. 2010;115:551–562. doi: 10.1111/j.1471-4159.2010.06978.x. PubMed DOI PMC
Blirando K. Epigenetic Regulation of Adipocytes Phenotype: Implication for Perivascular Adipose Tissue Contribution to Cardiometabolic Diseases. Adipobiology. 2017;8:19–34. doi: 10.14748/adipo.v8.2090. DOI
Ottaviani E., Malagoli D., Franceschi C. The evolution of the adipose tissue: A neglected enigma. Gen. Comp. Endocrinol. 2011;174:1–4. doi: 10.1016/j.ygcen.2011.06.018. PubMed DOI
Coelho M., Oliveira T., Fernandes R. State of the art paper Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013;9:191–200. doi: 10.5114/aoms.2013.33181. PubMed DOI PMC
Chaldakov G., Stankulov I., Hristova M., Ghenev P. Adipobiology of Disease: Adipokines and Adipokine-Targeted Pharmacology. Curr. Pharm. Des. 2003;9:1023–1031. doi: 10.2174/1381612033455152. PubMed DOI
Sacks H., Symonds M.E. Anatomical Locations of Human Brown Adipose Tissue: Functional Relevance and Implications in Obesity and Type 2 Diabetes. Diabetes. 2013;62:1783–1790. doi: 10.2337/db12-1430. PubMed DOI PMC
Cinti S., Vettor R. In: The Adipose Organ, in Adipose Tissue and Infammation. Awad A.B., Bradford P.G., editors. Taylor and Francis Group; Abingdon, UK: 2010. pp. 1–21.
Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nat. Cell Biol. 1994;372:425–432. doi: 10.1038/372425a0. PubMed DOI
Kuhn T.S. The Structure of Scientific Revolutions. University of Chicago Press; Chicago, IL, USA: 1962. p. 172.
Chaldakov G.N., Fiore M. Human body as a multicrine gland. Adipobiology. 2010;2:73. doi: 10.14748/adipo.v2.263. DOI
Sacks H.S., Fain J.N., Holman B., Cheema P., Chary A., Parks F., Karas J., Optican R., Bahouth S.W., Garrett E., et al. Uncoupling Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and Other Adipose Tissues: Epicardial Fat Functioning as Brown Fat. J. Clin. Endocrinol. Metab. 2009;94:3611–3615. doi: 10.1210/jc.2009-0571. PubMed DOI
Iacobellis G., Pistilli D., Gucciardo M., Leonetti F., Miraldi F., Brancaccio G., Gallo P., Di Gioia C.R.T. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005;29:251–255. doi: 10.1016/j.cyto.2004.11.002. PubMed DOI
Giralt M., Villarroya F. White, Brown, Beige/Brite: Different Adipose Cells for Different Functions? Endocrinol. 2013;154:2992–3000. doi: 10.1210/en.2013-1403. PubMed DOI
Frühbeck G., Becerril S., Sáinz N., Garrastachu P., García-Velloso M.J. BAT: A new target for human obesity? Trends Pharm. Sci. 2009;30:387–396. doi: 10.1016/j.tips.2009.05.003. PubMed DOI
Colitti M., Montanari T. Brain-derived neurotrophic factor modulates mitochondrial dynamics and thermogenic phenotype on 3T3-L1 adipocytes. Tissue Cell. 2020;66:101388. doi: 10.1016/j.tice.2020.101388. PubMed DOI
Schering L., Hoene M., Kanzleiter T., Jähnert M., Wimmers K., Klaus S., Eckel J., Weigert C., Schürmann A., Maak S., et al. Identification of novel putative adipomyokines by a cross-species annotation of secretomes and expression profiles. Arch. Physiol. Biochem. 2015;121:194–205. doi: 10.3109/13813455.2015.1092044. PubMed DOI
Aloe L., Tirassa P., Lambiase A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharm. Res. 2008;57:253–258. doi: 10.1016/j.phrs.2008.01.010. PubMed DOI
Karatzas A., Katsanos K., Lilis I., Papadaki H., Kitrou P., Lecht S., Marcinkiewicz C., Siablis D., Lelkes P.I., Lazarovici P., et al. NGF Promotes Hemodynamic Recovery in a Rabbit Hindlimb Ischemic Model Through trkA- and VEGFR2-dependent Pathways. J. Cardiovasc. Pharm. 2013;62:270–277. doi: 10.1097/FJC.0b013e3182982de7. PubMed DOI
