Shotgun proteomic profiling of dormant, 'non-culturable' Mycobacterium tuberculosis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35944020
PubMed Central
PMC9362914
DOI
10.1371/journal.pone.0269847
PII: PONE-D-21-32365
Knihovny.cz E-zdroje
- MeSH
- hmotnostní spektrometrie MeSH
- latentní tuberkulóza * MeSH
- lidé MeSH
- Mycobacterium tuberculosis * metabolismus MeSH
- proteomika MeSH
- tuberkulóza lymfatických uzlin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by 'non-culturability'-a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, 'non-culturable' M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions-the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
BioCeV Institute of Microbiology of the CAS Vestec Czech Republic
Faculty of Science University of South Bohemia Branišovská Czech Republic
Zobrazit více v PubMed
Fang F.C. Antimicrobial Reactive Oxygen and Nitrogen Species: Concepts and Controversies. Nature Reviews Microbiology 2004, 2, 820–832, doi: 10.1038/nrmicro1004 PubMed DOI
Oliver J.D. Recent Findings on the Viable but Nonculturable State in Pathogenic Bacteria. FEMS Microbiology Reviews 2010, 34, 415–425, doi: 10.1111/j.1574-6976.2009.00200.x PubMed DOI
Lenaerts A.; Barry C.E.; Dartois V. Heterogeneity in Tuberculosis Pathology, Microenvironments and Therapeutic Responses. Immunol Rev 2015, 264, 288–307, doi: 10.1111/imr.12252 PubMed DOI PMC
Garber E.D. The Host as a Growth Medium*. Annals of the New York Academy of Sciences 1960, 88, 1187–1194, doi: 10.1111/j.1749-6632.1960.tb20108.x PubMed DOI
Brown S.A.; Palmer K.L.; Whiteley M. Revisiting the Host as a Growth Medium. Nat Rev Microbiol 2008, 6, 657–666, doi: 10.1038/nrmicro1955 PubMed DOI PMC
Eisenreich W.; Dandekar T.; Heesemann J.; Goebel W. Carbon Metabolism of Intracellular Bacterial Pathogens and Possible Links to Virulence. Nat Rev Microbiol 2010, 8, 401–412, doi: 10.1038/nrmicro2351 PubMed DOI
Schnappinger D.; Ehrt S.; Voskuil M.I.; Liu Y.; Mangan J.A.; Monahan I.M.; et al.. Transcriptional Adaptation of Mycobacterium Tuberculosis within Macrophages. J Exp Med 2003, 198, 693–704, doi: 10.1084/jem.20030846 PubMed DOI PMC
Wayne L.G. Dormancy of Mycobacterium Tuberculosis and Latency of Disease. Eur J Clin Microbiol Infect Dis 1994, 13, 908–914, doi: 10.1007/BF02111491 PubMed DOI
Deb C.; Lee C.-M.; Dubey V.S.; Daniel J.; Abomoelak B.; Sirakova T.D.; et al.. A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium Tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen. PLOS ONE 2009, 4, e6077, doi: 10.1371/journal.pone.0006077 PubMed DOI PMC
Dhillon J.; Lowrie D.B.; Mitchison D.A. Mycobacterium Tuberculosis from Chronic Murine Infections That Grows in Liquid but Not on Solid Medium. BMC Infect Dis 2004, 4, 51, doi: 10.1186/1471-2334-4-51 PubMed DOI PMC
Awasthi D.; Freundlich J.S. Antimycobacterial Metabolism: Illuminating Mycobacterium Tuberculosis Biology and Drug Discovery. Trends in Microbiology 2017, 25, 756–767, doi: 10.1016/j.tim.2017.05.007 PubMed DOI PMC
