Voltammetric Detection of Vanillylmandelic Acid and Homovanillic Acid Using Urea-Derivative-Modified Graphite Electrode
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
402850061
Specific University research grant by Ministry of Education, Youth and Sports of the Czech Republic
PubMed
37050787
PubMed Central
PMC10098763
DOI
10.3390/s23073727
PII: s23073727
Knihovny.cz E-zdroje
- Klíčová slova
- differential pulse voltammetry, electrochemical impedance spectroscopy, neuroblastoma, urea-derivative receptor,
- MeSH
- elektrody MeSH
- grafit * MeSH
- kyselina homovanilová chemie MeSH
- kyselina vanilmandlová chemie MeSH
- lidé MeSH
- neuroblastom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- grafit * MeSH
- kyselina homovanilová MeSH
- kyselina vanilmandlová MeSH
Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are diagnostic markers of neuroblastoma. The purpose of this study was to understand the reason for the discrimination of structural analogues (VMA and HVA) onto a graphite electrode coated with an electrochemically oxidized urea derivative. Density functional theory calculations (DFT), FTIR spectroscopic measurements, and electrochemical impedance spectroscopic measurements were used in this work. Density functional theory calculations (DFT) were used to identify the most suitable binding sites of the urea derivative and to describe possible differences in its interaction with the studied analytes. The FTIR measurement indicated the enhancement and disappearance of NH vibrations on graphite and platinum surfaces, respectively, that could be connected to a different orientation and thus provide accessibility of the urea moiety for the discrimination of carboxylates. Additionally, the higher the basicity of the anion, the stronger the hydrogen-bonding interaction with -NH-groups of the urea moiety: VMA (pKb = 10.6, KAds = (5.18 ± 1.95) × 105) and HVA (pKb = 9.6, KAds = (4.78 ± 1.58) × 104). The differential pulse voltammetric method was applied to detect VMA and HVA as individual species and interferents. As individual analytes, both HVA and VMA can be detected at a concentration of 1.99 × 10-5 M (RSD ≤ 0.28, recovery 110-115%).
Zobrazit více v PubMed
Cebula J., Fink K., Boratyński J., Goszczyński T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023;477:214940. doi: 10.1016/j.ccr.2022.214940. DOI
Hirao T., Kishino S., Haino T. Supramolecular chiral sensing by supramolecular helical polymers. Chem. Commun. 2023;59:2421–2424. doi: 10.1039/d2cc06502a. PubMed DOI
Guo C., Sedgwick A.C., Hirao T., Sessler J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev. 2021;427:213560. PubMed PMC
Goel N., Kumar N. Supramolecules: Future Challenges and Perspectives. In: Goel N., Kumar N., editors. Pharmaceutical Applications of Supramolecules. Springer; Cham, Switzerland: 2022. pp. 319–328. DOI
Wang S., Liu Y., Zhu A., Tian Y. In vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal. Chem. 2023;95:388–406. PubMed
Ross J.A., Davies S.M. Screening for neuroblastoma: Progress and pitfalls. Cancer Epidemiol. Biomark. Prev. 1999;8:189–194. PubMed
Parisi M.T., Eslamy H., Park J.R., Shulkin B.L., Yanik G.A. 131I-Metaiodobenzylguanidine theranostics in neuroblastoma: Historical perspectives; practical applications. Nucl. Med. 2016;46:184–202. doi: 10.1053/j.semnuclmed.2016.02.002. PubMed DOI
Miekus N., Kowalski P., Oledzka I., Plenis A., Bien E., Miekus A., Krawczyk M., Adamkiewicz-Drozynska E., Baczek T. Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma. J. Chromatogr. B. 2015;1003:27–34. PubMed
Khamlichi R.E., Bouchta D., Anouar E.H., Atia M.B., Attar A., Choukairi M., Tazi S., Ihssane R., Faiza C., Khalid D., et al. A novel l-leucine modified sol-gel-carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis. Mater. Sci. Eng. C. 2017;71:870–878. doi: 10.1016/j.msec.2016.10.076. PubMed DOI