Meek T.H., Wisse B.E., Thaler J.P., Guyenet S.J., Matsen M.E., Fischer J.D., Taborsky G.J., Schwartz M.W., Morton G.J. BDNF Action in the Brain Attenuates Diabetic Hyperglycemia via Insulin-Independent Inhibition of Hepatic Glucose Production. Diabetes. 2012;62:1512–1518. doi: 10.2337/db12-0837. PubMed DOI PMC
Rao A.A. Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation. 2013;9:551–554. doi: 10.6026/97320630009551. PubMed DOI PMC
Lebrun B., Bariohay B., Moyse E., Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview. Auton. Neurosci. 2006;126–127:30–38. doi: 10.1016/j.autneu.2006.02.027. PubMed DOI
Lichtman J.W., Sanes J.R. Ome sweet ome: What can the genome tell us about the connectome? Curr. Opin. Neurobiol. 2008;18:346–353. doi: 10.1016/j.conb.2008.08.010. PubMed DOI PMC
Graf C., Ferrari N. Metabolic Health—The Role of Adipo-Myokines. Int. J. Mol. Sci. 2019;20:6159. doi: 10.3390/ijms20246159. PubMed DOI PMC
Li F., Li Y., Duan Y., Hu C.-A.A., Tang Y., Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017;33:73–82. doi: 10.1016/j.cytogfr.2016.10.003. PubMed DOI
Trayhurn P., Drevon C.A., Eckel J. Secreted proteins from adipose tissue and skeletal muscle—adipokines, myokines and adipose/muscle cross-talk. Arch. Physiol. Biochem. 2010;117:47–56. doi: 10.3109/13813455.2010.535835. PubMed DOI
Cook K.S., Min H.Y., Johnson D., Chaplinsky R.J., Flier J.S., Hunt C.R., Spiegelman B.M. Adipsin: A circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987;237:402–405. doi: 10.1126/science.3299705. PubMed DOI
Lo J.C., Ljubicic S., Leibiger B., Kern M., Leibiger I.B., Moede T., Kelly M.E., Bhowmick D.C., Murano I., Cohen P., et al. Adipsin is an Adipokine that Improves β Cell Function in Diabetes. Cell. 2014;158:41–53. doi: 10.1016/j.cell.2014.06.005. PubMed DOI PMC
Matsuzawa Y., Funahashi T., Kihara S., Shimomura I. Adiponectin and Metabolic Syndrome. Arter. Thromb. Vasc. Biol. 2004;24:29–33. doi: 10.1161/01.ATV.0000099786.99623.EF. PubMed DOI
Arai Y., Kamide K., Hirose N. Adipokines and Aging: Findings from Centenarians and the Very Old. Front. Endocrinol. 2019;10:142. doi: 10.3389/fendo.2019.00142. PubMed DOI PMC
Peeraully M.R., Jenkins J.R., Trayhurn P. NGF gene expression and secretion in white adipose tissue: Regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. Am. J. Physiol. Metab. 2004;287:E331–E339. doi: 10.1152/ajpendo.00076.2004. PubMed DOI
Sornelli F., Fiore M., Chaldakov G.N., Aloe L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: Results from experimental stress and diabetes. Gen. Physiol. Biophys. 2009;28:179–183. PubMed
Chaldakov G.N., Fiore M., Stankulov I.S., Manni L., Hristova M.G., Antonelli A., Ghenev P.I., Aloe L. Neurotrophin Presence in Human Coronary Atherosclerosis and Metabolic Syndrome: A Role for NGF and BDNF in Cardiovascular Disease? Volume 146. Elsevier BV; Amsterdam, The Netherlands: 2004. pp. 279–289. PubMed
Manni L., Nikolova V., Vyagova D., Chaldakov G.N., Aloe L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int. J. Cardiol. 2005;102:169–171. doi: 10.1016/j.ijcard.2004.10.041. PubMed DOI
Yanev S., Aloe L., Fiore M., Chaldakov G.N. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J. Pharmacol. 2013;2:92–99. doi: 10.5497/wjp.v2.i4.92. DOI