Kaprelyants A.S.; Salina E.G.; Makarov V.A. How to Kill Dormant Mycobacterium Tuberculosis. Int J Mycobacteriol 2018, 7, 399–400, doi: 10.4103/ijmy.ijmy_106_18 PubMed DOI
Shleeva M.O.; Kudykina Y.K.; Vostroknutova G.N.; Suzina N.E.; Mulyukin A.L.; Kaprelyants A.S. Dormant Ovoid Cells of Mycobacterium Tuberculosis Are Formed in Response to Gradual External Acidification. Tuberculosis (Edinb) 2011, 91, 146–154, doi: 10.1016/j.tube.2010.12.006 PubMed DOI
Biketov S.; Mukamolova G.V.; Potapov V.; Gilenkov E.; Vostroknutova G.; Kell D.B.; et al.. Culturability of Mycobacterium Tuberculosis Cells Isolated from Murine Macrophages: A Bacterial Growth Factor Promotes Recovery. FEMS Immunol Med Microbiol 2000, 29, 233–240, doi: 10.1111/j.1574-695X.2000.tb01528.x PubMed DOI
Welin A.; Raffetseder J.; Eklund D.; Stendahl O.; Lerm M. Importance of Phagosomal Functionality for Growth Restriction of Mycobacterium Tuberculosis in Primary Human Macrophages. J Innate Immun 2011, 3, 508–518, doi: 10.1159/000325297 PubMed DOI PMC
Shleeva M.; Kondratieva T.; Rubakova E.; Vostroknutova G.; Kaprelyants A.; Apt A. Reactivation of Dormant “Non-Culturable” Mycobacterium Tuberculosis Developed in Vitro after Injection in Mice: Both the Dormancy Depth and Host Genetics Influence the Outcome. Microb Pathog 2015, 78, 63–66, doi: 10.1016/j.micpath.2014.11.016 PubMed DOI
Kondratieva T.; Shleeva M.; Kapina M.; Rubakova E.; Linge I.; Dyatlov A.; et al.. Prolonged Infection Triggered by Dormant Mycobacterium Tuberculosis: Immune and Inflammatory Responses in Lungs of Genetically Susceptible and Resistant Mice. PloS one 2020, doi: 10.1371/journal.pone.0239668 PubMed DOI PMC
Trutneva K.A.; Shleeva M.O.; Demina G.R.; Vostroknutova G.N.; Kaprelyans A.S. One-Year Old Dormant, “Non-Culturable” Mycobacterium Tuberculosis Preserves Significantly Diverse Protein Profile. Front Cell Infect Microbiol 2020, 10, doi: 10.1007/BF01880621 PubMed DOI PMC
de Man J.C. The Probability of Most Probable Numbers. European J. Appl Microbiol. 1975, 1, 67–78, doi: 10.1007/BF01880621 DOI
Rappsilber J.; Mann M.; Ishihama Y. Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat Protoc 2007, 2, 1896–1906, doi: 10.1038/nprot.2007.261 PubMed DOI
O’Rourke M.B.; Town S.E.L.; Dalla P.V.; Bicknell F.; Koh Belic N.; Violi J.P.; et al.. What Is Normalization? The Strategies Employed in Top-Down and Bottom-Up Proteome Analysis Workflows. Proteomes 2019, 7, doi: 10.3390/proteomes7030029 PubMed DOI PMC
Zhao Y.; Wong L.; Goh W.W.B. How to Do Quantile Normalization Correctly for Gene Expression Data Analyses. Scientific Reports 2020, 10, 15534, doi: 10.1038/s41598-020-72664-6 PubMed DOI PMC
Jolliffe I.T. Principal Component Analysis; Springer-Verlag New York, Inc. 2002: Department of Mathematical Sciences King’s CollegeUniversity of AberdeenAberdeenUK, 2002; ISBN 978-0-387-95442-4.
Eriksson L.; Johansson E.; Kettaneh-Wold N.; Trygg J.; Wikstrom C.; Wold S. Chapter 3: PCA. Multi- and Megavariate Data Analysis 2006, 43–70.
