-
Je něco špatně v tomto záznamu ?
The activating transcription factor 2: an influencer of cancer progression
K. Huebner, J. Procházka, AC. Monteiro, V. Mahadevan, R. Schneider-Stock,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01 do Před 1 rokem
PubMed
31799611
DOI
10.1093/mutage/gez041
Knihovny.cz E-zdroje
- MeSH
- apoptóza genetika MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mutace genetika MeSH
- nádory genetika patologie MeSH
- progrese nemoci MeSH
- transkripční faktor ATF2 genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated 'cancer gene chameleon' ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023319
- 003
- CZ-PrNML
- 005
- 20201214125735.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/mutage/gez041 $2 doi
- 035 __
- $a (PubMed)31799611
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Huebner, Kerstin $u Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
- 245 14
- $a The activating transcription factor 2: an influencer of cancer progression / $c K. Huebner, J. Procházka, AC. Monteiro, V. Mahadevan, R. Schneider-Stock,
- 520 9_
- $a In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated 'cancer gene chameleon' ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
- 650 _2
- $a transkripční faktor ATF2 $x genetika $7 D051698
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a apoptóza $x genetika $7 D017209
- 650 _2
- $a progrese nemoci $7 D018450
- 650 _2
- $a epitelo-mezenchymální tranzice $x genetika $7 D058750
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikro RNA $x genetika $7 D035683
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a nádory $x genetika $x patologie $7 D009369
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Procházka, Jan $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic.
- 700 1_
- $a Monteiro, Ana C $u Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
- 700 1_
- $a Mahadevan, Vijayalakshmi $u Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India.
- 700 1_
- $a Schneider-Stock, Regine $u Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
- 773 0_
- $w MED00003429 $t Mutagenesis $x 1464-3804 $g Roč. 34, č. 5-6 (2019), s. 375-389
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31799611 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125735 $b ABA008
- 999 __
- $a ok $b bmc $g 1595638 $s 1113995
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 34 $c 5-6 $d 375-389 $e 20191219 $i 1464-3804 $m Mutagenesis $n Mutagenesis $x MED00003429
- LZP __
- $a Pubmed-20201125