Peter G., Kitanova M., Popov H., Evtimov N., Stoev S., Tonchev A., Chaldakov G. Neuroadipobiology of arrhythmogenic right ventricular dysplasia. An immunohistochemical study of neurotrophins. Adipobiology. 2017;8:55–58. doi: 10.14748/adipo.v8.2214. DOI
Chung H.S., Hwang S.Y., Choi J.H., Lee H.J., Kim N.H., Yoo H.J., Seo J.-A., Kim S.G., Kim N.H., Baik S.H., et al. Implications of circulating Meteorin-like (Metrnl) level in human subjects with type 2 diabetes. Diabetes Res. Clin. Pr. 2018;136:100–107. doi: 10.1016/j.diabres.2017.11.031. PubMed DOI
Jung T.W., Pyun D.H., Kim T.J., Lee H.J., Park E.S., El-Aty A.A., Hwang E.J., Shin Y.K., Jeong J.H. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ–mediated signaling pathways. Adv. Med. Sci. 2021;66:155–161. doi: 10.1016/j.advms.2021.01.007. PubMed DOI
Baht G.S., Bareja A., Lee D.E., Rao R.R., Huang R., Huebner J.L., Bartlett D.B., Hart C.R., Gibson J.R., Lanza I.R., et al. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nat. Metab. 2020;2:278–289. doi: 10.1038/s42255-020-0184-y. PubMed DOI PMC
Xu X., Zhang T., Mokou M., Li L., Li P., Song J., Liu H., Zhu Z., Liu D., Yang M., et al. Follistatin-like 1 as a Novel Adipomyokine Related to Insulin Resistance and Physical Activity. J. Clin. Endocrinol. Metab. 2020;105:4499. doi: 10.1210/clinem/dgaa629. PubMed DOI
Sousa R., Improta-Caria A., Souza B. Exercise–Linked Irisin: Consequences on Mental and Cardiovascular Health in Type 2 Diabetes. Int. J. Mol. Sci. 2021;22:2199. doi: 10.3390/ijms22042199. PubMed DOI PMC
More C.E., Papp C., Harsanyi S., Gesztelyi R., Mikaczo A., Tajti G., Kardos L., Seres I., Lorincz H., Csapo K., et al. Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients. Respir. Res. 2019;20:67. doi: 10.1186/s12931-019-1033-y. PubMed DOI PMC
Lee Y.-H., Tharp W.G., Maple R.L., Nair S., Permana P.A., Pratley R.E. Amyloid Precursor Protein Expression Is Upregulated in Adipocytes in Obesity. Obesity. 2008;16:1493–1500. doi: 10.1038/oby.2008.267. PubMed DOI
Katsuda T., Tsuchiya R., Kosaka N., Yoshioka Y., Takagaki K., Oki K., Takeshita F., Sakai Y., Kuroda M., Ochiya T. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 2013;3:srep01197. doi: 10.1038/srep01197. PubMed DOI PMC
Lester-Coll N., Rivera E.J., Soscia S.J., Doiron K., Wands J.R., de la Monte S.M. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer’s disease. J. Alzheimer’s Dis. 2006;9:13–33. doi: 10.3233/JAD-2006-9102. PubMed DOI
Dali-Youcef N., Lagouge M., Froelich S., Koehl C., Schoonjans K., Auwerx J. Sirtuins: The ’magnificent seven’, function, metabolism and longevity. Ann. Med. 2007;39:335–345. doi: 10.1080/07853890701408194. PubMed DOI
Yoon M.J., Yoshida M., Johnson S., Takikawa A., Usui I., Tobe K., Nakagawa T., Yoshino J., Imai S.-I. SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice. Cell Metab. 2015;21:706–717. doi: 10.1016/j.cmet.2015.04.002. PubMed DOI PMC
Kane A.E., Sinclair D.A. Sirtuins and NAD+in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ. Res. 2018;123:868–885. doi: 10.1161/CIRCRESAHA.118.312498. PubMed DOI PMC
Kuro O.M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2018;15:27–44. doi: 10.1038/s41581-018-0078-3. PubMed DOI
Dërmaku-Sopjani M., Kolgeci S., Abazi S., Sopjani M. Significance of the anti-aging protein Klotho. Mol. Membr. Biol. 2013;30:369–385. doi: 10.3109/09687688.2013.837518. PubMed DOI
Samms R.J., Cheng C.C., Kharitonenkov A., Gimeno R.E., Adams A.C. Overexpression of β-Klotho in Adipose Tissue Sensitizes Male Mice to Endogenous FGF21 and Provides Protection From Diet-Induced Obesity. Endocrinology. 2016;157:1467–1480. doi: 10.1210/en.2015-1722. PubMed DOI