Lever J.; Krzywinski M.; Altman N. Principal Component Analysis. Nature Methods 2017, 14, 641–642, doi: 10.1038/nmeth.4346 DOI
Murtagh F.; Legendre P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J Classif 2014, 31, 274–295, doi: 10.1007/s00357-014-9161-z DOI
Key M. A Tutorial in Displaying Mass Spectrometry-Based Proteomic Data Using Heat Maps. BMC Bioinformatics 2012, 13, S10, doi: 10.1186/1471-2105-13-S16-S10 PubMed DOI PMC
Uddin R.; Siddiqui Q.N.; Azam S.S.; Saima B.; Wadood A. Identification and Characterization of Potential Druggable Targets among Hypothetical Proteins of Extensively Drug Resistant Mycobacterium Tuberculosis (XDR KZN 605) through Subtractive Genomics Approach. European Journal of Pharmaceutical Sciences 2018, 114, 13–23, doi: 10.1016/j.ejps.2017.11.014 PubMed DOI
Maurya S.; Akhtar S.; Siddiqui M.H.; Khan M.K.A. Subtractive Proteomics for Identification of Drug Targets in Bacterial Pathogens: A Review. International Journal of Engineering Research & Technology 2020, 9, doi: 10.17577/IJERTV9IS010169 DOI
Li W.; Jaroszewski L.; Godzik A. Clustering of Highly Homologous Sequences to Reduce the Size of Large Protein Databases. Bioinformatics 2001, 17, 282–283, doi: 10.1093/bioinformatics/17.3.282 PubMed DOI
Huang Y.; Niu B.; Gao Y.; Fu L.; Li W. CD-HIT Suite: A Web Server for Clustering and Comparing Biological Sequences. Bioinformatics 2010, 26, 680–682, doi: 10.1093/bioinformatics/btq003 PubMed DOI PMC
Yu C.-S.; Chen Y.-C.; Lu C.-H.; Hwang J.-K. Prediction of Protein Subcellular Localization. Proteins: Structure, Function, and Bioinformatics 2006, 64, 643–651, doi: 10.1002/prot.21018 PubMed DOI
Kunnath-Velayudhan S.; Salamon H.; Wang H.-Y.; Davidow A.L.; Molina D.M.; Huynh V.T.; et al.. Dynamic Antibody Responses to the Mycobacterium Tuberculosis Proteome. PNAS 2010, 107, 14703–14708. doi: 10.1073/pnas.1009080107 PubMed DOI PMC
Zhou F.; Xu X.; Wu S.; Cui X.; Pan W. ORFeome-Based Identification of Biomarkers for Serodiagnosis of Mycobacterium Tuberculosis Latent Infection. BMC Infectious Diseases 2017, 17, 793, doi: 10.1186/s12879-017-2910-y PubMed DOI PMC
T B.; R B.R.; A F.; Ch G.; S R.; J H.; et al.. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents. Clin Infect Dis 2017, 64, 947–955, doi: 10.1093/cid/cix023 PubMed DOI PMC
Tenenbaum D.; Volkening J.; Maintainer B.P. KEGGREST: Client-Side REST Access to the Kyoto Encyclopedia of Genes and Genomes (KEGG); Bioconductor version: Release (3.13), 2021.
García E.A.; Blanco F.C.; Bigi M.M.; Vazquez C.L.; Forrellad M.A.; Rocha R.V.; et al.. Characterization of the Two Component Regulatory System PhoPR in Mycobacterium Bovis. Veterinary Microbiology 2018, 222, 30–38, doi: 10.1016/j.vetmic.2018.06.016 PubMed DOI
Bansal R.; Kumar V.A.; Sevalkar R.R.; Singh P.R.; Sarkar D. Mycobacterium Tuberculosis Virulence-Regulator PhoP Interacts with Alternative Sigma Factor SigE during Acid-Stress Response. Molecular Microbiology 2017, 104, 400–411, doi: 10.1111/mmi.13635 PubMed DOI
Augenstreich J.; Arbues A.; Simeone R.; Haanappel E.; Wegener A.; Sayes F.; et al.. ESX-1 and Phthiocerol Dimycocerosates of Mycobacterium Tuberculosis Act in Concert to Cause Phagosomal Rupture and Host Cell Apoptosis. Cell Microbiol 2017, 19, doi: 10.1111/cmi.12726 PubMed DOI