Shishkanova T.V., Broncová G., Fitl P., Král V., Barek J. Voltammetric detection of catecholamine metabolites using Tröger’s base modified electrode. Electroanalysis. 2018;30:734–739. doi: 10.1002/elan.201700635. DOI
Baluchová S., Barek J., Tomé L.I.N., Brett C.M.A., Schwarzová-Pecková K. Vanillylmandelic and homovanillic acid: Electroanalysis at non-modified and polymer-modified carbon-based electrodes. J. Electroanal. Chem. 2018;821:22–32. doi: 10.1016/j.jelechem.2018.03.011. DOI
Shishkanova T.V., Sinica A. Electrochemically deposited cobalt bis(dicarbollide) derivative and the detection of neuroblastoma markers on the electrode surface. J. Electroanal. Chem. 2022;921:116674. doi: 10.1016/j.jelechem.2022.116674. DOI
Boiocchi M., Del Boca L., Esteban-Go’mez D., Fabbrizzi L., Licchelli M., Monzani E. Nature of urea−fluoride interaction: incipient and definitive proton transfer. J. Am. Chem. Soc. 2004;126:16507–16514. doi: 10.1021/ja045936c. PubMed DOI
Salvadori K., Páleš J.M., Shishkanova T.V., Trchová M., Fajgar R., Matějka P., Cuřínová P. An electrochemical sensor for detection of neuroblastoma markers: Complexation studies as a tool for the selection of a suitable receptor for electrode coating. ChemPlusChem. 2022;87:e202200165. doi: 10.1002/cplu.202200165. PubMed DOI
Magar H.S., Hassan R.Y.A., Mulchandani A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors. 2021;21:6578. doi: 10.3390/s21196578. PubMed DOI PMC
Brett C.M.A. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules. 2022;27:1497. doi: 10.3390/molecules27051497. PubMed DOI PMC
Millner P.A., Caygill R.L., Conroy D.J., Shahidan M.A. Impedance Interrogated Affinity Biosensors for Medical Applications: Novel Targets and Mechanistic Studies. Volume 45 Woodhead Publishing Ltd.; Cambridge, UK: 2012.
Randviir E.P., Banks C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods. 2013;5:1098–1115. doi: 10.1039/c3ay26476a. PubMed DOI
Rushworth J.V., Ahmed A., Griffiths H.H., Pollock N.M., Hooper Millner P.A. A label-free electrical impedimetric biosensor for the specific detection of Alzheimers amyloid-beta oligomers. Biosens. Bioelectron. 2014;56:83–90. doi: 10.1016/j.bios.2013.12.036. PubMed DOI
Zhang J.K., Wu Y., Zhang B.B., Li M., Jia S.R., Jiang S.H., Zhou H., Zhang Y., Zhang C.Z., Turner A.P.F. Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 2012;45:986–992. doi: 10.1080/00032719.2012.670784. DOI
Dhillon S., Kant R. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. Chem. Sci. J. 2017;129:1277–1292. doi: 10.1007/s12039-017-1335-x. DOI
Guler Z., Erkoc P., Sarac A.S. Electrochemical impedance spectroscopic study of single-stranded DNA-immobilized electroactive polypyrrole-coated electrospun poly(ε-caprolactone) nanofibers. Mater. Express. 2015;5:269–279. doi: 10.1166/mex.2015.1249. DOI
Yan J., Yuan W., Tang Z., Xie H., Mao W., Ma L. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries. J. Power Sources. 2012;209:251–256. doi: 10.1016/j.jpowsour.2012.02.110. DOI
Kütt A., Selberg S., Kaljurand I., Tshepelevitsh S., Heering A., Darnell A., Kaupmees K., Piirsalu M., Leito I. pKa values in organic chemistry—Making maximum use of the available data. Tetrahedron Lett. 2018;59:3738–3748. doi: 10.1016/j.tetlet.2018.08.054. DOI
Li Q., Batchelor-McAuley C., Compton R.G. Electrooxidative decarboxylation of vanillylmandelic acid: Voltammetric differentiation between the structurally related compounds homovanillic acid and vanillylmandelic acid. J. Phys. Chem. B. 2010;114:9713–9719. doi: 10.1021/jp104137p. PubMed DOI
Gates S.C., Sweeley C.C., Krivit W., DeWitt D., Blaisdell B.E. Automated metabolic profiling of organic acids in human urine. II. Analysis of urine samples from “healthy” adults, sick children, and children with neuroblastoma. Clin. Chem. 1978;24:1680–1689. doi: 10.1093/clinchem/24.10.1680. PubMed DOI