Vo H.T., Laszczyk A.M., King G.D. Klotho, the Key to Healthy Brain Aging? Brain Plast. 2018;3:183–194. doi: 10.3233/BPL-170057. PubMed DOI PMC
Li S.-A., Watanabe M., Yamada H., Nagai A., Kinuta M., Takei K. Immunohistochemical Localization of Klotho Protein in Brain, Kidney, and Reproductive Organs of Mice. Cell Struct. Funct. 2004;29:91–99. doi: 10.1247/csf.29.91. PubMed DOI
Walker R.G., Poggioli T., Katsimpardi L., Buchanan S.M., Oh J., Wattrus S., Heidecker B., Fong Y.W., Rubin L.L., Ganz P., et al. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ. Res. 2016;118:1125–1142. doi: 10.1161/CIRCRESAHA.116.308391. PubMed DOI PMC
Loffredo F.S., Steinhauser M.L., Jay S.M., Gannon J., Pancoast J.R., Yalamanchi P., Sinha M., Dall’Osso C., Khong D., Shadrach J.L., et al. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell. 2013;153:828–839. doi: 10.1016/j.cell.2013.04.015. PubMed DOI PMC
Sinha M., Jang Y.C., Oh J., Khong D., Wu E.Y., Manohar R., Miller C., Regalado S.G., Loffredo F.S., Pancoast J.R., et al. Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle. Science. 2014;344:649–652. doi: 10.1126/science.1251152. PubMed DOI PMC
Conese M., Carbone A., Beccia E., Angiolillo A. The Fountain of Youth: A tale of parabiosis, stem cells, and rejuvenation. Open Med. 2017;12:376–383. doi: 10.1515/med-2017-0053. PubMed DOI PMC
Mei W., Xiang G., Li Y., Li H., Xiang L., Lu J., Xiang L., Dong J., Liu M. GDF11 Protects against Endothelial Injury and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Null Mice. Mol. Ther. 2016;24:1926–1938. doi: 10.1038/mt.2016.160. PubMed DOI PMC
Zhang W., Guo Y., Li B., Zhang Q., Liu J.-H., Gu G.-J., Wang J.-H., Bao R.-K., Chen Y.-J., Xu J.-R. GDF11 Rejuvenates Cerebrovascular Structure and Function in an Animal Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018;62:807–819. doi: 10.3233/JAD-170474. PubMed DOI
Egerman M.A., Cadena S.M., Gilbert J.A., Meyer A., Nelson H.N., Swalley S.E., Mallozzi C., Jacobi C., Jennings L.L., Clay I., et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 2015;22:164–174. doi: 10.1016/j.cmet.2015.05.010. PubMed DOI PMC
Hinken A.C., Powers J.M., Luo G., Holt J.A., Billin A.N., Russell A.J. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell. 2016;15:582–584. doi: 10.1111/acel.12475. PubMed DOI PMC
Hammers D.W., Merscham-Banda M., Hsiao J.Y., Engst S., Hartman J.J., Sweeney H.L. Supraphysiological levels of GDF 11 induce striated muscle atrophy. Embo Mol. Med. 2017;9:531–544. doi: 10.15252/emmm.201607231. PubMed DOI PMC
Harper S.C., Johnson J., Borghetti G., Zhao H., Wang T., Wallner M., Kubo H., Feldsott E.A., Yang Y., Joo Y., et al. GDF11 Decreases Pressure Overload–Induced Hypertrophy, but Can Cause Severe Cachexia and Premature Death. Circ. Res. 2018;123:1220–1231. doi: 10.1161/CIRCRESAHA.118.312955. PubMed DOI PMC
Frohlich J., Kovacovicova K., Mazza T., Emma M.R., Cabibi D., Foti M., Sobolewski C., Oben J.A., Peyrou M., Villarroya F., et al. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging. 2020;12:20024–20046. doi: 10.18632/aging.104182. PubMed DOI PMC
Frohlich J., Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: Friend or foe? GeroScience. 2020;42:1475–1498. doi: 10.1007/s11357-020-00279-w. PubMed DOI PMC