Brennan M.J. The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination. Infection and Immunity 2017, 85, doi: 10.1128/IAI.00969-16 PubMed DOI PMC
Ates L.S. New Insights into the Mycobacterial PE and PPE Proteins Provide a Framework for Future Research. Molecular Microbiology 2020, 113, 4–21, doi: 10.1111/mmi.14409 PubMed DOI PMC
Betts J.C.; Lukey P.T.; Robb L.C.; McAdam R.A.; Duncan K. Evaluation of a Nutrient Starvation Model of Mycobacterium Tuberculosis Persistence by Gene and Protein Expression Profiling. Molecular Microbiology 2002, 43, 717–731, doi: 10.1046/j.1365-2958.2002.02779.x PubMed DOI
Sali M.; Sante G.D.; Cascioferro A.; Zumbo A.; Nicolò C.; Donà V.; et al.. Surface Expression of MPT64 as a Fusion with the PE Domain of PE_PGRS33 Enhances Mycobacterium Bovis BCG Protective Activity against Mycobacterium Tuberculosis in Mice. Infection and Immunity 2010, 78, 5202–5213, doi: 10.1128/IAI.00267-10 PubMed DOI PMC
Voskuil M.I.; Visconti K.C.; Schoolnik G.K. Mycobacterium Tuberculosis Gene Expression during Adaptation to Stationary Phase and Low-Oxygen Dormancy. Tuberculosis (Edinb) 2004, 84, 218–227, doi: 10.1016/j.tube.2004.02.003 PubMed DOI
Kundu M.; Basu J. Applications of Transcriptomics and Proteomics for Understanding Dormancy and Resuscitation in Mycobacterium Tuberculosis. Front Microbiol 2021, 12, 642487, doi: 10.3389/fmicb.2021.642487 PubMed DOI PMC
Schubert O.T.; Mouritsen J.; Ludwig C.; Röst H.L.; Rosenberger G.; Arthur P.K.; Claassen M.; Campbell D.S.; Sun Z.; Farrah T.; et al.. The Mtb Proteome Library: A Resource of Assays to Quantify the Complete Proteome of Mycobacterium Tuberculosis. Cell Host Microbe 2013, 13, 602–612, doi: 10.1016/j.chom.2013.04.008 PubMed DOI PMC
Shleeva M.O.; Trutneva K.A.; Demina G.R.; Zinin A.I.; Sorokoumova G.M.; Laptinskaya P.K.; Shumkova E.S.; Kaprelyants A.S et al.. Free Trehalose Accumulation in Dormant Mycobacterium Smegmatis Cells and Its Breakdown in Early Resuscitation Phase. Front Microbiol 2017, 8, 524, doi: 10.3389/fmicb.2017.00524 PubMed DOI PMC
Lee J.J.; Lee S.-K.; Song N.; Nathan T.O.; Swarts B.M.; Eum S.-Y.; Ehrt S.; Cho S.-N.; Eoh H et al.. Transient Drug-Tolerance and Permanent Drug-Resistance Rely on the Trehalose-Catalytic Shift in Mycobacterium Tuberculosis. Nat Commun 2019, 10, 2928, doi: 10.1038/s41467-019-10975-7 PubMed DOI PMC
Jiao X.; Sherman B.T.; Huang D.W.; Stephens R.; Baseler M.W.; Lane H.C.; Lempicki R.A et al.. DAVID-WS: A Stateful Web Service to Facilitate Gene/Protein List Analysis. Bioinformatics 2012, 28, 1805–1806, doi: 10.1093/bioinformatics/bts251 PubMed DOI PMC
Yu G.; Wang L.-G.; Han Y.; He Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology 2012, 16, 284–287, doi: 10.1089/omi.2011.0118 PubMed DOI PMC
Boshoff H.I.M.; Barry C.E. Tuberculosis—Metabolism and Respiration in the Absence of Growth. Nat Rev Microbiol 2005, 3, 70–80, doi: 10.1038/nrmicro1065 PubMed DOI
Zimmermann M.; Kuehne A.; Boshoff H.I.; Barry C.E.; Zamboni N.; Sauer U. Dynamic Exometabolome Analysis Reveals Active Metabolic Pathways in Non-Replicating Mycobacteria. Environmental Microbiology 2015, 17, 4802–4815, doi: 10.1111/1462-2920.13056 PubMed DOI PMC
Tripathi S.M.; Ramachandran R. Crystal Structures of the Mycobacterium Tuberculosis Secretory Antigen Alanine Dehydrogenase (Rv2780) in Apo and Ternary Complex Forms Captures “Open” and “Closed” Enzyme Conformations. Proteins 2008, 72, 1089–1095, doi: 10.1002/prot.22101 PubMed DOI
