An Electrochemical Sensor for Detection of Neuroblastoma Markers: Complexation Studies as a Tool for the Selection of a Suitable Receptor for Electrode Coating

. 2022 Aug ; 87 (8) : e202200165.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35943176

Homovanillate (HVA) and vanilmandelate (VMA) are recognized markers of diseases, including neuroblastoma. However, their detection in urine represents a challenging task due to the complexity of the matrix. Here, a design, synthesis and thorough investigation of polymerizable urea-based receptors interacting with HVA and VMA are reported. The selection of receptor with the best anion recognition properties for electrode coating is based on 1 H-NMR and UV-Vis complexation studies. The sensor is prepared by electropolymerization with progress monitoring by cyclic voltammetry. The deposited layer is characterized by IR and scanning electron microscopy. The obtained sensor shows an electrochemical impedance spectroscopy response to VMA with linear range 9.9×10-6 to 1.2×10-3 M and LOD of 3.4×10-6 M. The sensor selectivity was demonstrated by the determination of VMA level in the presence of 16 μM HVA and in artificial urine with and without phosphates, with standard deviations of 0.11, 0.17 and 0.09, respectively.

Zobrazit více v PubMed

N.-K. V. Cheung, S. L. Cohn, Pediatric Oncology, Springer Berlin Heidelberg 2005.

E. H. LaBrosse, E. Comoy, C. Bohuon, J.-M. Zucker, J. Lemerle, O. Schweisguth, C. Com-Nougue, Canc. Res. 1980, 40, 1995.

C. D. Williams, M. Greer, J. Am. Med. Assoc. 1963, 183, 134.

V. Strenger, R. Kerbl, H. J. Dornbusch, R. Ladenstein, P. F. Ambros, I. M. Ambros, C. Urban, Pediatr. Blood Cancer 2007, 48, 504.

S. Barco, I. Gennai, G. Reggiardo, B. Galleni, L. Barbagallo, A. Maffia, E. Viscardi, F. De Leonardis, V. Cecinati, S. Sorrentino, A. Garaventa, M. Conte, G. Cangemi, Clin. Biochem. 2014, 47, 848.

W. G. Woods, R. N. Gao, J. J. Shuster, L. L. Robison, M. Bernstein, S. Weitzman, G. Bunin, I. Levy, J. Brossard, G. Dougherty, M. Tuchman, B. Lemieux, N. Engl. J. Med. 2002, 346, 1041.

S. E. Gitlow, L. M. Bertrani, A. Rausen, D. Gribetz, S. W. Dziedzic, Cancer 1970, 25, 1377.

S. Kawaguchi, N. Hirachi, M. Fukamachi, J. Chromatogr. 1991, 567, 11.

L. Lionetto, A. M. Lostia, A. Stigliano, P. Cardelli, M. Simmaco, Clin. Chim. Acta 2008, 398, 53.

D. Flottmann, J. Hins, C. Rettenmaier, N. Schnell, Z. Kuci, G. Merkel, G. Seitz, G. Bruchelt, Microchim. Acta 2006, 154, 49.

A. Nemiroski, D. C. Christodouleas, J. W. Hennek, A. A. Kumar, E. J. Maxwell, M. T. Fernández-Abedul, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2014, 111, 11984.

B. Fu, H. Chen, Z. Yan, Z. Zhang, J. Chen, T. Liu, K. Li, J. Electroanal. Chem. 2020, 866, 114165.

A. Němečková-Makrlíková, T. Navrátil, J. Barek, P. Štenclová, A. Kromka, V. Vyskočil, Anal. Chim. Acta 2019, 1087, 44.

A. Makrlíková, E. Ktena, A. Economou, J. Fischer, T. Navrátil, J. Barek, V. Vyskočil, Electroanalysis 2016, 29, 146.

M. C. Blanco-López, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, P. Tuñón-Blanco, Biosens. Bioelectron. 2003, 18, 353.

Q. Li, C. Batchelor-McAuley, R. G. Compton, J. Phys. Chem. B 2010, 114, 9713.

T. V. Shiskhanova, M. Havlík, M. Dendisová, P. Matějka, V. Král, Chem. Commun. 2016, 52, 11991.

V. Amendola, L. Fabbrizzi, L. Mosca, Chem. Soc. Rev. 2010, 39, 3889.

A. F. Li, J. H. Wang, F. Wang, Y. B. Jiang, Chem. Soc. Rev. 2010, 39, 3729.

K. Tanaka, T. Shichiri, S. Wang, T. Yamabe, Synth. Met. 1988, 24, 203.

J. Bobacka, A. Ivaska, A. Lewenstam, Electroanalysis 2003, 15, 366.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT 2009.

K. Hirose, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 193.

P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305.

The values of KAss were obtained using freely available calculation program Bindfit http://app.supramolecular.org/bindfit/.

P. Job, Ann. Chim. 1928, 9, 113.

K. Hirose, Quantitative Analysis of Binding Properties. Analytical Methods in Supramolecular Chemistry, Schalley, Ch. A., Ed., Wiley-VCH Verlag 2012, 27.

R. B. Ambade, S. B. Ambade, N. K. Shrestha, R. R. Salunkhe, W. Lee, S. S. Bagde, J. H. Kim, J. H. Stadler, Y. Yamaguchi, S.-H. Lee, J. Mater. Chem. A 2017, 5, 172.

V. Rajakumar, N. Krishnamurthy, V. Ramakrishan, J. Raman Spectrosc. 1992, 23, 75.

S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M. E. Orazem, Nat Rev Methods Primer 2021, 1, 41.

Ch.-H. Chuang, M. O. Shaikh, Point-of Care diagnostics-New Progresses and Perspectives, Ch. M. Cheng, M.-Y. Hsu, Marie Yung-Chen Wu Eds., IAPC-OBP, Chapter 8,⋅ 2017, 173-202.

F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, A. Alcacer, J. Bausells, N. Jaffrezic-Renault, N. Zine, A. Errachid, Front. Chem. 2021, 9, 621057.

M. Teliska, V. S. Murthi, S. Mukerjee, D. E. Ramaker, J. Phys. Chem. C 2007, 111, 9267.

D. C. Harris, C. A. Lucy, Quantitative Chemical Analysis, 10th ed., 2020, Macmilian Learning.

M. Cole, L. Parker, A. W. Craft, S. Bell, G. Dale, A. C. McGill, J. A. Seviour, J. Smith, Arch. Dis. Child. 1993, 68, 376.

T. Sawada, K. Numata, S. Hirata, J. Pediatr. Surg. 1992, 27, 452.

For concentration ranges for HVA/VMA accepted as normal a test protocol by Fairview University of Minnesota, Delavare, U.S.A., 2013 was used: https://www.childrensmn.org/references/Lab/urinestool/hva-and-vma-random-or-24-hour-urine.pdf.

N. Sarigul, F. Korkmaz, I. Kurultak, Sci. Rep. 2019, 9, 20159.

A. Sendrowski, T. H. Boyer, Desalination 2013, 322, 104.

A. Isidro-Llobet, M. A. lvarez, F. Albericio, Chem. Rev. 2009, 109, 2455.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...