Lu B., Zhong J., Pan J., Yuan X., Ren M., Jiang L., Yang Y., Zhang G., Liu D., Zhang C. Gdf11 gene transfer prevents high fat diet-induced obesity and improves metabolic homeostasis in obese and STZ-induced diabetic mice. J. Transl. Med. 2019;17:1–16. doi: 10.1186/s12967-019-02166-1. PubMed DOI PMC
Dai Z., Song G., Balakrishnan A., Yang T., Yuan Q., Möbus S., Weiss A.-C., Bentler M., Zhu J., Jiang X., et al. Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut. 2019;69:1104–1115. doi: 10.1136/gutjnl-2019-318812. PubMed DOI PMC
Katsimpardi L., Kuperwasser N., Camus C., Moigneu C., Chiche A., Tolle V., Li H., Kokovay E., Lledo P. Systemic GDF11 stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. Aging Cell. 2020;19:e13038. doi: 10.1111/acel.13038. PubMed DOI PMC
Bové M., Monto F., Guillem-Llobat P., Ivorra M.D., Noguera M.A., Zambrano A., Sirerol-Piquer M.S., Requena A.C., García-Alonso M., Tejerina T., et al. NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue. Front. Endocrinol. 2021;12:630097. doi: 10.3389/fendo.2021.630097. PubMed DOI PMC
Ohtsuki T., Satoh K., Shimizu T., Ikeda S., Kikuchi N., Satoh T., Kurosawa R., Nogi M., Sunamura S., Yaoita N., et al. Identification of Adipsin as a Novel Prognostic Biomarker in Patients With Coronary Artery Disease. J. Am. Hear. Assoc. 2019;8:e013716. doi: 10.1161/JAHA.119.013716. PubMed DOI PMC
Poetsch M.S., Strano A., Guan K. Role of Leptin in Cardiovascular Diseases. Front. Endocrinol. 2020;11:354. doi: 10.3389/fendo.2020.00354. PubMed DOI PMC
Wang C.-Y., Liao J.K. A Mouse Model of Diet-Induced Obesity and Insulin Resistance. Methods Mol. Biol. 2012;821:421–433. doi: 10.1007/978-1-61779-430-8_27. PubMed DOI PMC
Korta P., Pocheć E., Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina. 2019;55:485. doi: 10.3390/medicina55080485. PubMed DOI PMC
Martín-Núñez E., Donate-Correa J., Muros-de-Fuentes M., Mora-Fernández C., Navarro-González J.F. Implications of Klotho in vascular health and disease. World J. Card. 2014;6:1262–1269. doi: 10.4330/wjc.v6.i12.1262. PubMed DOI PMC
Friedman G. Omeprazole. Am. J. Gastroenterol. 1987;82:188–191. PubMed
Shimano M., Ouchi N., Nakamura K., Van Wijk B., Ohashi K., Asaumi Y., Higuchi A., Pimentel D.R., Sam F., Murohara T., et al. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc. Natl. Acad. Sci. USA. 2011;108:E899–E906. doi: 10.1073/pnas.1108559108. PubMed DOI PMC
Xiao K., Zou W.-H., Yang Z., Rehman Z.U., Ansari A.R., Yuan H.-R., Zhou Y., Cui L., Peng K.-M., Song H. The role of visfatin on the regulation of inflammation and apoptosis in the spleen of LPS-treated rats. Cell Tissue Res. 2014;359:605–618. doi: 10.1007/s00441-014-1997-3. PubMed DOI
Sethi J.K., Vidal-Puig A. Visfatin: The missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 2005;11:344–347. doi: 10.1016/j.molmed.2005.06.010. PubMed DOI PMC
Thummasorn S., Apaijai N., Kerdphoo S., Shinlapawittayatorn K., Chattipakorn S.C., Chattipakorn N. Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc. Ther. 2016;34:404–414. doi: 10.1111/1755-5922.12210. PubMed DOI
Hazafa A., Batool A., Ahmad S., Amjad M., Chaudhry S.N., Asad J., Ghuman H.F., Khan H.M., Naeem M., Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci. 2021;264:118679. doi: 10.1016/j.lfs.2020.118679. PubMed DOI
Zhou J.-Y., Chan L., Zhou S.-W. Omentin: Linking metabolic syndrome and cardiovascular disease. Curr. Vasc. Pharm. 2014;12:136–143. doi: 10.2174/1570161112999140217095038. PubMed DOI