Giffin M.M.; Modesti L.; Raab R.W.; Wayne L.G.; Sohaskey C.D. Ald of Mycobacterium Tuberculosis Encodes Both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase. J Bacteriol 2012, 194, 1045–1054, doi: 10.1128/JB.05914-11 PubMed DOI PMC
Nikitushkin V.D.; Trenkamp S.; Demina G.R.; Shleeva M.O.; Kaprelyants A.S. Metabolic Profiling of Dormant Mycolicibacterium Smegmatis Cells’ Reactivation Reveals a Gradual Assembly of Metabolic Processes. Metabolomics 2020, 16, 24, doi: 10.1007/s11306-020-1645-8 PubMed DOI
Rao S.P.S.; Alonso S.; Rand L.; Dick T.; Pethe K. The Protonmotive Force Is Required for Maintaining ATP Homeostasis and Viability of Hypoxic, Nonreplicating Mycobacterium Tuberculosis. Proc Natl Acad Sci U S A 2008, 105, 11945–11950, doi: 10.1073/pnas.0711697105 PubMed DOI PMC
Watanabe S.; Zimmermann M.; Goodwin M.B.; Sauer U.; Barry C.E. 3rd; Boshoff H.I. Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium Tuberculosis. PLOS Pathogens 2011, 7, e1002287, doi: 10.1371/journal.ppat.1002287 PubMed DOI PMC
Eoh H.; Wang Z.; Layre E.; Rath P.; Morris R.; Branch Moody D.; Rhee K.Y et al.. Metabolic Anticipation in Mycobacterium Tuberculosis. Nat Microbiol 2017, 2, 1–7, doi: 10.1038/nmicrobiol.2017.84 PubMed DOI PMC
Billig S.; Schneefeld M.; Huber C.; Grassl G.A.; Eisenreich W.; Bange F.-C. Lactate Oxidation Facilitates Growth of Mycobacterium Tuberculosis in Human Macrophages. Scientific Reports 2017, 7, 6484, doi: 10.1038/s41598-017-05916-7 PubMed DOI PMC
Haft D.H. Bioinformatic Evidence for a Widely Distributed, Ribosomally Produced Electron Carrier Precursor, Its Maturation Proteins, and Its Nicotinoprotein Redox Partners. BMC Genomics 2011, 12, 21, doi: 10.1186/1471-2164-12-21 PubMed DOI PMC
Krishnamoorthy G.; Kaiser P.; Constant P.; Abu Abed U.; Schmid M.; Frese C.K.; Brinkmann V.; Daffé M.; Kaufmann S.H.E et al. Role of Premycofactocin Synthase in Growth, Microaerophilic Adaptation, and Metabolism of Mycobacterium Tuberculosis. mBio 2021, 12, e0166521, doi: 10.1128/mBio.01665-21 PubMed DOI PMC
Greening C.; Ahmed F.H.; Mohamed A.E.; Lee B.M.; Pandey G.; Warden A.C.; Scott C.; Oakeshott J.G.; Taylor M.C.; Jackson C.J et al. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol. Mol. Biol. Rev. 2016, 80, 451–493, doi: 10.1128/MMBR.00070-15 PubMed DOI PMC
Serra-Vidal M.M.; Latorre I.; Franken K.L.C.M.; Díaz J.; de Souza-Galvão M.L.; Casas I.; Maldonado J.; Milà C.; Solsona J.; Jimenez-Fuentes M.Á.; et al.. Immunogenicity of 60 Novel Latency-Related Antigens of Mycobacterium Tuberculosis. Front Microbiol 2014, 5, 517, doi: 10.3389/fmicb.2014.00517 PubMed DOI PMC
Singh R.; Manjunatha U.; Boshoff H.I.M.; Ha Y.H.; Niyomrattanakit P.; Ledwidge R.; Dowd C.S.; Lee I.Y.; Kim P.; Zhang L.; et al.. PA-824 Kills Nonreplicating Mycobacterium Tuberculosis by Intracellular NO Release. Science 2008, 322, 1392–1395, doi: 10.1126/science.1164571 PubMed DOI PMC
Makarov V.; Manina G.; Mikusova K.; Möllmann U.; Ryabova O.; Saint-Joanis B.; Dhar N.; Pasca M.R.; Buroni S.; Lucarelli A.P.; et al.. Benzothiazinones Kill Mycobacterium Tuberculosis by Blocking Arabinan Synthesis. Science 2009, 324, 801–804, doi: 10.1126/science.1171583 PubMed DOI PMC