Kutlay O., Kaygisiz Z., Kaygisiz B. Effect of omentin on cardiovascular functions and gene expressions in isolated rat hearts. Anatol. J. Cardiol. 2019;21:91–97. doi: 10.14744/AnatolJCardiol.2018.52333. PubMed DOI PMC
Cinkajzlová A., Mráz M., Lacinová Z., Kloučková J., Kaválková P., Kratochvílová H., Trachta P., Křížová J., Haluzíková D., Škrha J., et al. Angiopoietin-like protein 3 and 4 in obesity, type 2 diabetes mellitus, and malnutrition: The effect of weight reduction and realimentation. Nutr. Diabetes. 2018;8:1–11. doi: 10.1038/s41387-018-0032-2. PubMed DOI PMC
Waschki B., Kirsten A.-M., Holz O., Meyer T., Lichtinghagen R., Rabe K., Magnussen H., Welte T., Watz H., Janciauskiene S. Angiopoietin-like protein 4 and cardiovascular function in COPD. Bmj Open Respir. Res. 2016;3:e000161. doi: 10.1136/bmjresp-2016-000161. PubMed DOI PMC
Olshan D.S., Rader D.J. Angiopoietin-like protein 4: A therapeutic target for triglycerides and coronary disease? J. Clin. Lipidol. 2018;12:583–587. doi: 10.1016/j.jacl.2018.01.012. PubMed DOI
Méndez-Giménez L., Ezquerro S., Da Silva I.V., Soveral G., Frühbeck G., Rodríguez A. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front. Chem. 2018;6:99. doi: 10.3389/fchem.2018.00099. PubMed DOI PMC
Prudente S., Flex E., Morini E., Turchi F., Capponi D., De Cosmo S., Tassi V., Guida V., Avogaro A., Folli F., et al. A Functional Variant of the Adipocyte Glycerol Channel Aquaporin 7 Gene is Associated with Obesity and Related Metabolic Abnormalities. Diabetes. 2007;56:1468–1474. doi: 10.2337/db06-1389. PubMed DOI
Gladka M., El Azzouzi H., De Windt L.J., Martins P.A.D.C. Aquaporin 7: The glycerol aquaeductus in the heart. Cardiovasc. Res. 2009;83:3–4. doi: 10.1093/cvr/cvp147. PubMed DOI
Chia C.W., Egan J.M. Incretins in obesity and diabetes. Ann. N. Y. Acad. Sci. 2019;1461:104–126. doi: 10.1111/nyas.14211. PubMed DOI PMC
Cariou B. Harnessing the incretin system beyond glucose control: Potential cardiovascular benefits of GLP-1 receptor agonists in type 2 diabetes. Diabetes Metab. 2012;38:298–308. doi: 10.1016/j.diabet.2012.04.003. PubMed DOI
Vergès B., Bonnard C., Renard E. Beyond glucose lowering: Glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system. Diabetes Metab. 2011;37:477–488. doi: 10.1016/j.diabet.2011.07.001. PubMed DOI
Huang C., Wang H.Y., Wang M.E., Hsu M.C., Wu Y.S., Jiang Y.F., Wu L.S., Jong D.S., Chiu C.H. Kisspeptin-Activated Autophagy Independently Suppresses Non-Glucose-Stimulated Insulin Secretion from Pancreatic beta-Cells. Sci. Rep. 2019;9:17451. doi: 10.1038/s41598-019-53826-7. PubMed DOI PMC
Zhang Y., Hou Y., Wang X., Ping J., Ma Z., Suo C., Lei Z., Li X., Zhang Z., Jia C., et al. The effects of kisspeptin-10 on serum metabolism and myocardium in rats. PLoS ONE. 2017;12:e0179164. doi: 10.1371/journal.pone.0179164. PubMed DOI PMC
Xu L., Zhou B., Li H., Liu J., Du J., Zang W., Wu S., Sun H. Serum Levels of Progranulin Are Closely Associated with Microvascular Complication in Type 2 Diabetes. Dis. Markers. 2015;2015:1–9. doi: 10.1155/2015/357279. PubMed DOI PMC
Nicoletto B.B., Canani L.H. The role of progranulin in diabetes and kidney disease. Diabetol. Metab. Syndr. 2015;7:1–8. doi: 10.1186/s13098-015-0112-6. PubMed DOI PMC
Zhu Y., Ohama T., Kawase R., Chang J., Inui H., Kanno K., Okada T., Masuda D., Koseki M., Nishida M., et al. Progranulin deficiency leads to enhanced age-related cardiac hypertrophy through complement C1q-induced beta-catenin activation. J. Mol. Cell Cardiol. 2020;138:197–211. doi: 10.1016/j.yjmcc.2019.12.009. PubMed DOI