Tallman K.R.; Levine S.R.; Beatty K.E. Small-Molecule Probes Reveal Esterases with Persistent Activity in Dormant and Reactivating Mycobacterium Tuberculosis. ACS Infect. Dis. 2016, 2, 936–944, doi: 10.1021/acsinfecdis.6b00135 PubMed DOI PMC
Mirnejad R.; Asadi A.; Khoshnood S.; Mirzaei H.; Heidary M.; Fattorini L.; Ghodousi A.; Darban-Sarokhalil, Det al. Clofazimine: A Useful Antibiotic for Drug-Resistant Tuberculosis. Biomed Pharmacother 2018, 105, 1353–1359, doi: 10.1016/j.biopha.2018.06.023 PubMed DOI
Côtes K.; N’Goma J.C.B.; Dhouib R.; Douchet I.; Maurin D.; Carrière F.; Canaan, Set al. Lipolytic Enzymes in Mycobacterium Tuberculosis. Appl Microbiol Biotechnol 2008, 78, 741–749, doi: 10.1007/s00253-008-1397-2 PubMed DOI
Ortega C.; Anderson L.N.; Frando A.; Sadler N.C.; Brown R.W.; Smith R.D.; Wright A.T.; Grundner C et al. Systematic Survey of Serine Hydrolase Activity in Mycobacterium Tuberculosis Defines Changes Associated with Persistence. Cell Chemical Biology 2016, 23, 290–298, doi: 10.1016/j.chembiol.2016.01.003 PubMed DOI PMC
Alteri C.J.; Lindner J.R.; Reiss D.J.; Smith S.N.; Mobley H.L.T. The Broadly Conserved Regulator PhoP Links Pathogen Virulence and Membrane Potential in Escherichia Coli. Mol Microbiol 2011, 82, 145–163, doi: 10.1111/j.1365-2958.2011.07804.x PubMed DOI PMC
Golubeva Y.A.; Slauch J.M. Salmonella Enterica Serovar Typhimurium Periplasmic Superoxide Dismutase SodCI Is a Member of the PhoPQ Regulon and Is Induced in Macrophages. J Bacteriol 2006, 188, 7853–7861, doi: 10.1128/JB.00706-06 PubMed DOI PMC
Muñoz‐Elías E.J.; Upton A.M.; Cherian J.; McKinney J.D. Role of the Methylcitrate Cycle in Mycobacterium Tuberculosis Metabolism, Intracellular Growth, and Virulence. Molecular Microbiology 2006, 60, 1109–1122, doi: 10.1111/j.1365-2958.2006.05155.x PubMed DOI
Gould T.A.; Langemheen H.V.D.; Muñoz‐Elías E.J.; McKinney J.D.; Sacchettini J.C. Dual Role of Isocitrate Lyase 1 in the Glyoxylate and Methylcitrate Cycles in Mycobacterium Tuberculosis. Molecular Microbiology 2006, 61, 940–947, doi: 10.1111/j.1365-2958.2006.05297.x PubMed DOI
Peyron P.; Vaubourgeix J.; Poquet Y.; Levillain F.; Botanch C.; Bardou F.; Daffé M.; Emile J.-F.; Marchou B.; Cardona P.-J.; et al.. Foamy Macrophages from Tuberculous Patients’ Granulomas Constitute a Nutrient-Rich Reservoir for M. Tuberculosis Persistence. PLOS Pathogens 2008, 4, e1000204, doi: 10.1371/journal.ppat.1000204 PubMed DOI PMC
Zimmermann M.; Kogadeeva M.; Gengenbacher M.; McEwen G.; Mollenkopf H.-J.; Zamboni N.; Kaufmann S.H.E.; Sauer, et al U. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium Tuberculosis during Early Macrophage Infection. mSystems 2017, 2, doi: 10.1128/mSystems.00057-17 PubMed DOI PMC
Muñoz-Elías E.J.; McKinney J.D. Mycobacterium Tuberculosis Isocitrate Lyases 1 and 2 Are Jointly Required for in Vivo Growth and Virulence. Nature Medicine 2005, 11, 638–644, doi: 10.1038/nm1252 PubMed DOI PMC
Cook G.M.; Hards K.; Vilchèze C.; Hartman T.; Berney M. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiol Spectr 2014, 2, doi: 10.1128/microbiolspec.MGM2-0015-2013 PubMed DOI PMC
Schubert O.T.; Ludwig C.; Kogadeeva M.; Zimmermann M.; Rosenberger G.; Gengenbacher M.; Gillet L.C.; Collins B.C.; Röst H.L.; Kaufmann S.H.E.; et al.. Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium Tuberculosis. Cell Host Microbe 2015, 18, 96–108, doi: 10.1016/j.chom.2015.06.001 PubMed DOI
Warner D.F.; Evans J.C.; Mizrahi V. Nucleotide Metabolism and DNA Replication. Microbiol Spectr 2014, 2, doi: 10.1128/microbiolspec.MGM2-0001-2013 PubMed DOI
Ferraris D.M.; Gelardi E.L.M.; Garavaglia S.; Miggiano R.; Rizzi M. Targeting NAD-Dependent Dehydrogenases in Drug Discovery against Infectious Diseases and Cancer. Biochem Soc Trans 2020, 48, 693–707, doi: 10.1042/BST20191261 PubMed DOI
Pethe K.; Sequeira P.C.; Agarwalla S.; Rhee K.; Kuhen K.; Phong W.Y.; Patel V.; Beer D.; Walker J.R.; Duraiswamy J.; et al.. A Chemical Genetic Screen in Mycobacterium Tuberculosis Identifies Carbon-Source-Dependent Growth Inhibitors Devoid of in Vivo Efficacy. Nat Commun 2010, 1, 1–8, doi: 10.1038/ncomms1060 PubMed DOI PMC
Buchmeier N.A.; Newton G.L.; Koledin T.; Fahey R.C. Association of Mycothiol with Protection of Mycobacterium Tuberculosis from Toxic Oxidants and Antibiotics. Molecular Microbiology 2003, 47, 1723–1732, doi: 10.1046/j.1365-2958.2003.03416.x PubMed DOI
Hernick M. Mycothiol: A Target for Potentiation of Rifampin and Other Antibiotics against Mycobacterium Tuberculosis. Expert Review of Anti-infective Therapy 2013, 11, 49–67, doi: 10.1586/eri.12.152 PubMed DOI
Gurumurthy M.; Rao M.; Mukherjee T.; Rao S.P.S.; Boshoff H.I.; Dick T.; Barry C.E.; Manjunatha U. Het al. A Novel F420-Dependent Anti-Oxidant Mechanism Protects Mycobacterium Tuberculosis against Oxidative Stress and Bactericidal Agents. Molecular Microbiology 2013, 87, 744–755, doi: 10.1111/mmi.12127 PubMed DOI PMC
Trutneva K.A.; Avdienko V.G.; Demina G.R.; Shleeva M.O.; Shumkov M.S.; Salina E.G.; Kaprelyants A.Set al. Immunoreactive Proteins of Dormant Mycobacterium Tuberculosis Cells. Appl Biochem Microbiol 2021, 57, 170–179, doi: 10.1134/S0003683821020174 DOI
Liu Y.; Matsumoto M.; Ishida H.; Ohguro K.; Yoshitake M.; Gupta R.; Geiter L.;Hafkin Jet al. Delamanid: From Discovery to Its Use for Pulmonary Multidrug-Resistant Tuberculosis (MDR-TB). Tuberculosis (Edinb ) 2018, 111, 20–30, doi: 10.1016/j.tube.2018.04.008 PubMed DOI
Chen X.; Hashizume H.; Tomishige T.; Nakamura I.; Matsuba M.; Fujiwara M.; Kitamoto R.; Hanaki E.; Ohba Y.; Matsumoto, Met al. Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis. Antimicrob Agents Chemother 2017, 61, e02402–16, doi: 10.1128/AAC.02402-16 PubMed DOI PMC
Gupta K.B.; Gupta R.; Atreja A.; Verma M.; Vishvkarma S. Tuberculosis and Nutrition. Lung India 2009, 26, 9–16, doi: 10.4103/0970-2113.45198 PubMed DOI PMC
Esterbauer H.; Cheeseman K.H. Determination of Aldehydic Lipid Peroxidation Products: Malonaldehyde and 4-Hydroxynonenal. Methods Enzymol 1990, 186, 407–421, doi: 10.1016/0076-6879(90)86134-h PubMed DOI
Puckett S.; Trujillo C.; Wang Z.; Eoh H.; Ioerger T.R.; Krieger I.; Sacchettini J.; Schnappinger D.; Rhee K.Y.; Ehrt S et al.. Glyoxylate Detoxification Is an Essential Function of Malate Synthase Required for Carbon Assimilation in Mycobacterium Tuberculosis. Proc Natl Acad Sci USA 2017, 114, E2225–E2232, doi: 10.1073/pnas.1617655114 PubMed DOI PMC
Krieger I.V.; Freundlich J.S.; Gawandi V.B.; Roberts J.P.; Gawandi V.B.; Sun Q.; Owen J.L.; Fraile M.T.; Huss S.I.; Lavandera J.-L.; et al.. Structure-Guided Discovery of Phenyl Diketo-Acids as Potent Inhibitors of M. Tuberculosis Malate Synthase. Chem Biol 2012, 19, 1556–1567, doi: 10.1016/j.chembiol.2012.09.018 PubMed DOI PMC