Sasaki T., Shimazawa M., Kanamori H., Yamada Y., Nishinaka A., Kuse Y., Suzuki G., Masuda T., Nakamura S., Hosokawa M., et al. Effects of progranulin on the pathological conditions in experimental myocardial infarction model. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-68804-7. PubMed DOI PMC
Chao J., Bledsoe G., Chao L. Protective Role of Kallistatin in Vascular and Organ Injury. Hypertens. 2016;68:533–541. doi: 10.1161/HYPERTENSIONAHA.116.07861. PubMed DOI PMC
Li Z., Yang Y.-L., Zhu Y.-J., Li C.-G., Tang Y.-Z., Ni C.-L., Chen L.-M., Niu W.-Y. Circulating Serum Myonectin Levels in Obesity and Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes. 2019 doi: 10.1055/a-0896-8548. PubMed DOI
Ramirez A.K., Dankel S., Cai W., Sakaguchi M., Kasif S., Kahn C.R. Membrane metallo-endopeptidase (Neprilysin) regulates inflammatory response and insulin signaling in white preadipocytes. Mol. Metab. 2019;22:21–36. doi: 10.1016/j.molmet.2019.01.006. PubMed DOI PMC
Otaka N., Shibata R., Ohashi K., Uemura Y., Kambara T., Enomoto T., Ogawa H., Ito M., Kawanishi H., Maruyama S., et al. Myonectin Is an Exercise-Induced Myokine That Protects the Heart From Ischemia-Reperfusion Injury. Circ. Res. 2018;123:1326–1338. doi: 10.1161/CIRCRESAHA.118.313777. PubMed DOI
Raschke S., Eckel J. Adipo-Myokines: Two Sides of the Same Coin—Mediators of Inflammation and Mediators of Exercise. Mediat. Inflamm. 2013;2013:1–16. doi: 10.1155/2013/320724. PubMed DOI PMC
Motamedi S., Karimi I., Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab. Brain Dis. 2017;32:651–665. doi: 10.1007/s11011-017-9997-0. PubMed DOI
Allam A.R., Sridhar G.R., Thota H., Suresh Babu C., Siva Prasad A., Divakar C. Alzheimer’s disease and Type 2 diabetes mellitus: The cholinesterase connection? Lipids Health Dis. 2006;5:28. PubMed PMC
Tang B.L. Leptin as a neuroprotective agent. Biochem. Biophys. Res. Commun. 2008;368:181–185. doi: 10.1016/j.bbrc.2008.01.063. PubMed DOI
de la Monte S.M., Wands J.R. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J. Diabetes Sci. Technol. 2008;2:1101–1113. doi: 10.1177/193229680800200619. PubMed DOI PMC
Dar T.A., Sheikh I.A., Ganie S.A., Ali R., Singh L.R., Gan S.H., Kamal M.A., Zargar M.A. Molecular linkages between diabetes and Alzheimer’s disease: Current scenario and future prospects. Cns Neurol Disord Drug Targets. 2014;13:290–298. doi: 10.2174/18715273113126660135. PubMed DOI
Aloe L., Tonchev A.B., Maucher A., Fiore M., Zhelezov M.D., Chaldakov G.N. Adipobiology of the brain: From brain diabetes to adipose Alzheimer‘s disease. Adipobiology. 2015;7:37–42. doi: 10.14748/adipo.v7.1559. DOI
Lin A., Peiris N., Dhaliwal H., Hakim M., Li W., Ganesh S., Ramaswamy Y., Patel S., Misra A. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells. 2021;10:593. doi: 10.3390/cells10030593. PubMed DOI PMC
Kumar M., Kulshrestha R., Singh N., Jaggi A.S. Expanding spectrum of anticancer drug, imatinib, in the disorders affecting brain and spinal cord. Pharm. Res. 2019;143:86–96. doi: 10.1016/j.phrs.2019.03.014. PubMed DOI
Kadowaki T., Kubota N. Protective Role of Imatinib in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2004;24:801–803. doi: 10.1161/01.ATV.0000128321.91782.b9. PubMed DOI
de la Torre J.C. Impaired brain microcirculation may trigger Alzheimer’s disease. Neurosci. Biobehav. Rev. 1994;18:397–401. doi: 10.1016/0149-7634(94)90052-3. PubMed DOI